Exemple #1
0
//------------------------------sched_call-------------------------------------
uint Block::sched_call( Matcher &m, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
  RegMask regs;

  // Schedule all the users of the call right now.  All the users are
  // projection Nodes, so they must be scheduled next to the call.
  // Collect all the defined registers.
  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
    Node* n = mcall->fast_out(i);
    assert( n->Opcode()==Op_MachProj, "" );
    --ready_cnt[n->_idx];
    assert( !ready_cnt[n->_idx], "" );
    // Schedule next to call
    _nodes.map(node_cnt++, n);
    // Collect defined registers
    regs.OR(n->out_RegMask());
    // Check for scheduling the next control-definer
    if( n->bottom_type() == Type::CONTROL ) 
      // Warm up next pile of heuristic bits
      needed_for_next_call(n, next_call, bbs);

    // Children of projections are now all ready
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j); // Get user
      if( bbs[m->_idx] != this ) continue;
      if( m->is_Phi() ) continue;
      if( !--ready_cnt[m->_idx] ) 
        worklist.push(m);
    }
  
  }

  // Act as if the call defines the Frame Pointer.
  // Certainly the FP is alive and well after the call.
  regs.Insert(m.c_frame_pointer());

  // Set all registers killed and not already defined by the call.
  uint r_cnt = mcall->tf()->range()->cnt();
  int op = mcall->ideal_Opcode();
  MachProjNode *proj = new (1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
  bbs.map(proj->_idx,this);
  _nodes.insert(node_cnt++, proj);

  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
    if( !regs.Member(r) ) {     // Not already defined by the call  
      // Save-on-call register?
      if( (m._register_save_policy[r] == 'C') ||
          (m._register_save_policy[r] == 'A') ||
          ((m._register_save_policy[r] == 'E') &&
           (op == Op_CallRuntime     ||
            op == Op_CallNative      ||
            op == Op_CallInterpreter ||
            op == Op_CallLeaf)) ) { 
        proj->_rout.Insert(r);
      }
    }
  }

  return node_cnt;
}
//------------------------------expand_recur----------------------------
static void expand_recur( Node *n, VectorSet &visited, Node_List &worklist ) {
    if( !n ) return;
    if( visited.test_set(n->_idx) ) return;
    switch (n->class_id()) {
    case Node::Class_Allocate:    // We use millicode instead of inline allocation
    case Node::Class_AllocateArray:
    case Node::Class_Lock:
    case Node::Class_Unlock:
    case Node::Class_SafePoint:
//  case Node::Class_GetKlass:
        worklist.push(n);
    }
    for(uint i=0; i<n->req(); i++)
        expand_recur(n->in(i),visited,worklist);
}
Exemple #3
0
//------------------------------schedule_local---------------------------------
// Topological sort within a block.  Someday become a real scheduler.
bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call) {
  // Already "sorted" are the block start Node (as the first entry), and
  // the block-ending Node and any trailing control projections.  We leave
  // these alone.  PhiNodes and ParmNodes are made to follow the block start
  // Node.  Everything else gets topo-sorted.

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
      for (uint i = 0;i < block->number_of_nodes(); i++) {
        tty->print("# ");
        block->get_node(i)->fast_dump();
      }
      tty->print_cr("#");
    }
#endif

  // RootNode is already sorted
  if (block->number_of_nodes() == 1) {
    return true;
  }

  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
  uint node_cnt = block->end_idx();
  uint phi_cnt = 1;
  uint i;
  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
    Node *n = block->get_node(i);
    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
        (n->is_Proj()  && n->in(0) == block->head()) ) {
      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
      block->map_node(block->get_node(phi_cnt), i);
      block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
    } else {                    // All others
      // Count block-local inputs to 'n'
      uint cnt = n->len();      // Input count
      uint local = 0;
      for( uint j=0; j<cnt; j++ ) {
        Node *m = n->in(j);
        if( m && get_block_for_node(m) == block && !m->is_top() )
          local++;              // One more block-local input
      }
      ready_cnt.at_put(n->_idx, local); // Count em up

#ifdef ASSERT
      if( UseConcMarkSweepGC || UseG1GC ) {
        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
          // Check the precedence edges
          for (uint prec = n->req(); prec < n->len(); prec++) {
            Node* oop_store = n->in(prec);
            if (oop_store != NULL) {
              assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
            }
          }
        }
      }
#endif

