Exemple #1
0
Network *PerceptronModel::createNetwork(Episode *first_episode) const
{
    Network *network = new Network(first_episode->encodedStateSize());

    Dense *hidden = new Dense(_hidden_neurons, 1e-2);
    TanhActivation *hidden_activation = new TanhActivation;
    Dense *dense2 = new Dense(first_episode->valueSize(), 1e-2);

    hidden->setInput(network->inputPort());
    hidden_activation->setInput(hidden->output());
    dense2->setInput(hidden_activation->output());

    network->addNode(hidden);
    network->addNode(hidden_activation);
    network->addNode(dense2);

    return network;
}
Exemple #2
0
void route_edges(Layouter &state,plugin& pg, double scale, int iter, double temp, int debug){
   int n=state.nw.nodes.size();
   int i,j,k;
   vector<NodeLinePair> gs;
   Rect bb=state.nw.getBB();
   bb.extend(state.avgsize/10);
   Network nv;
   vector<VI> nodemap(n);
   vector<vector<VI> > edge_crossings(n+4,vector<VI>(n+4)); // this stores for each voronoi line between node i and j the crosspoints; includes 4 virtual nodes
   printf("finding Voronoi separator lines\n");
   for (i=0;i<n;i++){
      gs.clear();
      double x=state.nw.nodes[i].x;
      double y=state.nw.nodes[i].y;
      double w=state.nw.nodes[i].width;
      double h=state.nw.nodes[i].height;
      Rect ri=state.nw.nodes[i].rect();
      //if (i==iter) debugrect(ri,0,0,255);
      gs.push_back(NodeLinePair(n,ParamEdge(Point(x,bb.ymin),bb.TL()))); // boundary lines (should point to left); adds virtual nodes n ... n+3
      gs.push_back(NodeLinePair(n+1,ParamEdge(Point(bb.xmin,y),bb.BL())));
      gs.push_back(NodeLinePair(n+2,ParamEdge(Point(x,bb.ymax),bb.BR())));
      gs.push_back(NodeLinePair(n+3,ParamEdge(Point(bb.xmax,y),bb.TR())));
      double dclosest=DBL_MAX;
      int iclosest;
      for (j=0;j<n;j++){
         if (i==j) continue;
         double x2=state.nw.nodes[j].x;
         double y2=state.nw.nodes[j].y;
         double w2=state.nw.nodes[j].width;
         double h2=state.nw.nodes[j].height;
         double dx=x2-x;
         double dy=y2-y;
         double mx=(dx>0 ? (x+w/2+x2-w2/2)/2  : (x-w/2+x2+w2/2)/2); // point thru which separation line should go (in the middle between the two nodes)
         double my=(dy>0 ? (y+h/2+y2-h2/2)/2  : (y-h/2+y2+h2/2)/2);
         if (my<min(y,y2)) my=min(y,y2); // if nodes "overlap" in one direction, these limits need to be applied
         if (mx<min(x,x2)) mx=min(x,x2);
         if (my>max(y,y2)) my=max(y,y2);
         if (mx>max(x,x2)) mx=max(x,x2);
         Point m(mx,my);
         double gx=dy; // line sould point perpendicular to distance vector; points to left
         double gy=-dx;
         //if (i==iter) debugline(m.x,m.y,m.x+gx,m.y+gy,200,100,100,true);
//         if (i==iter) debugline(x,y,x2,y2,100,100,200,true);
         
         double ord_angles[4]; 
         double &alpha=ord_angles[0];
         alpha=angle(Point(gx,gy));
         // find suitable 0, 45 and 90° lines and sort them by proximity to (gx,gy) line
         double &nearest=ord_angles[1]; // just references to iterate through candidates later on
         double &second=ord_angles[2];
         double &third=ord_angles[3];
         nearest=PI/4*round(4*alpha/PI);
         double left=PI/2*floor(2*alpha/PI);
         double right=PI/2*ceil(2*alpha/PI);

         // find second nearest
         second=PI/4*floor(4*alpha/PI);
         if (second==nearest) second=PI/4*ceil(4*alpha/PI);
         
         // find third nearest
         if (nearest==left){
            third=right;
         } else if (nearest==right){
            third=left;
         } else if (second==left){
            third=right;
         } else {
            third=left;
         }
         
