OcTree* generateSphereTree(point3d origin, float radius){ OcTree* tree = new OcTree(0.05); point3d point_on_surface = origin; point_on_surface.x() += radius; for (int i=0; i<360; i++) { for (int j=0; j<360; j++) { if (!tree->insertRay(origin, origin+point_on_surface)) { cout << "ERROR while inserting ray from " << origin << " to " << point_on_surface << endl; } point_on_surface.rotate_IP (0,0,DEG2RAD(1.)); } point_on_surface.rotate_IP (0,DEG2RAD(1.),0); } return tree; }
int main(int argc, char** argv) { //############################################################## OcTree tree (0.05); tree.enableChangeDetection(true); point3d origin (0.01f, 0.01f, 0.02f); point3d point_on_surface (4.01f,0.01f,0.01f); tree.insertRay(origin, point_on_surface); printChanges(tree); tree.updateNode(point3d(2.01f, 0.01f, 0.01f), 2.0f); printChanges(tree); tree.updateNode(point3d(2.01f, 0.01f, 0.01f), -2.0f); printChanges(tree); cout << "generating spherical scan at " << origin << " ..." << endl; for (int i=-100; i<101; i++) { Pointcloud cloud; for (int j=-100; j<101; j++) { point3d rotated = point_on_surface; rotated.rotate_IP(0, DEG2RAD(i*0.5), DEG2RAD(j*0.5)); cloud.push_back(rotated); } // insert in global coordinates: tree.insertPointCloud(cloud, origin, -1); } printChanges(tree); cout << "done." << endl; return 0; }
int main(int argc, char** argv) { //############################################################## OcTree tree (0.05); // point3d origin (10.01, 10.01, 10.02); point3d origin (0.01f, 0.01f, 0.02f); point3d point_on_surface (2.01f, 0.01f, 0.01f); cout << "generating sphere at " << origin << " ..." << endl; for (int i=0; i<360; i++) { for (int j=0; j<360; j++) { if (!tree.insertRay(origin, origin+point_on_surface)) { cout << "ERROR while inserting ray from " << origin << " to " << point_on_surface << endl; } point_on_surface.rotate_IP (0,0,DEG2RAD(1.)); } point_on_surface.rotate_IP (0,DEG2RAD(1.),0); } cout << "done." << endl; cout << "writing to sphere.bt..." << endl; tree.writeBinary("sphere.bt"); // ----------------------------------------------- cout << "casting rays ..." << endl; OcTree sampled_surface (0.05); point3d direction = point3d (1.0,0.0,0.0); point3d obstacle(0,0,0); unsigned int hit (0); unsigned int miss (0); double mean_dist(0); for (int i=0; i<360; i++) { for (int j=0; j<360; j++) { if (!tree.castRay(origin, direction, obstacle, true, 3.)) { miss++; } else { hit++; mean_dist += (obstacle - origin).norm(); sampled_surface.updateNode(obstacle, true); } direction.rotate_IP (0,0,DEG2RAD(1.)); } direction.rotate_IP (0,DEG2RAD(1.),0); } cout << "done." << endl; mean_dist /= (double) hit; std::cout << " hits / misses: " << hit << " / " << miss << std::endl; std::cout << " mean obstacle dist: " << mean_dist << std::endl; cout << "writing sampled_surface.bt" << endl; sampled_surface.writeBinary("sampled_surface.bt"); // ----------------------------------------------- cout << "generating single rays..." << endl; OcTree single_beams(0.03333); int num_beams = 17; float beamLength = 10.0f; point3d single_origin (1.0f, 0.45f, 0.45f); point3d single_endpoint(beamLength, 0.0f, 0.0f); for (int i=0; i<num_beams; i++) { if (!single_beams.insertRay(single_origin, single_origin+single_endpoint)) { cout << "ERROR while inserting ray from " << single_origin << " to " << single_endpoint << endl; } single_endpoint.rotate_IP (0,0,DEG2RAD(360.0/num_beams)); } cout << "done." << endl; cout << "writing to beams.bt..." << endl; single_beams.writeBinary("beams.bt"); return 0; }