      // A few node types require changing a required edge to a precedence edge
      // before allocation.
      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
        // MemBarAcquire could be created without Precedent edge.
        // del_req() replaces the specified edge with the last input edge
        // and then removes the last edge. If the specified edge > number of
        // edges the last edge will be moved outside of the input edges array
        // and the edge will be lost. This is why this code should be
        // executed only when Precedent (== TypeFunc::Parms) edge is present.
        Node *x = n->in(TypeFunc::Parms);
        n->del_req(TypeFunc::Parms);
        n->add_prec(x);
      }
    }
  }
  for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
    ready_cnt.at_put(block->get_node(i2)->_idx, 0);

  // All the prescheduled guys do not hold back internal nodes
  uint i3;
  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
    Node *n = block->get_node(i3);       // Get pre-scheduled
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j);
      if (get_block_for_node(m) == block) { // Local-block user
        int m_cnt = ready_cnt.at(m->_idx)-1;
        ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
      }
    }
  }

  Node_List delay;
  // Make a worklist
  Node_List worklist;
  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
    Node *m = block->get_node(i4);
    if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
      if (m->is_iteratively_computed()) {
        // Push induction variable increments last to allow other uses
        // of the phi to be scheduled first. The select() method breaks
        // ties in scheduling by worklist order.
        delay.push(m);
      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
        // Force the CreateEx to the top of the list so it's processed
        // first and ends up at the start of the block.
        worklist.insert(0, m);
      } else {
        worklist.push(m);         // Then on to worklist!
      }
    }
  }
  while (delay.size()) {
    Node* d = delay.pop();
    worklist.push(d);
  }

  // Warm up the 'next_call' heuristic bits
  needed_for_next_call(block, block->head(), next_call);

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      for (uint j=0; j< block->number_of_nodes(); j++) {
        Node     *n = block->get_node(j);
        int     idx = n->_idx;
        tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
        tty->print("latency:%3d  ", get_latency_for_node(n));
        tty->print("%4d: %s\n", idx, n->Name());
      }
    }
#endif

  uint max_idx = (uint)ready_cnt.length();
  // Pull from worklist and schedule
  while( worklist.size() ) {    // Worklist is not ready

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print("#   ready list:");
      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
        Node *n = worklist[i];      // Get Node on worklist
        tty->print(" %d", n->_idx);
      }
      tty->cr();
    }
#endif

    // Select and pop a ready guy from worklist
    Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt);
    block->map_node(n, phi_cnt++);    // Schedule him next

#ifndef PRODUCT
    if (trace_opto_pipelining()) {
      tty->print("#    select %d: %s", n->_idx, n->Name());
      tty->print(", latency:%d", get_latency_for_node(n));
      n->dump();
      if (Verbose) {
        tty->print("#   ready list:");
        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
          Node *n = worklist[i];      // Get Node on worklist
          tty->print(" %d", n->_idx);
        }
        tty->cr();
      }
    }

#endif
    if( n->is_MachCall() ) {
      MachCallNode *mcall = n->as_MachCall();
      phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
      continue;
    }

    if (n->is_Mach() && n->as_Mach()->has_call()) {
      RegMask regs;
      regs.Insert(_matcher.c_frame_pointer());
      regs.OR(n->out_RegMask());

      MachProjNode *proj = new (C) MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
      map_node_to_block(proj, block);
      block->insert_node(proj, phi_cnt++);

      add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
    }

    // Children are now all ready
    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
      Node* m = n->fast_out(i5); // Get user
      if (get_block_for_node(m) != block) {
        continue;
      }
      if( m->is_Phi() ) continue;
      if (m->_idx >= max_idx) { // new node, skip it
        assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
        continue;
      }
      int m_cnt = ready_cnt.at(m->_idx)-1;
      ready_cnt.at_put(m->_idx, m_cnt);
      if( m_cnt == 0 )
        worklist.push(m);
    }
  }

  if( phi_cnt != block->end_idx() ) {
    // did not schedule all.  Retry, Bailout, or Die
    if (C->subsume_loads() == true && !C->failing()) {
      // Retry with subsume_loads == false
      // If this is the first failure, the sentinel string will "stick"
      // to the Compile object, and the C2Compiler will see it and retry.
      C->record_failure(C2Compiler::retry_no_subsuming_loads());
    }
    // assert( phi_cnt == end_idx(), "did not schedule all" );
    return false;
  }

