bool ON_IntersectLineLine( const ON_Line& lineA, const ON_Line& lineB, double* a, double* b, double tolerance, bool bIntersectSegments ) { bool rc = ON_Intersect(lineA,lineB,a,b) ? true : false; if (rc) { if ( bIntersectSegments ) { if ( *a < 0.0 ) *a = 0.0; else if ( *a > 1.0 ) *a = 1.0; if ( *b < 0.0 ) *b = 0.0; else if ( *b > 1.0 ) *b = 1.0; } if ( tolerance > 0.0 ) { rc = (lineA.PointAt(*a).DistanceTo(lineB.PointAt(*b)) <= tolerance); } } return rc; }
double ON_Line::MinimumDistanceTo( const ON_Line& L ) const { ON_3dPoint A, B; double a, b, t, x, d; bool bCheckA, bCheckB; bool bGoodX = ON_Intersect(*this,L,&a,&b); bCheckA = true; if ( a < 0.0) a = 0.0; else if (a > 1.0) a = 1.0; else bCheckA=!bGoodX; bCheckB = true; if ( b < 0.0) b = 0.0; else if (b > 1.0) b = 1.0; else bCheckB=!bGoodX; A = PointAt(a); B = L.PointAt(b); d = A.DistanceTo(B); if ( bCheckA ) { L.ClosestPointTo(A,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; x = L.PointAt(t).DistanceTo(A); if ( x < d ) d = x; } if ( bCheckB ) { ClosestPointTo(B,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; x = PointAt(t).DistanceTo(B); if (x < d ) d = x; } return d; }
int ON_Intersect( const ON_Line& line, const ON_Arc& arc, double* line_t0, ON_3dPoint& arc_point0, double* line_t1, ON_3dPoint& arc_point1 ) { ON_Circle c = arc; ON_3dPoint p[2]; double t[2], a[2], s; ON_BOOL32 b[2] = {false,false}; int i, xcnt = ON_Intersect( line, c, &t[0], p[0], &t[1], p[1] ); if ( xcnt > 0 ) { // make sure points are on the arc; ON_Interval arc_domain = arc.DomainRadians(); for ( i = 0; i < xcnt; i++ ) { b[i] = c.ClosestPointTo(p[i], &a[i]); if ( b[i] ) { s = arc_domain.NormalizedParameterAt(a[i]); if ( s < 0.0 ) { if ( s >= -ON_SQRT_EPSILON ) { a[i] = arc_domain[0]; p[i] = c.PointAt(a[i]); b[i] = line.ClosestPointTo( p[i], &t[i] ); } else b[i] = false; } else if ( s > 1.0 ) { if ( s <= 1.0+ON_SQRT_EPSILON ) { a[i] = arc_domain[1]; p[i] = c.PointAt(a[i]); b[i] = line.ClosestPointTo( p[i], &t[i] ); } else b[i] = false; } } } if ( !b[0] && !b[1] ) xcnt = 0; if ( xcnt == 2 ) { if ( !b[1] ) xcnt = 1; if ( !b[0] ) { xcnt = 1; b[0] = b[1]; t[0] = t[1]; a[0] = a[1]; p[0] = p[1]; b[1] = 0; } if ( xcnt == 2 && t[0] == t[1] ) { xcnt = 1; b[1] = 0; ON_3dPoint q = line.PointAt(t[0]); if ( p[0].DistanceTo(q) > p[1].DistanceTo(q) ) { a[0] = a[1]; t[0] = t[1]; p[0] = p[1]; } } } if ( xcnt == 1 && !b[0] ) xcnt = 0; if ( xcnt >= 1 ) { if ( line_t0 ) *line_t0 = t[0]; arc_point0 = p[0]; } if ( xcnt == 2 ) { if ( line_t1 ) *line_t1 = t[1]; arc_point1 = p[1]; } } return xcnt; }
int ON_Intersect( const ON_Line& line, const ON_Circle& circle, double* line_t0, ON_3dPoint& circle_point0, double* line_t1, ON_3dPoint& circle_point1 ) { // transform to coordinate system where equation of circle // is x^2 + y^2 = R^2 and solve for line parameter(s). ON_Xform xform; xform.ChangeBasis( circle.plane, ON_xy_plane ); xform.ChangeBasis( ON_xy_plane, circle.plane ); ON_Line L = line; L.Transform(xform); double r = fabs(circle.radius); double tol = r*ON_SQRT_EPSILON; if ( tol < ON_ZERO_TOLERANCE ) tol = ON_ZERO_TOLERANCE; int xcnt; if ( fabs(L.from.x - L.to.x) <= tol && fabs(L.from.y - L.to.y) <= tol && fabs(L.from.z - L.to.z) > tol ) { xcnt = 0; } else { xcnt = Intersect2dLineCircle( L.from, L.to, r, tol, line_t0, line_t1 ); if ( xcnt == 3 ) xcnt = 1; } if ( xcnt == 0 ) { if ( L.ClosestPointTo( circle.Center(), line_t0 ) ) { xcnt = 1; *line_t1 = *line_t0; } } ON_3dPoint line_point1, line_point0 = line.PointAt(*line_t0); circle_point0 = circle.ClosestPointTo(line_point0); double d1, d0 = line_point0.DistanceTo(circle_point0); if ( xcnt == 2 ) { line_point1 = line.PointAt(*line_t1); circle_point1 = circle.ClosestPointTo(line_point1); d1 = line_point1.DistanceTo(circle_point1); } else { line_point1 = line_point0; circle_point1 = circle_point0; d1 = d0; } if ( xcnt==2 && (d0 > tol && d1 > tol) ) { xcnt = 1; if ( d0 <= d1 ) { *line_t1 = *line_t0; line_point1 = line_point0; circle_point1 = circle_point0; d1 = d0; } else { *line_t0 = *line_t1; line_point0 = line_point1; circle_point0 = circle_point1; d0 = d1; } } if ( xcnt == 1 && d0 > tol ) { // TODO: iterate to closest point } return xcnt; }
int ON_Intersect( // returns 0 = no intersections, // 1 = one intersection, // 2 = 2 intersections // 3 = line lies on cylinder // If 0 is returned, first point is point // on line closest to cylinder and 2nd point is the point // on the sphere closest to the line. // If 1 is returned, first point is obtained by evaluating // the line and the second point is obtained by evaluating // the cylinder. const ON_Line& line, const ON_Cylinder& cylinder, // if cylinder.height[0]==cylinder.height[1], // then infinite cyl is used. Otherwise // finite cyl is used. ON_3dPoint& A, ON_3dPoint& B // intersection point(s) returned here ) { ON_BOOL32 bFiniteCyl = true; int rc = 0; const double cylinder_radius = fabs(cylinder.circle.radius); double tol = cylinder_radius*ON_SQRT_EPSILON; if ( tol < ON_ZERO_TOLERANCE ) tol = ON_ZERO_TOLERANCE; ON_Line axis; axis.from = cylinder.circle.plane.origin + cylinder.height[0]*cylinder.circle.plane.zaxis; axis.to = cylinder.circle.plane.origin + cylinder.height[1]*cylinder.circle.plane.zaxis; if ( axis.Length() <= tol ) { axis.to = cylinder.circle.plane.origin + cylinder.circle.plane.zaxis; bFiniteCyl = false; } //ON_BOOL32 bIsParallel = false; double line_t, axis_t; if ( !ON_Intersect(line,axis,&line_t,&axis_t) ) { axis.ClosestPointTo( cylinder.circle.plane.origin, &axis_t ); line.ClosestPointTo( cylinder.circle.plane.origin, &line_t ); } ON_3dPoint line_point = line.PointAt(line_t); ON_3dPoint axis_point = axis.PointAt(axis_t); double d = line_point.DistanceTo(axis_point); if ( bFiniteCyl ) { if ( axis_t < 0.0 ) axis_t = 0.0; else if ( axis_t > 1.0 ) axis_t = 1.0; axis_point = axis.PointAt(axis_t); } if ( d >= cylinder_radius-tol) { rc = ( d <= cylinder_radius+tol ) ? 1 : 0; A = line_point; ON_3dVector V = line_point - axis_point; if ( bFiniteCyl ) { V = V - (V*cylinder.circle.plane.zaxis)*cylinder.circle.plane.zaxis; } V.Unitize(); B = axis_point + cylinder_radius*V; if ( rc == 1 ) { // check for overlap ON_3dPoint P = axis.ClosestPointTo(line.from); d = P.DistanceTo(line.from); if ( fabs(d-cylinder_radius) <= tol ) { P = axis.ClosestPointTo(line.to); d = P.DistanceTo(line.to); if ( fabs(d-cylinder_radius) <= tol ) { rc = 3; A = cylinder.ClosestPointTo(line.from); B = cylinder.ClosestPointTo(line.to); } } } } else { // transform to coordinate system where equation of cyl // is x^2 + y^2 = R^2 and solve for line parameter(s). ON_Xform xform; xform.Rotation( cylinder.circle.plane, ON_xy_plane ); ON_Line L = line; L.Transform(xform); const double x0 = L.from.x; const double x1 = L.to.x; const double x1mx0 = x1-x0; double ax = x1mx0*x1mx0; double bx = 2.0*x1mx0*x0; double cx = x0*x0; const double y0 = L.from.y; const double y1 = L.to.y; const double y1my0 = y1-y0; double ay = y1my0*y1my0; double by = 2.0*y1my0*y0; double cy = y0*y0; double t0, t1; int qerc = ON_SolveQuadraticEquation(ax+ay, bx+by, cx+cy-cylinder_radius*cylinder_radius, &t0,&t1); if ( qerc == 2 ) { // complex roots - ignore (tiny) imaginary part caused by computational noise. t1 = t0; } A = cylinder.ClosestPointTo(line.PointAt(t0)); B = cylinder.ClosestPointTo(line.PointAt(t1)); d = A.DistanceTo(B); if ( d <= ON_ZERO_TOLERANCE ) { A = line_point; ON_3dVector V = line_point - axis_point; if ( bFiniteCyl ) { V = V - (V*cylinder.circle.plane.zaxis)*cylinder.circle.plane.zaxis; } V.Unitize(); B = axis_point + cylinder_radius*V; rc = 1; } else rc = 2; } return rc; }