int main(int argc, char** argv) { if (argc != 2){ std::cerr << "Error: you need to specify a test as argument" << std::endl; return 1; // exit 1 means failure } std::string test_name (argv[1]); // ------------------------------------------------------------ if (test_name == "MathVector") { // test constructors Vector3* twos = new Vector3(); Vector3* ones = new Vector3(1,1,1); for (int i=0;i<3;i++) { (*twos)(i) = 2; } // test basic operations Vector3 subtraction = *twos - *ones; Vector3 addition = *twos + *ones; Vector3 multiplication = *twos * 2.; for (int i=0;i<3;i++) { EXPECT_FLOAT_EQ (subtraction(i), 1.); EXPECT_FLOAT_EQ (addition(i), 3.); EXPECT_FLOAT_EQ (multiplication(i), 4.); } // copy constructor Vector3 rotation = *ones; // rotation rotation.rotate_IP (M_PI, 1., 0.1); EXPECT_FLOAT_EQ (rotation.x(), 1.2750367); EXPECT_FLOAT_EQ (rotation.y(), (-1.1329513)); EXPECT_FLOAT_EQ (rotation.z(), 0.30116868); // ------------------------------------------------------------ } else if (test_name == "MathPose") { // constructors Pose6D a (1.0f, 0.1f, 0.1f, 0.0f, 0.1f, (float) M_PI/4. ); Pose6D b; Vector3 trans(1.0f, 0.1f, 0.1f); Quaternion rot(0.0f, 0.1f, (float) M_PI/4.); Pose6D c(trans, rot); // comparator EXPECT_TRUE ( a == c); // toEuler EXPECT_FLOAT_EQ (c.yaw() , M_PI/4.); // transform Vector3 t = c.transform (trans); EXPECT_FLOAT_EQ (t.x() , 1.6399229); EXPECT_FLOAT_EQ (t.y() , 0.8813442); EXPECT_FLOAT_EQ (t.z() , 0.099667005); // inverse transform Pose6D c_inv = c.inv(); Vector3 t2 = c_inv.transform (t); EXPECT_FLOAT_EQ (t2.x() , trans.x()); EXPECT_FLOAT_EQ (t2.y() , trans.y()); EXPECT_FLOAT_EQ (t2.z() , trans.z()); // ------------------------------------------------------------ } else if (test_name == "InsertRay") { double p = 0.5; EXPECT_FLOAT_EQ(p, probability(logodds(p))); p = 0.1; EXPECT_FLOAT_EQ(p, probability(logodds(p))); p = 0.99; EXPECT_FLOAT_EQ(p, probability(logodds(p))); float l = 0; EXPECT_FLOAT_EQ(l, logodds(probability(l))); l = -4; EXPECT_FLOAT_EQ(l, logodds(probability(l))); l = 2; EXPECT_FLOAT_EQ(l, logodds(probability(l))); OcTree tree (0.05); tree.setProbHit(0.7); tree.setProbMiss(0.4); point3d origin (0.01f, 0.01f, 0.02f); point3d point_on_surface (2.01f,0.01f,0.01f); for (int i=0; i<360; i++) { for (int j=0; j<360; j++) { EXPECT_TRUE (tree.insertRay(origin, origin+point_on_surface)); point_on_surface.rotate_IP (0,0,DEG2RAD(1.)); } point_on_surface.rotate_IP (0,DEG2RAD(1.),0); } EXPECT_TRUE (tree.writeBinary("sphere_rays.bt")); EXPECT_EQ ((int) tree.size(), 50615); // ------------------------------------------------------------ // ray casting is now in "test_raycasting.cpp" // ------------------------------------------------------------ // insert scan test // insert graph node test // write graph test } else if (test_name == "InsertScan") { Pointcloud* measurement = new Pointcloud(); point3d