#ifndef PRODUCT
  if (trace_opto_pipelining()) {
    tty->print_cr("#");
    tty->print_cr("# after schedule_local");
    for (uint i = 0;i < block->number_of_nodes();i++) {
      tty->print("# ");
      block->get_node(i)->fast_dump();
    }
    tty->cr();
  }
#endif


  return true;
}
Exemple #4
0
//------------------------------sched_call-------------------------------------
uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
  RegMask regs;

  // Schedule all the users of the call right now.  All the users are
  // projection Nodes, so they must be scheduled next to the call.
  // Collect all the defined registers.
  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
    Node* n = mcall->fast_out(i);
    assert( n->is_MachProj(), "" );
    int n_cnt = ready_cnt.at(n->_idx)-1;
    ready_cnt.at_put(n->_idx, n_cnt);
    assert( n_cnt == 0, "" );
    // Schedule next to call
    block->map_node(n, node_cnt++);
    // Collect defined registers
    regs.OR(n->out_RegMask());
    // Check for scheduling the next control-definer
    if( n->bottom_type() == Type::CONTROL )
      // Warm up next pile of heuristic bits
      needed_for_next_call(block, n, next_call);

    // Children of projections are now all ready
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j); // Get user
      if(get_block_for_node(m) != block) {
        continue;
      }
      if( m->is_Phi() ) continue;
      int m_cnt = ready_cnt.at(m->_idx)-1;
      ready_cnt.at_put(m->_idx, m_cnt);
      if( m_cnt == 0 )
        worklist.push(m);
    }

  }

  // Act as if the call defines the Frame Pointer.
  // Certainly the FP is alive and well after the call.
  regs.Insert(_matcher.c_frame_pointer());

  // Set all registers killed and not already defined by the call.
  uint r_cnt = mcall->tf()->range()->cnt();
  int op = mcall->ideal_Opcode();
  MachProjNode *proj = new (C) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
  map_node_to_block(proj, block);
  block->insert_node(proj, node_cnt++);

  // Select the right register save policy.
  const char * save_policy;
  switch (op) {
    case Op_CallRuntime:
    case Op_CallLeaf:
    case Op_CallLeafNoFP:
      // Calling C code so use C calling convention
      save_policy = _matcher._c_reg_save_policy;
      break;

    case Op_CallStaticJava:
    case Op_CallDynamicJava:
      // Calling Java code so use Java calling convention
      save_policy = _matcher._register_save_policy;
      break;

    default:
      ShouldNotReachHere();
  }

  // When using CallRuntime mark SOE registers as killed by the call
  // so values that could show up in the RegisterMap aren't live in a
  // callee saved register since the register wouldn't know where to
  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
  // have debug info on them.  Strictly speaking this only needs to be
  // done for oops since idealreg2debugmask takes care of debug info
  // references but there no way to handle oops differently than other
  // pointers as far as the kill mask goes.
  bool exclude_soe = op == Op_CallRuntime;

  // If the call is a MethodHandle invoke, we need to exclude the
  // register which is used to save the SP value over MH invokes from
  // the mask.  Otherwise this register could be used for
  // deoptimization information.
  if (op == Op_CallStaticJava) {
    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
    if (mcallstaticjava->_method_handle_invoke)
      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
  }

  add_call_kills(proj, regs, save_policy, exclude_soe);

  return node_cnt;
}
Exemple #5
0
//------------------------------do_unswitching-----------------------------
// Clone loop with an invariant test (that does not exit) and
// insert a clone of the test that selects which version to
// execute.
void PhaseIdealLoop::do_unswitching (IdealLoopTree *loop, Node_List &old_new) {

  // Find first invariant test that doesn't exit the loop
  LoopNode *head = loop->_head->as_Loop();

  IfNode* unswitch_iff = find_unswitching_candidate((const IdealLoopTree *)loop);
  assert(unswitch_iff != NULL, "should be at least one");

  // Need to revert back to normal loop
  if (head->is_CountedLoop() && !head->as_CountedLoop()->is_normal_loop()) {
    head->as_CountedLoop()->set_normal_loop();
  }

  ProjNode* proj_true = create_slow_version_of_loop(loop, old_new);

  assert(proj_true->is_IfTrue() && proj_true->unique_ctrl_out() == head, "by construction");

  // Increment unswitch count
  LoopNode* head_clone = old_new[head->_idx]->as_Loop();
  int nct = head->unswitch_count() + 1;
  head->set_unswitch_count(nct);
  head_clone->set_unswitch_count(nct);

  // Add test to new "if" outside of loop
  IfNode* invar_iff   = proj_true->in(0)->as_If();
  Node* invar_iff_c   = invar_iff->in(0);
  BoolNode* bol       = unswitch_iff->in(1)->as_Bool();
  invar_iff->set_req(1, bol);
  invar_iff->_prob    = unswitch_iff->_prob;

  ProjNode* proj_false = invar_iff->proj_out(0)->as_Proj();

  // Hoist invariant casts out of each loop to the appropriate
  // control projection.