/*         for (k=0;k<3;k++){
            if (i==1) debugline(m.x,m.y,m.x+100*Point(ord_angles[k]).x,m.y+100*Point(ord_angles[k]).y,100,100,200,true);
         }*/
         // check candidates in the defined order whether they collide with one of the two nodes (i or j)
         Rect rj=state.nw.nodes[j].rect();
         Point g(0,0);
         bool found=false;
         for (k=0;k<4;k++){
            g=Point(ord_angles[k]);
            if (prod(g,rj.TL()-m)>0 && prod(g,rj.TR()-m)>0 && prod(g,rj.BR()-m)>0 && prod(g,rj.BL()-m)>0 &&
               prod(g,ri.TL()-m)<0 && prod(g,ri.TR()-m)<0 && prod(g,ri.BR()-m)<0 && prod(g,ri.BL()-m)<0) { // node j completely right of g && i completely left
                found=true;
                break;
            }
         }
         if (!found) g=Point(ord_angles[0]); // ups? do nodes overlap?
            
         // generate the line and save it 
         ParamEdge ge(m,m+g); // the voronoi line separating node i from node j
         Point pclosest=ge.dist_vec(state.nw.nodes[i]); // closest point on line to node i
         ge.re_ref(state.nw.nodes[i]+pclosest); // reference point of line needs to be the closest point to node i
         gs.push_back(NodeLinePair(j,ge));
         if (norm(pclosest)<dclosest){ // find closest line to node i on the fly
            dclosest=norm(pclosest);
            iclosest=gs.size()-1;
         }
         //if (i==iter) debugline(ge.from(),ge.p(state.avgsize*4),100,100,100,true);
      }
      
      //find  set of voronoi lines which minimally surround node i
      int curidx=iclosest;
      int minidx;
      int lastidx=-1;
      bool first=true;
      int gl=gs.size();
      VI used(gl,0);
      while (first || curidx!=iclosest){
         ParamEdge &cur=gs[curidx].line;
         double minc=DBL_MAX;
         for (j=0;j<gl;j++){ // find the nearest crosspoint of one of all voronoi lines; searching to the left from last cross point
            if (j==curidx) continue;
            if (used[j]) continue;
            if (j==lastidx) continue; // finds the last voronoi line again; should not happen as this line should be in used[] already; except for iclosest
            double c=cur.cross_param(gs[j].line);
            if (c==0) { // special case, check whether new line points inwards
               Point ctr90=to_left(Point(x,y)-cur.p(c),PI);
               Point cln90=to_left(cur.unit(),PI);
               Point dirj=gs[j].line.unit();
               if (!((scalar(ctr90,dirj)<0) && (scalar(cln90,dirj)>0))){ // new line not between center line and current line
                  continue;
               }
            }
            if (c>=0 && c<minc){
               minc=c;
               minidx=j;
               //if (i==iter) debugpoint(cur.p(c),state.avgsize/10,0,0,255);
            }
         }
         used[minidx]=1;
         Point cp=cur.cross_point(gs[minidx].line);
         //if (i==iter) debugpoint(cp,state.avgsize/10,0,255,0);
         gs[minidx].line.re_ref(cp); // setting ref point of next line to the current cross point
         //if (i==iter) debugline(gs[minidx].line.from(),gs[minidx].line.p(state.avgsize),255,0,255);
         int newnode=nv.nodes.size(); 
         nv.addNode(newnode,other,"",1,1,cp.x,cp.y,0);
         edge_crossings[min(i,gs[curidx].node)][max(i,gs[curidx].node)].push_back(newnode); // add the new node to the two veronoi lines it belongs to
         edge_crossings[min(i,gs[minidx].node)][max(i,gs[minidx].node)].push_back(newnode);
         //nodemap[i].push_back(newnode);
         lastidx=curidx;
         curidx=minidx;
         first=false;
         //if (i==iter) debugline(cur.from(),cp,0,0,0);
      }
   }
   printf("finding relevant cross points on seperator lines and building network\n");
   