bool ON_Intersect( const ON_BoundingBox& bbox, const ON_Line& line, double tol, ON_Interval* line_parameters) { double a,b,d,mn,mx,s0,s1, t0, t1; const double M = 1.0e308; // i,j,k are indices of coordinates to trim. // trim the direction with the biggest line deltas first ON_3dVector v = line.Direction(); const int i = v.MaximumCoordinateIndex(); // gaurd against ON_UNSET_VALUE as input if ( !(tol >= 0.0) ) tol = 0.0; // clip i-th coordinate a = line.from[i]; b = line.to[i]; mn = bbox.m_min[i]; mx = bbox.m_max[i]; if ( !(mn <= mx) ) return false; mn -= (tol+a); mx += (tol-a); if ( !(mn <= mx) ) return false; d = b-a; if ( 0.0 == d ) { // happens when line.from == line.to if ( 0.0 < mn || 0.0 > mx ) { // point is in box if ( line_parameters ) { // setting parameters makes no sense - just use 0.0 // so it's clear we have a point line_parameters->Set(0.0,0.0); } return true; } return false; // point is outside box } if ( fabs(d) < 1.0 && (fabs(mn) >= fabs(d)*M || fabs(mx) >= fabs(d)*M) ) { // the value of mn/d or mx/d is too large for a realistic answer to be computed return false; } d = 1.0/d; t0 = mn*d; t1 = mx*d; // set "chord" = line segment that begins and ends on the // i-th coordinate box side planes. ON_Line chord(line.PointAt(t0),line.PointAt(t1)); // test j-th coordinate direction const int j = (i + (fabs(v[(i+1)%3])>fabs(v[(i+2)%3])?1:2) ) % 3; a = chord.from[j]; b = chord.to[j]; mn = bbox.m_min[j]; mx = bbox.m_max[j]; if ( !(mn <= mx) ) return false; mn -= (tol+a); mx += (tol-a); if ( !(mn <= mx) ) return false; d = b-a; if ( (0.0 < mn && d < mn) || (0.0 > mx && d > mx) ) { // chord lies outside the box return false; } while ( fabs(d) >= 1.0 || (fabs(mn) <= fabs(d)*M && fabs(mx) <= fabs(d)*M) ) { // The chord is not (nearly) parallel to the j-th sides. // See if the chord needs to be trimmed by the j-th sides. d = 1.0/d; s0 = mn*d; s1 = mx*d; if ( s0 > 1.0 ) { if ( s1 > 1.0 ) { // unstable calculation happens when // fabs(d) is very tiny and chord is // on the j-th side. break; } s0 = 1.0; } else if ( s0 < 0.0 ) { if (s1 < 0.0) { // unstable calculation happens when // fabs(d) is very tiny and chord is // on the j-th side. break; } s0 = 0.0; } if ( s1 < 0.0 ) s1 = 0.0; else if ( s1 > 1.0 ) s1 = 1.0; d = (1.0-s0)*t0 + s0*t1; t1 = (1.0-s1)*t0 + s1*t1; t0 = d; v = chord.PointAt(s0); chord.to = chord.PointAt(s1); chord.from = v; break; } // test k-th coordinate direction const int k = (i&&j) ? 0 : ((i!=1&&j!=1)?1:2); a = chord.from[k]; b = chord.to[k]; mn = bbox.m_min[k]; mx = bbox.m_max[k]; if ( !(mn <= mx) ) return false; mn -= (tol+a); mx += (tol-a); if ( !(mn <= mx) ) return false; d = b-a; if ( (0.0 < mn && d < mn) || (0.0 > mx && d > mx) ) { // chord does not intersect the rectangle return false; } if ( line_parameters ) { while ( fabs(d) >= 1.0 || (fabs(mn) <= fabs(d)*M && fabs(mx) <= fabs(d)*M) ) { // The chord is not (nearly) parallel to the k-th sides. // See if the chord needs to be trimmed by the k-th sides. d = 1.0/d; s0 = mn*d; s1 = mx*d; if ( s0 > 1.0 ) { if ( s1 > 1.0 ) { // unstable calculation happens when // fabs(d) is very tiny and chord is // on the k-th side. break; } s0 = 1.0; } else if ( s0 < 0.0 ) { if (s1 < 0.0) { // unstable calculation happens when // fabs(d) is very tiny and chord is // on the k-th side. break; } s0 = 0.0; } if ( s1 < 0.0 ) s1 = 0.0; else if ( s1 > 1.0 ) s1 = 1.0; d = (1.0-s0)*t0 + s0*t1; t1 = (1.0-s1)*t0 + s1*t1; t0 = d; break; } if (t0 > t1 ) { line_parameters->Set(t1,t0); } else { line_parameters->Set(t0,t1); } } return true; }