  Node_List worklist;

  for (DUIterator_Fast imax, i = unswitch_iff->fast_outs(imax); i < imax; i++) {
    ProjNode* proj= unswitch_iff->fast_out(i)->as_Proj();
    // Copy to a worklist for easier manipulation
    for (DUIterator_Fast jmax, j = proj->fast_outs(jmax); j < jmax; j++) {
      Node* use = proj->fast_out(j);
      if (use->Opcode() == Op_CheckCastPP && loop->is_invariant(use->in(1))) {
        worklist.push(use);
      }
    }
    ProjNode* invar_proj = invar_iff->proj_out(proj->_con)->as_Proj();
    while (worklist.size() > 0) {
      Node* use = worklist.pop();
      Node* nuse = use->clone();
      nuse->set_req(0, invar_proj);
      _igvn.hash_delete(use);
      use->set_req(1, nuse);
      _igvn._worklist.push(use);
      register_new_node(nuse, invar_proj);
      // Same for the clone
      Node* use_clone = old_new[use->_idx];
      _igvn.hash_delete(use_clone);
      use_clone->set_req(1, nuse);
      _igvn._worklist.push(use_clone);
    }
  }

  // Hardwire the control paths in the loops into if(true) and if(false)
  _igvn.hash_delete(unswitch_iff);
  short_circuit_if(unswitch_iff, proj_true);
  _igvn._worklist.push(unswitch_iff);

  IfNode* unswitch_iff_clone = old_new[unswitch_iff->_idx]->as_If();
  _igvn.hash_delete(unswitch_iff_clone);
  short_circuit_if(unswitch_iff_clone, proj_false);
  _igvn._worklist.push(unswitch_iff_clone);

  // Reoptimize loops
  loop->record_for_igvn();
  for(int i = loop->_body.size() - 1; i >= 0 ; i--) {
    Node *n = loop->_body[i];
    Node *n_clone = old_new[n->_idx];
    _igvn._worklist.push(n_clone);
  }

#ifndef PRODUCT
  if (TraceLoopUnswitching) {
    tty->print_cr("Loop unswitching orig: %d @ %d  new: %d @ %d",
                  head->_idx,                unswitch_iff->_idx,
                  old_new[head->_idx]->_idx, unswitch_iff_clone->_idx);
  }
#endif

  C->set_major_progress();
}
Exemple #6
0
//------------------------------call_catch_cleanup-----------------------------
// If we inserted any instructions between a Call and his CatchNode,
// clone the instructions on all paths below the Catch.
void Block::call_catch_cleanup(Block_Array &bbs) {

  // End of region to clone
  uint end = end_idx();
  if( !_nodes[end]->is_Catch() ) return;
  // Start of region to clone
  uint beg = end;
  while( _nodes[beg-1]->Opcode() != Op_MachProj || 
        !_nodes[beg-1]->in(0)->is_Call() ) {
    beg--;
    assert(beg > 0,"Catch cleanup walking beyond block boundry");
  }
  if( beg == end ) return;

  // Clone along all Catch output paths.  Clone area between the 'beg' and
  // 'end' indices.
  for( uint i = 0; i < _num_succs; i++ ) {
    Block *sb = _succs[i];
    // Clone the entire area; ignoring the edge fixup for now.
    for( uint j = end; j > beg; j-- ) {
      Node *clone = _nodes[j-1]->clone();
      sb->_nodes.insert( 1, clone );
      bbs.map(clone->_idx,sb);
    }
  }


  // Fixup edges.  Check the def-use info per cloned Node
  for(uint i2 = beg; i2 < end; i2++ ) {
    uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
    Node *n = _nodes[i2];        // Node that got cloned
    // Need DU safe iterator because of edge manipulation in calls.
    Node_List *out = new Node_List(Thread::current()->resource_area());
    for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
      out->push(n->fast_out(j1));
    }
    uint max = out->size();
    for (uint j = 0; j < max; j++) {// For all users
      Node *use = out->pop();
      Block *buse = bbs[use->_idx];
      if( use->is_Phi() ) {
        for( uint k = 1; k < use->req(); k++ )
          if( use->in(k) == n ) 
            catch_cleanup_one_use( use, bbs[buse->pred(k)->_idx], n, this, bbs, beg, n_clone_idx, k );
      } else {
        catch_cleanup_one_use( use, buse, n, this, bbs, beg, n_clone_idx, -1 );
      }
    } // End for all users