   // go through all voronoi lines and connect all registered cross points
   CmpCrossPoints ccp(nv);
   for (i=0;i<n+4;i++){ // includes 4 virtual nodes
      for (j=i+1;j<n+4;j++){
         if (edge_crossings[i][j].size() ==0 ) continue;
         sort(edge_crossings[i][j].begin(),edge_crossings[i][j].end(),ccp); // sort cross points on line
         for (k=0;k<(int)edge_crossings[i][j].size();k++){
            int n1=edge_crossings[i][j][k];
            if (i<n) nodemap[i].push_back(n1); // register voronoi node to be adjacent to original node i (if not virtual node)
            if (j<n) nodemap[j].push_back(n1);
            if (k==((int)edge_crossings[i][j].size())-1) break; // for the last crosspoint we do not create an edge
            int n2=edge_crossings[i][j][k+1];
            nv.addEdge(n1,n2,undirected);
            if (iter<=1) debugline(nv.nodes[n1].x,nv.nodes[n1].y,nv.nodes[n2].x,nv.nodes[n2].y,0,0,0,true);
         }
      }
   }
   printf("finding shortest path through network for each original edge\n");
   if (iter>=1){ // this is just for showing 1 step show only veronoi lines, 2nd show splines
      nv.calcEdgeLengths();
      int m=state.nw.edges.size();
      for (i=0;i<m;i++){
         printf(".");fflush(stdout);
         Edge &e=state.nw.edges[i];
         int n1=e.from;
         int n2=e.to;
         BFS bfs(nv,nodemap[n1]);
         int nn=bfs.next();
         while (nn>=0 && find(nodemap[n2].begin(),nodemap[n2].end(),nn)==nodemap[n2].end()){
            nn=bfs.next();
         }
         if (nn<0) printf("Ups, no route for edge\n");
         VI path=bfs.path();
         smooth_path(nv,path,state.avgsize/4);
         e.splinepoints.clear();
         e.splinehandles.clear();
         double beta;
         Point vec;
         double dd1=(path.size()>1 ? 
            (norm(nv.nodes[path[0]]-state.nw.nodes[n1])-max(state.nw.nodes[n1].width,state.nw.nodes[n1].height)/2)/2 :
            (norm(state.nw.nodes[n2]-state.nw.nodes[n1])-max(state.nw.nodes[n1].width,state.nw.nodes[n1].height)/2-max(state.nw.nodes[n2].width,state.nw.nodes[n2].height)/2)/2);
         dd1=min(dd1,state.avgsize/2);
         double d1=max(state.nw.nodes[n1].width,state.nw.nodes[n1].height)/2+dd1;
         double dd2=(path.size()>1 ? 
         (norm(nv.nodes[path.back()]-state.nw.nodes[n2])-max(state.nw.nodes[n2].width,state.nw.nodes[n2].height)/2)/2 :
         (norm(state.nw.nodes[n2]-state.nw.nodes[n1])-max(state.nw.nodes[n1].width,state.nw.nodes[n1].height)/2-max(state.nw.nodes[n2].width,state.nw.nodes[n2].height)/2)/2);
         dd2=min(dd2,state.avgsize/2);
         double d2=max(state.nw.nodes[n2].width,state.nw.nodes[n2].height)/2+state.avgsize/2;
         Point sp1,sp2;
         switch(e.type){
            case substrate:
               reverse(path.begin(),path.end());
               swap(n1,n2);
               swap(d1,d2);
               sp1=(path.size()>1 ? nv.nodes[path[0]] : state.nw.nodes[n2]);
               e.splinehandles.push_back(unit(sp1-state.nw.nodes[n1])*d1);
               e.splinehandles.push_back(Point(state.nw.nodes[n2].dir+PI/2)*d2);
               break;
            case product:
               e.splinehandles.push_back(Point(state.nw.nodes[n1].dir-PI/2)*d1);
               sp2=(path.size()>1 ? nv.nodes[path.back()] : state.nw.nodes[n1]);
               e.splinehandles.push_back(unit(sp2-state.nw.nodes[n2])*d2);
               break;
            case activator:
            case inhibitor:
            case catalyst:
               reverse(path.begin(),path.end());
               swap(n1,n2);
               swap(d1,d2);
               vec=state.nw.nodes[n1]-state.nw.nodes[n2]; // vector pointing from n2 (reaction) to n1 (catalyst,etc)
               beta=0;
               if (scalar(vec,Point(state.nw.nodes[n2].dir+PI))>scalar(vec,Point(state.nw.nodes[n2].dir))) beta=PI;
               sp1=(path.size()>1 ? nv.nodes[path[0]] : state.nw.nodes[n2]);
               e.splinehandles.push_back(unit(sp1-state.nw.nodes[n1])*d1);
               e.splinehandles.push_back(Point(state.nw.nodes[n2].dir+beta)*d2);
               break;
            default:
               sp1=(path.size()>1 ? nv.nodes[path[0]] : state.nw.nodes[n2]);
               e.splinehandles.push_back(unit(sp1-state.nw.nodes[n1])*d1);
               sp2=(path.size()>1 ? nv.nodes[path.back()] : state.nw.nodes[n1]);
               e.splinehandles.push_back(unit(sp2-state.nw.nodes[n2])*d2);
         }
         if (path.size()>1){
            //debugline(state.nw.nodes[n1].x,state.nw.nodes[n1].y,nv.nodes[path.front()].x,nv.nodes[path.front()].y,255,100,100);
            for (j=0;j<(int)path.size();j++){
               Point before=(j==0 ? state.nw.nodes[n1] : nv.nodes[path[j-1]]);
               Point &after=(j==((int)path.size())-1 ? state.nw.nodes[n2] : nv.nodes[path[j+1]]);
               Point &cur=nv.nodes[path[j]];
               if (after==cur) continue;
               if (before==cur) {
                  if (j-1<0) continue;
                  before=(j-1==0 ? state.nw.nodes[n1] : nv.nodes[path[j-2]]);
               }
               Point d=unit(before-cur)+unit(after-cur);
               if (d.is_null()) continue;
               d=unit(d)*min(min(norm(before-cur),norm(after-cur))/2,state.avgsize/2);
               e.splinehandles.insert(--e.splinehandles.end(),to_left(d,PI/2)*sign(scalar(to_left(d,PI/2),before-cur)));
               e.splinepoints.push_back(cur+d);
               //debugline(cur+d,cur+d+to_left(d,PI/2)*sign(scalar(to_left(d,PI/2),before-cur)),0,0,255,true);
               //if (j<path.size()-1) debugline(nv.nodes[path[j]].x,nv.nodes[path[j]].y,nv.nodes[path[j+1]].x,nv.nodes[path[j+1]].y,255,100,100);
            }
            //debugline(nv.nodes[path.back()].x,nv.nodes[path.back()].y,state.nw.nodes[n2].x,state.nw.nodes[n2].y,255,100,100);
            