origin (0.01f, 0.01f, 0.02f); point3d point_on_surface (2.01f, 0.01f, 0.01f); for (int i=0; i<360; i++) { for (int j=0; j<360; j++) { point3d p = origin+point_on_surface; measurement->push_back(p); point_on_surface.rotate_IP (0,0,DEG2RAD(1.)); } point_on_surface.rotate_IP (0,DEG2RAD(1.),0); } OcTree tree (0.05); tree.insertPointCloud(*measurement, origin); EXPECT_EQ (tree.size(), 53959); ScanGraph* graph = new ScanGraph(); Pose6D node_pose (origin.x(), origin.y(), origin.z(),0.0f,0.0f,0.0f); graph->addNode(measurement, node_pose); EXPECT_TRUE (graph->writeBinary("test.graph")); delete graph; // ------------------------------------------------------------ // graph read file test } else if (test_name == "ReadGraph") { // not really meaningful, see better test in "test_scans.cpp" ScanGraph graph; EXPECT_TRUE (graph.readBinary("test.graph")); // ------------------------------------------------------------ } else if (test_name == "StampedTree") { OcTreeStamped stamped_tree (0.05); // fill tree for (int x=-20; x<20; x++) for (int y=-20; y<20; y++) for (int z=-20; z<20; z++) { point3d p ((float) x*0.05f+0.01f, (float) y*0.05f+0.01f, (float) z*0.05f+0.01f); stamped_tree.updateNode(p, true); // integrate 'occupied' measurement } // test if update times set point3d query (0.1f, 0.1f, 0.1f); OcTreeNodeStamped* result = stamped_tree.search (query); EXPECT_TRUE (result); unsigned int tree_time = stamped_tree.getLastUpdateTime(); unsigned int node_time = result->getTimestamp(); std::cout << "After 1st update (cube): Tree time " <<tree_time << "; node(0.1, 0.1, 0.1) time " << result->getTimestamp() << std::endl; EXPECT_TRUE (tree_time > 0); #ifdef _WIN32 Sleep(1000); #else sleep(1); #endif stamped_tree.integrateMissNoTime(result); // reduce occupancy, no time update std::cout << "After 2nd update (single miss): Tree time " <<tree_time << "; node(0.1, 0.1, 0.1) time " << node_time << std::endl; EXPECT_EQ (node_time, result->getTimestamp()); // node time updated? point3d query2 = point3d (0.1f, 0.1f, 0.3f); stamped_tree.updateNode(query2, true); // integrate 'occupied' measurement OcTreeNodeStamped* result2 = stamped_tree.search (query2); EXPECT_TRUE (result2); result = stamped_tree.search (query); EXPECT_TRUE (result); std::cout << "After 3rd update (single hit at (0.1, 0.1, 0.3): Tree time " << stamped_tree.getLastUpdateTime() << "; node(0.1, 0.1, 0.1) time " << result->getTimestamp() << "; node(0.1, 0.1, 0.3) time " << result2->getTimestamp() << std::endl; EXPECT_TRUE (result->getTimestamp() < result2->getTimestamp()); // result2 has been updated EXPECT_EQ(result2->getTimestamp(), stamped_tree.getLastUpdateTime()); // ------------------------------------------------------------ } else if (test_name == "OcTreeKey") { OcTree tree (0.05); point3d p(0.0,0.0,0.0); OcTreeKey key; tree.coordToKeyChecked(p, key); point3d p_inv = tree.keyToCoord(key); EXPECT_FLOAT_EQ (0.025, p_inv.x()); EXPECT_FLOAT_EQ (0.025, p_inv.y()); EXPECT_FLOAT_EQ (0.025, p_inv.z()); // ------------------------------------------------------------ } else { std::cerr << "Invalid test name specified: " << test_name << std::endl; return 1; } std::cerr << "Test successful.\n"; return 0; }