/* ************************************************************************* */ Ordering Ordering::Metis(const MetisIndex& met) { #ifdef GTSAM_SUPPORT_NESTED_DISSECTION gttic(Ordering_METIS); vector<idx_t> xadj = met.xadj(); vector<idx_t> adj = met.adj(); vector<idx_t> perm, iperm; idx_t size = met.nValues(); for (idx_t i = 0; i < size; i++) { perm.push_back(0); iperm.push_back(0); } int outputError; outputError = METIS_NodeND(&size, &xadj[0], &adj[0], NULL, NULL, &perm[0], &iperm[0]); Ordering result; if (outputError != METIS_OK) { std::cout << "METIS failed during Nested Dissection ordering!\n"; return result; } result.resize(size); for (size_t j = 0; j < (size_t) size; ++j) { // We have to add the minKey value back to obtain the original key in the Values result[j] = met.intToKey(perm[j]); } return result; #else throw runtime_error("GTSAM was built without support for Metis-based " "nested dissection"); #endif }
/* ************************************************************************* */ Ordering Ordering::COLAMDConstrained( const VariableIndex& variableIndex, std::vector<int>& cmember) { gttic(Ordering_COLAMDConstrained); gttic(Prepare); size_t nEntries = variableIndex.nEntries(), nFactors = variableIndex.nFactors(), nVars = variableIndex.size(); // Convert to compressed column major format colamd wants it in (== MATLAB format!) size_t Alen = ccolamd_recommended((int)nEntries, (int)nFactors, (int)nVars); /* colamd arg 3: size of the array A */ vector<int> A = vector<int>(Alen); /* colamd arg 4: row indices of A, of size Alen */ vector<int> p = vector<int>(nVars + 1); /* colamd arg 5: column pointers of A, of size n_col+1 */ // Fill in input data for COLAMD p[0] = 0; int count = 0; vector<Key> keys(nVars); // Array to store the keys in the order we add them so we can retrieve them in permuted order size_t index = 0; BOOST_FOREACH(const VariableIndex::value_type key_factors, variableIndex) { // Arrange factor indices into COLAMD format const VariableIndex::Factors& column = key_factors.second; size_t lastFactorId = numeric_limits<size_t>::max(); BOOST_FOREACH(size_t factorIndex, column) { if(lastFactorId != numeric_limits<size_t>::max()) assert(factorIndex > lastFactorId); A[count++] = (int)factorIndex; // copy sparse column } p[index+1] = count; // column j (base 1) goes from A[j-1] to A[j]-1 // Store key in array and increment index keys[index] = key_factors.first; ++ index; } assert((size_t)count == variableIndex.nEntries()); //double* knobs = NULL; /* colamd arg 6: parameters (uses defaults if NULL) */ double knobs[CCOLAMD_KNOBS]; ccolamd_set_defaults(knobs); knobs[CCOLAMD_DENSE_ROW]=-1; knobs[CCOLAMD_DENSE_COL]=-1; int stats[CCOLAMD_STATS]; /* colamd arg 7: colamd output statistics and error codes */ gttoc(Prepare); // call colamd, result will be in p /* returns (1) if successful, (0) otherwise*/ if(nVars > 0) { gttic(ccolamd); int rv = ccolamd((int)nFactors, (int)nVars, (int)Alen, &A[0], &p[0], knobs, stats, &cmember[0]); if(rv != 1) throw runtime_error((boost::format("ccolamd failed with return value %1%")%rv).str()); } // ccolamd_report(stats); gttic(Fill_Ordering); // Convert elimination ordering in p to an ordering Ordering result; result.resize(nVars); for(size_t j = 0; j < nVars; ++j) result[j] = keys[p[j]]; gttoc(Fill_Ordering); return result; }