         }
      }
   }
   /*   NetDisplay nd(nv);
   nd.waitKeyPress=true;
   nd.show();*/
}
Exemple #3
0
int main (int argc, char** argv) {
    //srand(time(NULL));

    //manual config...
    //------------- output layer
    OutputNode output;
    output._name = "f";
    
    Sigmoid sigmoid;
    output._activationFunc = &sigmoid;

    SquaredError squaredError;
    output._criterion = &squaredError;

    //------------- interal layer 1
    InternalNode internal_1, internal_2;
    internal_1._name = "i1";
    internal_2._name = "i2";

    Sigmoid sigmoid_i1, sigmoid_i2;
    internal_1._activationFunc = &sigmoid_i1;
    internal_2._activationFunc = &sigmoid_i2;
   
    //------------- input layer
    InputNode input_1, input_2, input_3;
    input_1._name = "a";
    input_2._name = "b";
    input_3._name = "c";

    Constant input_1_value, input_2_value, input_3_value;
    input_1._activationFunc = &input_1_value;
    input_2._activationFunc = &input_2_value;
    input_3._activationFunc = &input_3_value;

    //------------- make connections
    output.addInput(&internal_1);
    output.addInput(&internal_2);

    internal_1.addInput(&input_1);
    internal_1.addInput(&input_2);
    internal_1.addInput(&input_3);

    internal_2.addInput(&input_1);
    internal_2.addInput(&input_2);
    internal_2.addInput(&input_3);

    Network network;
    network.addNode(&output);
    network.addNode(&input_1);
    network.addNode(&input_2);
    network.addNode(&input_3);
    network.addNode(&internal_1);
    network.addNode(&internal_2);