bool ON_Intersect( const ON_Line& lineA, const ON_Line& lineB, double* lineA_parameter, double* lineB_parameter ) { // If you are looking at this code because you don't like an // answer you are getting, then the first thing to try is // to read the header file comments and try calling // ON_IntersectLineLine. bool rc = false; double M_zero_tol = 0.0; int i, rank; double pr_tolerance, pivot, X[2], Y[2]; ON_3dVector A = lineA.Direction(); ON_3dVector B = lineB.Direction(); ON_3dVector C = lineB[0] - lineA[0]; ON_Matrix M(2,2); M[0][0] = ON_DotProduct( A, A ); M[1][1] = ON_DotProduct( B, B ); M[0][1] = M[1][0] = -ON_DotProduct( A, B ); // this swap done to get row+col pivot accuracy if ( M[0][0] < M[1][1] ) { M.SwapCols(0,1); i = 1; } else { i = 0; } pr_tolerance = fabs(M[1][1])*ON_SQRT_EPSILON; M_zero_tol = fabs(M[1][1])*ON_EPSILON; Y[0] = ON_DotProduct( A, C ); Y[1] = -ON_DotProduct( B, C ); rank = M.RowReduce( M_zero_tol, Y, &pivot ); if ( rank == 2 ) { // 19 November 2003 Dale Lear and Chuck // Added lineA.from/to == lineB.from/to tests // so exact answer gets returned when people // expect it. rc = true; if ( lineA.from == lineB.from ) { if ( lineA_parameter ) *lineA_parameter = 0.0; if ( lineB_parameter ) *lineB_parameter = 0.0; } else if ( lineA.from == lineB.to ) { if ( lineA_parameter ) *lineA_parameter = 0.0; if ( lineB_parameter ) *lineB_parameter = 1.0; } else if ( lineA.to == lineB.from ) { if ( lineA_parameter ) *lineA_parameter = 1.0; if ( lineB_parameter ) *lineB_parameter = 0.0; } else if ( lineA.to == lineB.to ) { if ( lineA_parameter ) *lineA_parameter = 1.0; if ( lineB_parameter ) *lineB_parameter = 1.0; } else { rc = M.BackSolve( 0.0, 2, Y, X ); if ( rc ) { if ( lineA_parameter ) *lineA_parameter = X[i]; if ( lineB_parameter ) *lineB_parameter = X[1-i]; if ( fabs(pivot) <= pr_tolerance ) { // test answer because matrix was close to singular // (This test is slow but it is rarely used.) ON_3dPoint pA = lineA.PointAt(X[i]); ON_3dPoint pB = lineB.PointAt(X[1-i]); double d = pA.DistanceTo(pB); if ( d > pr_tolerance && d > ON_ZERO_TOLERANCE ) { ON_3dPoint qA = lineA.ClosestPointTo(pB); ON_3dPoint qB = lineB.ClosestPointTo(pA); double dA = pA.DistanceTo(qB); double dB = pB.DistanceTo(qA); if ( 1.1*dA < d ) { rc = false; } else if ( 1.1*dB < d ) { rc = false; } } } } } } return rc; }
bool ON_Mesh::EvaluatePoint( const class ON_ObjRef& objref, ON_3dPoint& P ) const { // virtual function default P = ON_UNSET_POINT; ON_COMPONENT_INDEX ci = objref.m_component_index; switch ( ci.m_type ) { case ON_COMPONENT_INDEX::mesh_vertex: if ( ci.m_index >= 0 && ci.m_index < m_V.Count() ) P = m_V[ci.m_index]; break; case ON_COMPONENT_INDEX::meshtop_vertex: if ( ci.m_index >= 0 && ci.m_index < m_top.m_topv.Count() ) { const ON_MeshTopologyVertex& topv = m_top.m_topv[ci.m_index]; if ( topv.m_v_count > 0 && topv.m_vi ) { int vi = topv.m_vi[0]; if ( vi >= 0 && vi < m_V.Count() ) P = m_V[vi]; } } break; case ON_COMPONENT_INDEX::meshtop_edge: if ( 5 == objref.m_evp.m_t_type && fabs(objref.m_evp.m_t[0] + objref.m_evp.m_t[1] - 1.0) <= ON_SQRT_EPSILON ) { ON_Line L = m_top.TopEdgeLine(ci.m_index); if ( L.IsValid() ) { P = L.PointAt(objref.m_evp.m_t[0]); } } break; case ON_COMPONENT_INDEX::mesh_face: if ( 4 == objref.m_evp.m_t_type && fabs(objref.m_evp.m_t[0] + objref.m_evp.m_t[1] + objref.m_evp.m_t[2] + objref.m_evp.m_t[3] - 