  } // End of for all Nodes in cloned area

  // Remove the now-dead cloned ops
  for(uint i3 = beg; i3 < end; i3++ ) {
    _nodes[beg]->disconnect_inputs(NULL);
    _nodes.remove(beg);
  }

  // If the successor blocks have a CreateEx node, move it back to the top
  for(uint i4 = 0; i4 < _num_succs; i4++ ) {
    Block *sb = _succs[i4];
    MachNode *cex = sb->_nodes[1+end-beg]->is_Mach();
    if( cex && cex->ideal_Opcode() == Op_CreateEx ) {
      sb->_nodes.remove(1+end-beg);
      sb->_nodes.insert(1,cex);
    }
  }
}
Exemple #7
0
//------------------------------schedule_local---------------------------------
// Topological sort within a block.  Someday become a real scheduler.
bool Block::schedule_local(Matcher &matcher, Block_Array &bbs,int *ready_cnt, VectorSet &next_call, GrowableArray<uint> &node_latency) {
  // Already "sorted" are the block start Node (as the first entry), and
  // the block-ending Node and any trailing control projections.  We leave
  // these alone.  PhiNodes and ParmNodes are made to follow the block start
  // Node.  Everything else gets topo-sorted.

#ifndef PRODUCT
    if (TraceOptoPipelining) {
      tty->print("# before schedule_local\n");
      for (uint i = 0;i < _nodes.size();i++) {
        tty->print("# ");
        _nodes[i]->fast_dump();
      }
      tty->print("\n");
    }
#endif

  // RootNode is already sorted
  if( _nodes.size() == 1 ) return true;

  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
  uint node_cnt = end_idx();
  uint phi_cnt = 1;
  uint i;
  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
    Node *n = _nodes[i];
    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
        (n->is_Proj()  && n->in(0) == head()) ) {
      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
      _nodes.map(i,_nodes[phi_cnt]);
      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
    } else {                    // All others
      // Count block-local inputs to 'n'
      uint cnt = n->len();      // Input count
      uint local = 0;
      for( uint j=0; j<cnt; j++ ) {
        Node *m = n->in(j);
        if( m && bbs[m->_idx] == this && !m->is_top() )
          local++;              // One more block-local input
      }
      ready_cnt[n->_idx] = local; // Count em up

      // A few node types require changing a required edge to a precedence edge
      // before allocation.
      MachNode *m = n->is_Mach();
      if( UseConcMarkSweepGC ) {
        if( m && m->ideal_Opcode() == Op_StoreCM ) {
          // Note: Required edges with an index greater than oper_input_base
          // are not supported by the allocator.
          // Note2: Can only depend on unmatched edge being last,
          // can not depend on its absolute position.
          Node *oop_store = n->in(n->req() - 1);
          n->del_req(n->req() - 1);
          n->add_prec(oop_store);
          assert(bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
        }
      }
      if( m && m->ideal_Opcode() == Op_MemBarAcquire ) {
        Node *x = n->in(TypeFunc::Parms);
        n->del_req(TypeFunc::Parms);
        n->add_prec(x);
      }
    }
  }
  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
    ready_cnt[_nodes[i2]->_idx] = 0;

  // All the prescheduled guys do not hold back internal nodes
  uint i3;
  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
    Node *n = _nodes[i3];       // Get pre-scheduled
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j);
      if( bbs[m->_idx] ==this ) // Local-block user
        ready_cnt[m->_idx]--;   // Fix ready count
    }
  }

  // Make a worklist
  Node_List worklist;
  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
    Node *m = _nodes[i4];    
    if( !ready_cnt[m->_idx] )   // Zero ready count?
      worklist.push(m);         // Then on to worklist!
  }

  // Warm up the 'next_call' heuristic bits
  needed_for_next_call(_nodes[0], next_call, bbs);

#ifndef PRODUCT
    if (TraceOptoPipelining) {
      for (uint j=0; j<_nodes.size(); j++) {
        Node     *n = _nodes[j];
        int     idx = n->_idx;
        tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
        tty->print("latency:%3d  ", node_latency.at_grow(idx));
        tty->print("%4d: %s\n", idx, n->Name());
      }
    }
#endif

