bool ComplexDomainFlux::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    if ((out->tokenno()==0) && (in->tokenno()!=-2))
      in->prependZeros(2);
    if (!in->hasTokens(3)) return false;

    const int N = in->info().size/2;
    ArrayXcd inPredPredRotator(N);
    ArrayXcd inPredRotator(N);
    rotatorOp<double> op;
    {
      Map<ArrayXcd> inPredPredData((complex<double>*) in->token(0),N);
      inPredPredRotator = inPredPredData.unaryExpr(op);
    }
    while (in->hasTokens(3))
    {
      Map<ArrayXcd> inPredData((complex<double>*) in->token(1),N);
      Map<ArrayXcd> inData((complex<double>*) in->token(2), N);
      inPredRotator = inPredData.unaryExpr(op);
      double* output = out->writeToken();
      *output++ = (inData - (inPredData * (inPredRotator * inPredPredRotator.conjugate()))).abs().sum();
      in->consumeToken();
      inPredPredRotator.swap(inPredRotator);
    }

    return true;
  }
Exemple #2
0
bool Flux::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

	if ((out->tokenno()==0) && (in->tokenno()!=-1))
		in->prependZeros(1);
	if (!in->hasTokens(2))
		return false;

	const int N = in->info().size;
    double lastNorm = 0.0;
    double nextNorm = Map<VectorXd>(in->token(0),N).norm();
    while (in->hasTokens(2))
    {
    	Map<VectorXd> last(in->token(0),N);
        lastNorm = nextNorm;
        Map<VectorXd> next(in->token(1),N);
        nextNorm = next.norm();
        double* output = out->writeToken();
        if (lastNorm*nextNorm==0)
        	*output = 0.0;
        else if (m_onlyIncrease)
        	*output = (next-last).unaryExpr(filterNegativeOp<double>()).squaredNorm() / (lastNorm*nextNorm);
		else
			*output = (next - last).squaredNorm() / (lastNorm * nextNorm);

        in->consumeToken();
    }
    return true;
}
bool SpectralCrestFactorPerBand::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	if (in->empty()) return false;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

	int nbBands = m_band.size();
    double* tmp = new double[in->info().size];
    while (!in->empty())
    {
    	double* inData = in->readToken();
    	double* output = out->writeToken();
    	for (int k=0;k<nbBands;++k)
    	{
    		bandinfo& bi = m_band[k];
    		double* data = &inData[bi.start];
    		int datalen = bi.length();
    		if (bi.group>1) // grpsize > 1
    		{
    			data = tmp;
    			datalen /= bi.group;
    			double* ptr = &inData[bi.start];
    			for (int d=0;d<datalen;d++) {
    				double s = 0;
    				for (int g=0;g<bi.group;g++)
    					s += *ptr++;
    				data[d] = s;
    			}
    		}
    		double am = 0;
    		double maxdata = data[0];
    		for (int i=0;i<datalen;i++)
    		{
    			am += data[i];
    			if (data[i]>maxdata) {
    				maxdata = data[i];
    			}
    		}
    		if (am!=0) {
    			output[k] = maxdata * datalen / am;
    			continue;
    		}
    		output[k] = maxdata / EPS;
    	}

        in->consumeToken();
    }
    delete [] tmp;

    return true;
}
bool AC2LPC::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

    assert(out->info().size==m_nbCoeffs);
    assert(in->info().size>m_nbCoeffs);
    while (!in->empty())
    {
        ac2lpc(in->readToken(),out->writeToken(),m_nbCoeffs);
        in->consumeToken();
    }
    return true;
}
bool Difference::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	if (in->empty()) return false;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;

	const int N = in->info().size - 1;
	while (!in->empty())
	{
		double* inData = in->readToken();
		double* outData = out->writeToken();
		for (int i=0;i<N;i++)
			outData[i] = inData[i+1] - inData[i];
		in->consumeToken();
	}
    return true;
}
Exemple #6
0
  bool Cepstrum::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    if (in->empty())
      return false;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    safeLogOp<double> slop;
    VectorXd outDct;
    while (!in->empty())
    {
      Map<VectorXd> inData(in->readToken(),in->info().size);
      outDct.noalias() = m_dctPlan * inData.unaryExpr(slop);
      memcpy(out->writeToken(),outDct.data() + m_ignoreFirst, out->info().size*sizeof(double));
      in->consumeToken();
    }
    return true;
  }
Exemple #7
0
  bool SpecificLoudness::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    if (in->empty()) return false;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    const int N = in->info().size;
    const int M = out->info().size;
    while (!in->empty())
    {
      Map<VectorXd> inData(in->readToken(),N);
      double* outData = out->writeToken();
      for (int i=0;i<NB_BARK_BANDS;i++)
        outData[i] = pow(inData.segment(m_bkBdLimits[i],m_bkBdLimits[i+1]-m_bkBdLimits[i]).sum(),0.23);
      in->consumeToken();
    }

    return true;
  }
bool FrameTokenizer::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;
	assert(in->size()==1);

	if ((out->tokenno()==0) && (in->tokenno()!=-m_blockSize/2))
		in->prependZeros(m_blockSize/2);

	if (!in->hasTokens(m_blockSize))
		return false;

	while (in->hasTokens(m_blockSize)) {
		in->read(out->writeToken(),m_blockSize);
		in->consumeTokens(m_stepSize);
	}

	return true;
}
Exemple #9
0
  bool MelFilterBank::process(Ports<InputBuffer*>& inp, Ports<OutputBuffer*>& outp)
  {
    assert(inp.size()==1);
    InputBuffer* in = inp[0].data;
    if (in->empty()) return false;
    assert(outp.size()==1);
    OutputBuffer* out = outp[0].data;

    while (!in->empty()) {
      Map<VectorXd> inData(in->readToken(),in->info().size);
      double* outData = out->writeToken();
      for (int f=0;f<m_filters.size();f++)
      {
        RowVectorXd& filter = m_filters[f];
        outData[f] = filter * inData.segment(m_filterStart[f],filter.size());
      }
      in->consumeToken();
    }

    return true;
  }
bool AdvancedFrameTokenizer::process(YAAFE::Ports<YAAFE::InputBuffer*>& inp, YAAFE::Ports<YAAFE::OutputBuffer*>& outp)
{
	assert(inp.size()==1);
	InputBuffer* in = inp[0].data;
	assert(outp.size()==1);
	OutputBuffer* out = outp[0].data;
	assert(in->size()==1);

	if ((out->tokenno()==0) && (in->tokenno()!=-m_blockSize/2))
		in->prependZeros(m_blockSize/2);

	if (!in->hasTokens(m_blockSize))
		return false;

	while (in->hasTokens(m_blockSize)) {
		in->read(out->writeToken(),m_blockSize);
		int nextInputToken = (int) floor(out->tokenno() * m_outStepSize * in->info().sampleRate / m_outSampleRate + 0.5);
		in->consumeTokens(nextInputToken - m_blockSize/2 - in->tokenno());
	}

	return true;
}