1.0) <= ON_SQRT_EPSILON ) { if ( ci.m_index >= 0 && ci.m_index < m_F.Count() ) { const int* fvi = m_F[ci.m_index].vi; if ( fvi[0] < 0 || fvi[0] >= m_V.Count() ) break; if ( fvi[1] < 0 || fvi[1] >= m_V.Count() ) break; if ( fvi[2] < 0 || fvi[2] >= m_V.Count() ) break; if ( fvi[3] < 0 || fvi[3] >= m_V.Count() ) break; ON_3dPoint V[4]; V[0] = m_V[fvi[0]]; V[1] = m_V[fvi[1]]; V[2] = m_V[fvi[2]]; V[3] = m_V[fvi[3]]; P = objref.m_evp.m_t[0]*V[0] + objref.m_evp.m_t[1]*V[1] + objref.m_evp.m_t[2]*V[2] + objref.m_evp.m_t[3]*V[3]; } } break; default: // intentionally skipping other ON_COMPONENT_INDEX::TYPE enum values break; } return P.IsValid(); }
bool ON_Mesh::CollapseEdge( int topei ) { ON_Mesh& mesh = *this; ON__MESHEDGE me; memset(&me,0,sizeof(me)); const ON_MeshTopology& top = mesh.Topology(); const int F_count = mesh.m_F.Count(); const int V_count = mesh.m_V.Count(); const int topv_count = top.m_topv.Count(); //const int tope_count = top.m_tope.Count(); if ( topei < 0 || topei >= top.m_tope.Count() ) { return false; } const ON_MeshTopologyEdge& tope = top.m_tope[topei]; if ( tope.m_topf_count < 1 || tope.m_topvi[0] == tope.m_topvi[1] || tope.m_topvi[0] < 0 || tope.m_topvi[1] < 0 || tope.m_topvi[0] >= topv_count || tope.m_topvi[1] >= topv_count ) { return false; } const ON_MeshTopologyVertex& topv0 = top.m_topv[tope.m_topvi[0]]; const ON_MeshTopologyVertex& topv1 = top.m_topv[tope.m_topvi[1]]; if ( topv0.m_v_count < 1 || topv1.m_v_count < 1 ) { return false; } if ( topv0.m_vi[0] < 0 || topv0.m_vi[0] >= V_count ) { return false; } if ( topv1.m_vi[0] < 0 || topv1.m_vi[0] >= V_count ) { return false; } // create a ON__MESHEDGE for each face (usually one or two) that uses the edge ON__MESHEDGE* me_list = (ON__MESHEDGE*)alloca(tope.m_topf_count*sizeof(me_list[0])); int me_list_count = 0; int efi; for ( efi = 0; efi < tope.m_topf_count; efi++ ) { int fi = tope.m_topfi[efi]; if ( fi < 0 || fi >= F_count ) continue; const ON_MeshFace& f = mesh.m_F[fi]; if ( !f.IsValid(V_count) ) continue; me.vi1 = f.vi[3]; me.topvi1 = top.m_topv_map[me.vi1]; int fvi; for ( fvi = 0; fvi < 4; fvi++ ) { me.vi0 = me.vi1; me.topvi0 = me.topvi1; me.vi1 = f.vi[fvi]; me.topvi1 = top.m_topv_map[me.vi1]; if ( me.vi0 != me.vi1 ) { if ( (me.topvi0 == tope.m_topvi[0] && me.topvi1 == tope.m_topvi[1]) || (me.topvi0 == tope.m_topvi[1] && me.topvi1 == tope.m_topvi[0]) ) { if ( me.vi0 > me.vi1 ) { int i = me.vi0; me.vi0 = me.vi1; me.vi1 = i; i = me.topvi0; me.topvi0 = me.topvi1; me.topvi1 = i; } me_list[me_list_count++] = me; break; } } } } if (me_list_count<1) { return false; } // Sort me_list[] so edges using same vertices are adjacent // to each other in the list. This is needed so that non-manifold // crease edges will be properly collapsed. ON_qsort(me_list,me_list_count,sizeof(me_list[0]),(QSORTCMPFUNC)CompareMESHEDGE); // create new vertex or vertices that edge will be // collapsed to. mesh.m_C.Destroy(); mesh.m_K.Destroy(); int mei; bool bHasVertexNormals = mesh.HasVertexNormals(); bool bHasTextureCoordinates = mesh.HasTextureCoordinates(); bool bHasFaceNormals = mesh.HasFaceNormals(); if ( topv0.m_v_count == 1 || topv1.m_v_count == 1 ) { // a single new vertex ON_Line Vline(ON_origin,ON_origin); ON_Line Tline(ON_origin,ON_origin); ON_3dVector N0(0,0,0); ON_3dVector N1(0,0,0); ON_3dPoint P; int vi, tvi, cnt; int newvi = topv0.m_vi[0]; cnt = 0; for ( tvi = 0; tvi < topv0.m_v_count; tvi++ ) { vi = topv0.m_vi[tvi]; if ( vi < 0 || vi > V_count ) continue; if ( vi < newvi ) newvi = vi; cnt++; P = mesh.m_V[vi]; Vline.from += P; if ( bHasVertexNormals ) { N0 += ON_3dVector(mesh.m_N[vi]); } if ( bHasTextureCoordinates ) { P = mesh.m_T[vi]; Tline.from += P; } } if (cnt > 1) { double s = 1.0/((double)cnt); Vline.from.x *= s; Vline.from.y *= s; Vline.from.z *= s; Tline.from.x *= s; Tline.from.y *= s; Tline.from.z *= s; N0 = s*N0; } cnt = 0; for ( tvi = 0; tvi < topv1.m_v_count; tvi++ ) { vi = topv1.m_vi[tvi]; if ( vi < 0 || vi > V_count ) continue; if ( vi < newvi ) newvi = vi; cnt++; P = mesh.m_V[vi]; Vline.to += P; if ( bHasVertexNormals ) { N1 += ON_3dVector(mesh.m_N[vi]); } if ( bHasTextureCoordinates ) { P = mesh.m_T[vi]; Tline.to += P; } } if (cnt > 1) { double s = 1.0/((double)cnt); Vline.to.x *= s; Vline.to.y *= s; Vline.to.z *= s; Tline.to.x *= s; Tline.to.y *= s; Tline.to.z *= s; N1 = s*N1; } ON_3fPoint newV(Vline.PointAt(0.5)); ON_3fVector newN; ON_2fPoint newT; if ( bHasVertexNormals ) { N0.Unitize(); N1.Unitize(); ON_3dVector N = N0+N1; if ( !N.Unitize() ) { N = (topv0.m_v_count == 1) ? mesh.m_N[topv0.m_vi[0]] :mesh.m_N[topv1.m_vi[0]]; } newN = N; } if ( bHasTextureCoordinates ) { newT = Tline.PointAt(0.5); } for ( mei = 0; mei < me_list_count; mei++ ) { me_list[mei].newvi = newvi; me_list[mei].newV = newV; me_list[mei].newN = newN; me_list[mei].newT = newT; } } else { // collapsing a "crease" edge - attempt to preserve // the crease. memset(&me,0,sizeof(me)); me.vi0 = -1; me.vi1 = -1; for ( mei = 0; mei < me_list_count; mei++ ) { if ( 0 == mei && CompareMESHEDGE(&me,me_list+mei) ) { // cook up new vertex me_list[mei].newvi = mesh.m_V.Count(); me = me_list[mei]; ON_Line line; line.from = mesh.m_V[me.vi0]; line.to = mesh.m_V[me.vi1]; me.newV = line.PointAt(0.5); if ( bHasVertexNormals ) { ON_3dVector N0(mesh.m_N[me.vi0]); ON_3dVector N1(mesh.m_N[me.vi1]); ON_3dVector N = N0 + N1; if ( !N.Unitize() ) N = N0; me.newN = N; } if ( bHasTextureCoordinates ) { line.from = mesh.m_T[me.vi0]; line.to = mesh.m_T[me.vi1]; me.newT = line.PointAt(0.5); } me.newvi = (me.vi0 < me.vi1) ? me.vi0 : me.vi1; } else { me_list[mei].newvi = me.newvi; me_list[mei].newV = me.newV; me_list[mei].newN = me.newN; me_list[mei].newT = me.newT; } } } // We are done averaging old mesh values. // Change values in mesh m_V[], m_N[] and m_T[] arrays. for ( mei = 0; mei < me_list_count; mei++ ) { mesh.m_V[me_list[mei].vi0] = me_list[mei].newV; mesh.m_V[me_list[mei].vi1] = me_list[mei].newV; if ( bHasVertexNormals ) { mesh.m_N[me_list[mei].vi0] = me_list[mei].newN; mesh.m_N[me_list[mei].vi1] = me_list[mei].newN; } if ( bHasTextureCoordinates ) { mesh.m_T[me_list[mei].vi0] = me_list[mei].newT; mesh.m_T[me_list[mei].vi1] = me_list[mei].newT; } } // make a map of old to new int old2new_map_count = 0; ON__NEWVI* old2new_map = (ON__NEWVI*)alloca(2*me_list_count*sizeof(old2new_map[0])); for ( mei = 0; mei < me_list_count; mei++ ) { old2new_map[old2new_map_count].oldvi = me_list[mei].vi0; old2new_map[old2new_map_count].newvi = me_list[mei].newvi; old2new_map_count++; old2new_map[old2new_map_count].oldvi = me_list[mei].vi1; old2new_map[old2new_map_count].newvi = me_list[mei].newvi; old2new_map_count++; } // sort old2new_map[] so we can use a fast bsearch() call // to update faces. ON_qsort(old2new_map,old2new_map_count,sizeof(old2new_map[0]),(QSORTCMPFUNC)CompareNEWVI); // count faces that use the vertices that are being changed int bad_fi_count = 0; int topv_end, vei, fi, fvi23, fvi; ON__NEWVI nvi; for ( topv_end = 0; topv_end < 2; topv_end++ ) { const ON_MeshTopologyVertex& topv = (topv_end) ? topv1 : topv0; for ( vei = 0; vei < topv.m_tope_count; vei++ ) { topei = topv.m_topei[vei]; if ( topei < 0 && topei >= top.m_tope.Count() ) continue; bad_fi_count += top.m_tope[topei].m_topf_count; } } int* bad_fi = (int*)alloca(bad_fi_count*sizeof(*bad_fi)); bad_fi_count = 0; // Go through all the faces that use the vertices at the // ends of the edge and update the vi[] values to use the // new vertices. for ( topv_end = 0; topv_end < 2; topv_end++ ) { const ON_MeshTopologyVertex& topv = (topv_end) ? topv1 : topv0; for ( vei = 0; vei < topv.m_tope_count; vei++ ) { topei = topv.m_topei[vei]; if ( topei < 0 && topei >= top.m_tope.Count() ) continue; const ON_MeshTopologyEdge& e = top.m_tope[topei]; for ( efi = 0; efi < e.m_topf_count; efi++ ) { fi = e.m_topfi[efi]; if ( fi < 0 || fi >= F_count ) continue; bool bChangedFace = false; ON_MeshFace& f = mesh.m_F[fi]; for ( fvi = 0; fvi < 4; fvi++ ) { nvi.oldvi = f.vi[fvi]; ON__NEWVI* p = (ON__NEWVI*)bsearch(&nvi,old2new_map,old2new_map_count,sizeof(old2new_map[0]),(QSORTCMPFUNC)CompareNEWVI); if ( 0 != p && p->oldvi != p->newvi) { f.vi[fvi] = p->newvi; bChangedFace = true; } } if ( bChangedFace ) { if ( !f.IsValid(V_count) ) { if ( f.vi[3] == f.vi[0] ) { f.vi[0] = f.vi[1]; f.vi[1] = f.vi[2]; f.vi[2] = f.vi[3]; } else if ( f.vi[0] == f.vi[1] ) { fvi23 = f.vi[0]; f.vi[0] = f.vi[2]; f.vi[1] = f.vi[3]; f.vi[2] = fvi23; f.vi[3] = fvi23; } else if ( f.vi[1] == f.vi[2] ) { fvi23 = f.vi[1]; f.vi[1] = f.vi[0]; f.vi[0] = f.vi[3]; f.vi[2] = fvi23; f.vi[3] = fvi23; } if ( f.vi[0] == f.vi[1] || f.vi[1] == f.vi[2] || f.vi[2] == f.vi[0] || f.vi[2] != f.vi[3] ) { bad_fi[bad_fi_count++] = fi; } } if ( bHasFaceNormals ) { // invalid faces are removed below ON_3fVector a, b, n; a = mesh.m_V[f.vi[2]] - mesh.m_V[f.vi[0]]; b = mesh.m_V[f.vi[3]] - mesh.m_V[f.vi[1]]; n = ON_CrossProduct( a, b ); n.Unitize(); mesh.m_FN[fi] = n; } } } } } if ( bad_fi_count > 0 ) { // remove collapsed faces ON_qsort(bad_fi,bad_fi_count,sizeof(bad_fi[0]),CompareInt); int bfi = 1; int dest_fi = bad_fi[0]; for ( fi = dest_fi+1; fi < F_count && bfi < bad_fi_count; fi++ ) { if ( fi == bad_fi[bfi] ) { bfi++; } else { mesh.m_F[dest_fi++] = mesh.m_F[fi]; } } while (fi<F_count) { mesh.m_F[dest_fi++] = mesh.m_F[fi++]; } mesh.m_F.SetCount(dest_fi); if ( bHasFaceNormals ) { bfi = 1; dest_fi = bad_fi[0]; for ( fi = dest_fi+1; fi < F_count && bfi < bad_fi_count; fi++ ) { if ( fi == bad_fi[bfi] ) { bfi++; } else { mesh.m_FN[dest_fi++] = mesh.m_FN[fi]; } } while (fi<F_count) { mesh.m_FN[dest_fi++] = mesh.m_FN[fi++]; } mesh.m_FN.SetCount(dest_fi); } } mesh.Compact(); mesh.DestroyTopology(); mesh.DestroyPartition(); return true; }
CRhinoCommand::result CCommandSampleCageEdit::RunCommand( const CRhinoCommandContext& context ) { ON_Workspace ws; CRhinoCommand::result rc = CRhinoCommand::success; // Get the captive object CRhinoGetObject go; go.SetCommandPrompt( L"Select captive surface or polysurface" ); go.SetGeometryFilter( CRhinoGetObject::surface_object | CRhinoGetObject::polysrf_object ); go.GetObjects( 1, 1 ); rc = go.CommandResult(); if( CRhinoCommand::success != rc ) return rc; const CRhinoObject* captive = go.Object(0).Object(); if( 0 == captive ) return CRhinoCommand::failure; // Define the control line ON_Line line; CArgsRhinoGetLine args; rc = RhinoGetLine( args, line ); if( CRhinoCommand::success != rc ) return rc; // Get the curve parameters int degree = 3; int cv_count = 4; for(;;) { CRhinoGetOption gl; gl.SetCommandPrompt( L"NURBS Parameters" ); gl.AcceptNothing(); int d_opt = gl.AddCommandOptionInteger( RHCMDOPTNAME(L"Degree"), °ree, L"Curve degree", 1.0, 100.0 ); int p_opt = gl.AddCommandOptionInteger( RHCMDOPTNAME(L"PointCount"), &cv_count, L"Number of control points", 2.0, 100.0 ); gl.GetOption(); rc = gl.CommandResult(); if( CRhinoCommand::success != rc ) return rc; if( CRhinoGet::nothing == gl.Result() ) break; if( cv_count <= degree ) { if( CRhinoGet::option != gl.Result() ) continue; const CRhinoCommandOption* opt = go.Option(); if( 0 == opt ) continue; if( d_opt == opt->m_option_index ) cv_count = degree + 1; else degree = cv_count - 1; } } // Set up morph control ON_MorphControl* control = new ON_MorphControl(); control->m_varient = 1; // 1= curve // Specify the source line curve control->m_nurbs_curve0.Create( 3, false, 2, 2 ); control->m_nurbs_curve0.MakeClampedUniformKnotVector(); control->m_nurbs_curve0.SetCV( 0, line.from ); control->m_nurbs_curve0.SetCV( 1, line.to ); // Specify the destination NURBS curve control->m_nurbs_curve.Create( 3, false, degree + 1, cv_count ); control->m_nurbs_curve.MakeClampedUniformKnotVector(); double* g = ws.GetDoubleMemory( control->m_nurbs_curve.m_cv_count ); control->m_nurbs_curve.GetGrevilleAbcissae( g ); ON_Interval d = control->m_nurbs_curve.Domain(); double s = 0.0; int i; for( i = 0; i < control->m_nurbs_curve.m_cv_count; i++ ) { s = d.NormalizedParameterAt( g[i] ); control->m_nurbs_curve.SetCV( i, line.PointAt(s) ); } // Make sure domains match s = line.Length(); if( s > ON_SQRT_EPSILON ) control->m_nurbs_curve0.SetDomain( 0.0, s ); d = control->m_nurbs_curve0.Domain(); control->m_nurbs_curve.SetDomain( d[0], d[1] ); // Create the morph control object CRhinoMorphControl* control_object = new CRhinoMorphControl(); control_object->SetControl( control ); context.m_doc.AddObject( control_object ); // Set up the capture RhinoCaptureObject( control_object, const_cast<CRhinoObject*>(captive) ); // Clean up display context.m_doc.UnselectAll(); // Turn on the control grips control_object->EnableGrips( true ); context.m_doc.Redraw( CRhinoView::mark_display_hint ); return rc; }
bool ON_Line::IsFartherThan( double d, const ON_Line& L ) const { ON_3dPoint A, B; double a, b, t, x; bool bCheckA, bCheckB; a = from.x; if (to.x < a) {b=a; a = to.x;} else b = to.x; if ( b+d < L.from.x && b+d < L.to.x ) return true; if ( a-d > L.from.x && a-d > L.to.x ) return true; a = from.y; if (to.y < a) {b=a; a = to.y;} else b = to.y; if ( b+d < L.from.y && b+d < L.to.y ) return true; if ( a-d > L.from.y && a-d > L.to.y ) return true; a = from.z; if (to.z < a) {b=a; a = to.z;} else b = to.z; if ( b+d < L.from.z && b+d < L.to.z ) return true; if ( a-d > L.from.z && a-d > L.to.z ) return true; if ( !ON_Intersect(*this,L,&a,&b) ) { // lines are parallel or anti parallel if ( Direction()*L.Direction() >= 0.0 ) { // lines are parallel a = 0.0; L.ClosestPointTo(from,&b); // If ( b >= 0.0), then this->from and L(b) are a pair of closest points. if ( b < 0.0 ) { // Othersise L.from and this(a) are a pair of closest points. b = 0.0; ClosestPointTo(L.from,&a); } } else { // lines are anti parallel a = 1.0; L.ClosestPointTo(to,&b); // If ( b >= 0.0), then this->to and L(b) are a pair of closest points. if ( b < 0.0 ) { // Othersise L.to and this(a) are a pair of closest points. b = 0.0; ClosestPointTo(L.from,&a); } } } A = PointAt(a); B = L.PointAt(b); x = A.DistanceTo(B); if (x > d) return true; bCheckA = true; if ( a < 0.0) a = 0.0; else if (a > 1.0) a = 1.0; else bCheckA=false; if (bCheckA ) { A = PointAt(a); L.ClosestPointTo(A,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; x = L.PointAt(t).DistanceTo(A); } bCheckB = true; if ( b < 0.0) b = 0.0; else if (b > 1.0) b = 1.0; else bCheckB=false; if ( bCheckB ) { B = L.PointAt(b); ClosestPointTo(B,&t); if (t<0.0) t = 0.0; else if (t > 1.0) t = 1.0; t = PointAt(t).DistanceTo(B); if ( bCheckA ) { if ( t<x ) x = t; } else { x = t; } } return (x > d); }