  // Pull from worklist and schedule
  while( worklist.size() ) {    // Worklist is not ready

#ifndef PRODUCT
    uint before_size = worklist.size();

    if (TraceOptoPipelining && before_size > 1) {
      tty->print("#    before select:");
      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
        Node *n = worklist[i];      // Get Node on worklist
        tty->print(" %3d", n->_idx);
      }
      tty->print("\n");
    }
#endif

    // Select and pop a ready guy from worklist
    Node* n = select(worklist, bbs, ready_cnt, next_call, phi_cnt, node_latency);
    _nodes.map(phi_cnt++,n);    // Schedule him next
    MachNode *m = n->is_Mach();

#ifndef PRODUCT
    if (TraceOptoPipelining && before_size > 1) {
      tty->print("#  select %d: %s", n->_idx, n->Name());
      tty->print(", latency:%d", node_latency.at_grow(n->_idx));
      n->dump();
      tty->print("#    after select:");
      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
        Node *n = worklist[i];      // Get Node on worklist
        tty->print(" %4d", n->_idx);
      }
      tty->print("\n");
    }

#endif
    if( m ) {
      MachCallNode *mcall = m->is_MachCall();
      if( mcall ) {
        phi_cnt = sched_call(matcher, bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
        continue;
      }
    }
    // Children are now all ready
    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
      Node* m = n->fast_out(i5); // Get user
      if( bbs[m->_idx] != this ) continue;
      if( m->is_Phi() ) continue;
      if( !--ready_cnt[m->_idx] ) 
        worklist.push(m);
    }
  }

  if( phi_cnt != end_idx() ) {
    // did not schedule all.  Retry, Bailout, or Die
    Compile* C = matcher.C;
    if (C->subsume_loads() == true) {
      // Retry with subsume_loads == false
      C->set_result(Compile::Comp_subsumed_load_conflict);
    } else {
      // Bailout without retry
      C->set_result(Compile::Comp_no_retry);
    }
    // assert( phi_cnt == end_idx(), "did not schedule all" );
    return false;
  }

#ifndef PRODUCT
  if (TraceOptoPipelining) {
    tty->print("# after schedule_local\n");
    for (uint i = 0;i < _nodes.size();i++) {
      tty->print("# ");
      _nodes[i]->fast_dump();
    }
    tty->print("\n");
  }
#endif


  return true;
}
Exemple #8
0
//------------------------------schedule_local---------------------------------
// Topological sort within a block.  Someday become a real scheduler.
bool Block::schedule_local(PhaseCFG *cfg, Matcher &matcher, int *ready_cnt, VectorSet &next_call) {
  // Already "sorted" are the block start Node (as the first entry), and
  // the block-ending Node and any trailing control projections.  We leave
  // these alone.  PhiNodes and ParmNodes are made to follow the block start
  // Node.  Everything else gets topo-sorted.

#ifndef PRODUCT
    if (cfg->trace_opto_pipelining()) {
      tty->print_cr("# --- schedule_local B%d, before: ---", _pre_order);
      for (uint i = 0;i < _nodes.size();i++) {
        tty->print("# ");
        _nodes[i]->fast_dump();
      }
      tty->print_cr("#");
    }
#endif

  // RootNode is already sorted
  if( _nodes.size() == 1 ) return true;

  // Move PhiNodes and ParmNodes from 1 to cnt up to the start
  uint node_cnt = end_idx();
  uint phi_cnt = 1;
  uint i;
  for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
    Node *n = _nodes[i];
    if( n->is_Phi() ||          // Found a PhiNode or ParmNode
        (n->is_Proj()  && n->in(0) == head()) ) {
      // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
      _nodes.map(i,_nodes[phi_cnt]);
      _nodes.map(phi_cnt++,n);  // swap Phi/Parm up front
    } else {                    // All others
      // Count block-local inputs to 'n'
      uint cnt = n->len();      // Input count
      uint local = 0;
      for( uint j=0; j<cnt; j++ ) {
        Node *m = n->in(j);
        if( m && cfg->_bbs[m->_idx] == this && !m->is_top() )
          local++;              // One more block-local input
      }
      ready_cnt[n->_idx] = local; // Count em up