    //--- training    

    float a[NUM_TRAINING_SAMPLE] = {0.5, 0.3, 1, 0.25, 0.9, 0.5, 0.41, 0.6, 0.3, 0.7};
    float b[NUM_TRAINING_SAMPLE] = {0.3, 0.5, 0.2, 0.1, 0.8, 0.5, 0.4, 0.61, 0.31, 0.6};
    float targetValue[NUM_TRAINING_SAMPLE] = {1, 0, 1, 1, 1, 0, 1, 0, 0, 1};

    ForwardPass forwardPass;
    BackwardPropagation backPropagation;
    UpdateWeights updateWeights;
    updateWeights._learningRate = 0.75;

    for (size_t epoch=0; epoch<1000; ++epoch) {
        for (size_t i=0; i<NUM_TRAINING_SAMPLE; ++i) {
            input_1_value._value = a[i];
            input_2_value._value = b[i];
            input_3_value._value = -0.5;
            output._criterion->_targetValue = targetValue[i];

            forwardPass(&network);

            backPropagation(&network);

            updateWeights(&network);
        }
    }

    //--- testing
    
    float test_a[NUM_TESTING_SAMPLE] = {0.5, 0.3, 1, 0.2, 0.9, 0.5, 0.51, 0.61, 0.2, 0.4};
    float test_b[NUM_TESTING_SAMPLE] = {0.3, 0.5, 0.2, 1, 0.8, 0.5, 0.5, 0.60, 0.1, 0.5};
    float test_targetValue[NUM_TESTING_SAMPLE] = {1, 0, 1, 0, 1, 0, 1, 1, 1, 0};

    int numCorrect = 0;

    for (size_t i=0; i<NUM_TESTING_SAMPLE; ++i) {
        input_1_value._value = test_a[i];
        input_2_value._value = test_b[i];
        input_3_value._value = -0.5;
        output._criterion->_targetValue = test_targetValue[i];
        forwardPass(&network);        

        if (    output.getValue() > 0.5
            &&  static_cast<int>(test_targetValue[i]) == 1) {
            ++numCorrect;
        }
        else if (    output.getValue() <= 0.5
                 &&  static_cast<int>(test_targetValue[i]) == 0) {
            ++numCorrect;
        }
    }

    cout << "accuracy: " << (numCorrect / 10.0f) << endl;

    PrintNetwork printNetwork;
    printNetwork(&network);
}
Exemple #4
0
int main(){

	cout << "Demonstrating Omurtag et al. (2000)" << endl;
	Number    n_bins = 500;
	Potential V_min  = 0.0;

	NeuronParameter
		par_neuron
		(
			1.0,
			0.0,
			0.0,
			0.0,
			50e-3
		);

	OdeParameter
		par_ode
		(
			n_bins,
			V_min,
			par_neuron,
			InitialDensityParameter(0.0,0.0)
		);

	double min_bin = 0.01;
	LifNeuralDynamics dyn(par_ode,min_bin);
	LeakingOdeSystem sys(dyn);
	GeomParameter par_geom(sys);
	GeomDelayAlg alg(par_geom);

	Rate rate_ext = 800.0;
	RateAlgorithm<MPILib::DelayedConnection> alg_ext(rate_ext);

	Network network;

	NodeId id_rate = network.addNode(alg_ext,EXCITATORY_DIRECT);
	NodeId id_alg  = network.addNode(alg,    EXCITATORY_DIRECT);

	MPILib::DelayedConnection con(1,0.03,0.0);
	network.makeFirstInputOfSecond(id_rate,id_alg,con);

	MPILib::report::handler::RootReportHandler handler("singlepoptest", true, true);
	handler.addNodeToCanvas(id_alg);

	const SimulationRunParameter
		par_run
		(
			handler,
			10000000,
			0.0,
			0.5,
			1e-3,
			1e-4,
			"singlepoptest.log"
		);

	network.configureSimulation(par_run);
	network.evolve();

	return 0;
}
int main(){
  
  Rate rate_ext = 0;

  RateFunctor<double> input(Inp);
  RateFunctor<double> openlock(Opl);

  RateAlgorithm<double> alg_ext(rate_ext);

	WilsonCowanParameter par_wc;
	par_wc._f_bias        = 0;
	par_wc._f_noise       = 1.0;
	par_wc._rate_maximum  = 50;
	par_wc._time_membrane = 50e-3;
  

	WilsonCowanAlgorithm alg(par_wc);

	Network network;

