Exemple #1
0
// Test the eigenvalue finder. Set up a diagonal matrix and conjugate
// by a rotation. That way we obtain a symmetric matrix that can be
// diagonalized. Check if the eigenvalue finder reveals the original
// diagonal elements.
void testEigenvalues()
{
  matrix3x3 Diagonal;
  for(int i=0; i<3; i++)
    for(int j=0; j<3; j++)
      Diagonal.Set(i, j, 0.0);
  Diagonal.Set(0, 0, randomizer.NextFloat());
  Diagonal.Set(1, 1, Diagonal.Get(0,0)+fabs(randomizer.NextFloat()));
  Diagonal.Set(2, 2, Diagonal.Get(1,1)+fabs(randomizer.NextFloat()));

  // test the isDiagonal() method
  VERIFY( Diagonal.isDiagonal() );

  matrix3x3 rndRotation;
  rndRotation.randomRotation(randomizer);

  // check that rndRotation is really a rotation, i.e. that randomRotation() works
  VERIFY( rndRotation.isOrthogonal() );
  
  matrix3x3 toDiagonalize = rndRotation * Diagonal * rndRotation.inverse();
  VERIFY( toDiagonalize.isSymmetric() );
  
  vector3 eigenvals;
  toDiagonalize.findEigenvectorsIfSymmetric(eigenvals);
  
  for(unsigned int j=0; j<3; j++)
    VERIFY( IsNegligible( eigenvals[j] - Diagonal.Get(j,j), Diagonal.Get(2,2) ) );
  
  VERIFY( eigenvals[0] < eigenvals[1] &&  eigenvals[1] < eigenvals[2] );
}
Exemple #2
0
  /*! The axis of the rotation will be uniformly distributed on
    the unit sphere and the angle will be uniformly distributed in
    the interval 0..360 degrees. */
  void matrix3x3::randomRotation(OBRandom &rnd)
  {
    double rotAngle;
    vector3 v1;

    v1.randomUnitVector(&rnd);
    rotAngle = 360.0 * rnd.NextFloat();
    this->RotAboutAxisByAngle(v1,rotAngle);
  }
Exemple #3
0
void pickRandom( double & d )
{
  d = randomizer.NextFloat() * 2.0 - 1.0;
}