      // A few node types require changing a required edge to a precedence edge
      // before allocation.
      if( UseConcMarkSweepGC || UseG1GC ) {
        if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
          // Note: Required edges with an index greater than oper_input_base
          // are not supported by the allocator.
          // Note2: Can only depend on unmatched edge being last,
          // can not depend on its absolute position.
          Node *oop_store = n->in(n->req() - 1);
          n->del_req(n->req() - 1);
          n->add_prec(oop_store);
          assert(cfg->_bbs[oop_store->_idx]->_dom_depth <= this->_dom_depth, "oop_store must dominate card-mark");
        }
      }
      if( n->is_Mach() && n->req() > TypeFunc::Parms &&
          (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
           n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
        // MemBarAcquire could be created without Precedent edge.
        // del_req() replaces the specified edge with the last input edge
        // and then removes the last edge. If the specified edge > number of
        // edges the last edge will be moved outside of the input edges array
        // and the edge will be lost. This is why this code should be
        // executed only when Precedent (== TypeFunc::Parms) edge is present.
        Node *x = n->in(TypeFunc::Parms);
        n->del_req(TypeFunc::Parms);
        n->add_prec(x);
      }
    }
  }
  for(uint i2=i; i2<_nodes.size(); i2++ ) // Trailing guys get zapped count
    ready_cnt[_nodes[i2]->_idx] = 0;

  // All the prescheduled guys do not hold back internal nodes
  uint i3;
  for(i3 = 0; i3<phi_cnt; i3++ ) {  // For all pre-scheduled
    Node *n = _nodes[i3];       // Get pre-scheduled
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j);
      if( cfg->_bbs[m->_idx] ==this ) // Local-block user
        ready_cnt[m->_idx]--;   // Fix ready count
    }
  }

  Node_List delay;
  // Make a worklist
  Node_List worklist;
  for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
    Node *m = _nodes[i4];
    if( !ready_cnt[m->_idx] ) {   // Zero ready count?
      if (m->is_iteratively_computed()) {
        // Push induction variable increments last to allow other uses
        // of the phi to be scheduled first. The select() method breaks
        // ties in scheduling by worklist order.
        delay.push(m);
      } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
        // Force the CreateEx to the top of the list so it's processed
        // first and ends up at the start of the block.
        worklist.insert(0, m);
      } else {
        worklist.push(m);         // Then on to worklist!
      }
    }
  }
  while (delay.size()) {
    Node* d = delay.pop();
    worklist.push(d);
  }

  // Warm up the 'next_call' heuristic bits
  needed_for_next_call(_nodes[0], next_call, cfg->_bbs);

#ifndef PRODUCT
    if (cfg->trace_opto_pipelining()) {
      for (uint j=0; j<_nodes.size(); j++) {
        Node     *n = _nodes[j];
        int     idx = n->_idx;
        tty->print("#   ready cnt:%3d  ", ready_cnt[idx]);
        tty->print("latency:%3d  ", cfg->_node_latency.at_grow(idx));
        tty->print("%4d: %s\n", idx, n->Name());
      }
    }
#endif

  // Pull from worklist and schedule
  while( worklist.size() ) {    // Worklist is not ready

#ifndef PRODUCT
    if (cfg->trace_opto_pipelining()) {
      tty->print("#   ready list:");
      for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
        Node *n = worklist[i];      // Get Node on worklist
        tty->print(" %d", n->_idx);
      }
      tty->cr();
    }
#endif

    // Select and pop a ready guy from worklist
    Node* n = select(cfg, worklist, ready_cnt, next_call, phi_cnt);
    _nodes.map(phi_cnt++,n);    // Schedule him next

#ifndef PRODUCT
    if (cfg->trace_opto_pipelining()) {
      tty->print("#    select %d: %s", n->_idx, n->Name());
      tty->print(", latency:%d", cfg->_node_latency.at_grow(n->_idx));
      n->dump();
      if (Verbose) {
        tty->print("#   ready list:");
        for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
          Node *n = worklist[i];      // Get Node on worklist
          tty->print(" %d", n->_idx);
        }
        tty->cr();
      }
    }