	NodeId id_input = network.addNode(input, EXCITATORY_DIRECT);
	NodeId id_gate = network.addNode(alg, EXCITATORY_DIRECT);
	NodeId id_output = network.addNode(alg, EXCITATORY_DIRECT);
	NodeId id_lock = network.addNode(alg, INHIBITORY_DIRECT);
	NodeId id_openlock = network.addNode(openlock ,INHIBITORY_DIRECT);

	double weight = 1.0;

	network.makeFirstInputOfSecond(id_input, id_gate, weight);
	network.makeFirstInputOfSecond(id_input, id_lock, weight);
	network.makeFirstInputOfSecond(id_gate, id_output, weight);
	network.makeFirstInputOfSecond(id_lock, id_gate, -1*weight);
	network.makeFirstInputOfSecond(id_openlock, id_lock, -2*weight);

	MPILib::CanvasParameter par_canvas;
	par_canvas._state_min     = -0.020;
	par_canvas._state_max     = 0.020;
	par_canvas._t_min         = 0.0;
	par_canvas._t_max         = 2.0;
	par_canvas._f_min         = 0.0;
	par_canvas._f_max         = 50.0;
	par_canvas._dense_min     = 0.0;
	par_canvas._dense_max     = 200.0;



	MPILib::report::handler::RootReportHandler handler("singlepoptest", true, true, par_canvas );

	handler.addNodeToCanvas(id_input);
	handler.addNodeToCanvas(id_gate);
	handler.addNodeToCanvas(id_output);
	handler.addNodeToCanvas(id_lock);
	handler.addNodeToCanvas(id_openlock);

	const SimulationRunParameter
		par_run
		(
		  handler,
		  10000000,
		  0.0,
		  2.0,
	          1e-3,
		  1e-3,
		   "wilsom.log"
		);

	network.configureSimulation(par_run);
	network.evolve();

	return 0;
}
Exemple #6
0
int main(){

	cout << "Demonstrating Quadratic-Integrate-and-Fire under jump response" << endl;
	Number    n_bins = 1000;
	Potential V_min  = -10.0;

	NeuronParameter
		par_neuron
		(
			10.0,
			-10.0,
			-10.0,
			0.0,
			10e-3
		);

	OdeParameter
		par_ode
		(
			n_bins,
			V_min,
			par_neuron,
			InitialDensityParameter(0.0,0.0)
		);


	GeomLib::QifParameter
	  par_qif
	  (
	    0.5, // 
	    0.5  // default gamma sys
	  );

	DiffusionParameter par_diffusion(0.03,0.03);
	CurrentCompensationParameter par_current(0.0,0.0);
	SpikingQifNeuralDynamics dyn(par_ode,par_qif);
	QifOdeSystem sys(dyn);
	GeomDelayAlg alg_qif(GeomParameter(sys,  par_diffusion, par_current));
      


	// Reproduce mu = 0.6, sigma = 0.7       
	Rate rate_ext = 6000;
	Efficacy h    = -8e-3;

	RateAlgorithm<MPILib::DelayedConnection> alg_ext(rate_ext);

	Network network;

	NodeId id_rate = network.addNode(alg_ext, MPILib::INHIBITORY_GAUSSIAN);
	NodeId id_alg  = network.addNode(alg_qif, MPILib::EXCITATORY_GAUSSIAN);

	MPILib::DelayedConnection con(1,h,0.0);
	network.makeFirstInputOfSecond(id_rate,id_alg,con);


	MPILib::CanvasParameter par_canvas;
	par_canvas._state_min     = -10.0;
	par_canvas._state_max     =  10.0;
	par_canvas._t_min         = 0.0;
	par_canvas._t_max         = 0.5;
	par_canvas._f_min         = 0.0;
	par_canvas._f_max         = 10.0;
	par_canvas._dense_min     = 0.0;
	par_canvas._dense_max     = 5.0;


	MPILib::report::handler::RootReportHandler handler("twopopcanvas.root", true, true, par_canvas);
	handler.addNodeToCanvas(id_alg);

      

	const SimulationRunParameter
		par_run
		(
			handler,
			10000000,
			0.0,
			0.5,
			2e-3,
			1e-4,
			"singlepoptest.log"
		);

	network.configureSimulation(par_run);
	network.evolve();

	return 0;
}