#endif
    if( n->is_MachCall() ) {
      MachCallNode *mcall = n->as_MachCall();
      phi_cnt = sched_call(matcher, cfg->_bbs, phi_cnt, worklist, ready_cnt, mcall, next_call);
      continue;
    }
    // Children are now all ready
    for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
      Node* m = n->fast_out(i5); // Get user
      if( cfg->_bbs[m->_idx] != this ) continue;
      if( m->is_Phi() ) continue;
      if( !--ready_cnt[m->_idx] )
        worklist.push(m);
    }
  }

  if( phi_cnt != end_idx() ) {
    // did not schedule all.  Retry, Bailout, or Die
    Compile* C = matcher.C;
    if (C->subsume_loads() == true && !C->failing()) {
      // Retry with subsume_loads == false
      // If this is the first failure, the sentinel string will "stick"
      // to the Compile object, and the C2Compiler will see it and retry.
      C->record_failure(C2Compiler::retry_no_subsuming_loads());
    }
    // assert( phi_cnt == end_idx(), "did not schedule all" );
    return false;
  }

#ifndef PRODUCT
  if (cfg->trace_opto_pipelining()) {
    tty->print_cr("#");
    tty->print_cr("# after schedule_local");
    for (uint i = 0;i < _nodes.size();i++) {
      tty->print("# ");
      _nodes[i]->fast_dump();
    }
    tty->cr();
  }
#endif


  return true;
}
Exemple #9
0
//------------------------------sched_call-------------------------------------
uint Block::sched_call( Matcher &matcher, Block_Array &bbs, uint node_cnt, Node_List &worklist, int *ready_cnt, MachCallNode *mcall, VectorSet &next_call ) {
  RegMask regs;

  // Schedule all the users of the call right now.  All the users are
  // projection Nodes, so they must be scheduled next to the call.
  // Collect all the defined registers.
  for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
    Node* n = mcall->fast_out(i);
    assert( n->Opcode()==Op_MachProj, "" );
    --ready_cnt[n->_idx];
    assert( !ready_cnt[n->_idx], "" );
    // Schedule next to call
    _nodes.map(node_cnt++, n);
    // Collect defined registers
    regs.OR(n->out_RegMask());
    // Check for scheduling the next control-definer
    if( n->bottom_type() == Type::CONTROL )
      // Warm up next pile of heuristic bits
      needed_for_next_call(n, next_call, bbs);

    // Children of projections are now all ready
    for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
      Node* m = n->fast_out(j); // Get user
      if( bbs[m->_idx] != this ) continue;
      if( m->is_Phi() ) continue;
      if( !--ready_cnt[m->_idx] )
        worklist.push(m);
    }

  }

  // Act as if the call defines the Frame Pointer.
  // Certainly the FP is alive and well after the call.
  regs.Insert(matcher.c_frame_pointer());

  // Set all registers killed and not already defined by the call.
  uint r_cnt = mcall->tf()->range()->cnt();
  int op = mcall->ideal_Opcode();
  MachProjNode *proj = new (matcher.C, 1) MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
  bbs.map(proj->_idx,this);
  _nodes.insert(node_cnt++, proj);

  // Select the right register save policy.
  const char * save_policy;
  switch (op) {
    case Op_CallRuntime:
    case Op_CallLeaf:
    case Op_CallLeafNoFP:
      // Calling C code so use C calling convention
      save_policy = matcher._c_reg_save_policy;
      break;

    case Op_CallStaticJava:
    case Op_CallDynamicJava:
      // Calling Java code so use Java calling convention
      save_policy = matcher._register_save_policy;
      break;

    default:
      ShouldNotReachHere();
  }

  // When using CallRuntime mark SOE registers as killed by the call
  // so values that could show up in the RegisterMap aren't live in a
  // callee saved register since the register wouldn't know where to
  // find them.  CallLeaf and CallLeafNoFP are ok because they can't
  // have debug info on them.  Strictly speaking this only needs to be
  // done for oops since idealreg2debugmask takes care of debug info
  // references but there no way to handle oops differently than other
  // pointers as far as the kill mask goes.
  bool exclude_soe = op == Op_CallRuntime;

  // If the call is a MethodHandle invoke, we need to exclude the
  // register which is used to save the SP value over MH invokes from
  // the mask.  Otherwise this register could be used for
  // deoptimization information.
  if (op == Op_CallStaticJava) {
    MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
    if (mcallstaticjava->_method_handle_invoke)
      proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
  }

  // Fill in the kill mask for the call
  for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
    if( !regs.Member(r) ) {     // Not already defined by the call
      // Save-on-call register?
      if ((save_policy[r] == 'C') ||
          (save_policy[r] == 'A') ||
          ((save_policy[r] == 'E') && exclude_soe)) {
        proj->_rout.Insert(r);
      }
    }
  }

  return node_cnt;
}