void AdaptivePath::update() {
  double weight2 = -1.*mypathv->dx;
  double weight1 = 1.0 + mypathv->dx;
  if( weight1>1.0 ) {
    weight1=1.0; weight2=0.0;
  } else if( weight2>1.0 ) {
    weight1=0.0; weight2=1.0;
  }
  // Add projections to dispalcement accumulators
  ReferenceConfiguration* myref = getReferenceConfiguration( mypathv->iclose1 );
  myref->extractDisplacementVector( getPositions(), getArguments(), mypathv->cargs, false, displacement );
  getReferenceConfiguration( mypathv->iclose2 )->extractDisplacementVector( myref->getReferencePositions(), getArguments(), myref->getReferenceArguments(), false, displacement2 );
  displacement.addDirection( -mypathv->dx, displacement2 );
  pdisplacements[mypathv->iclose1].addDirection( weight1, displacement );
  pdisplacements[mypathv->iclose2].addDirection( weight2, displacement );
  // Update weight accumulators
  wsum[mypathv->iclose1] *= fadefact;
  wsum[mypathv->iclose2] *= fadefact;
  wsum[mypathv->iclose1] += weight1;
  wsum[mypathv->iclose2] += weight2;

  // This does the update of the path if it is time to
  if( (getStep()>0) && (getStep()%update_str==0) ) {
    wsum[fixedn[0]]=wsum[fixedn[1]]=0.;
    for(unsigned inode=0; inode<getNumberOfReferencePoints(); ++inode) {
      if( wsum[inode]>0 ) {
        // First displace the node by the weighted direction
        getReferenceConfiguration( inode )->displaceReferenceConfiguration( 1./wsum[inode], pdisplacements[inode] );
        // Reset the displacement
        pdisplacements[inode].zeroDirection();
      }
    }
    // Now ensure all the nodes of the path are equally spaced
    PathReparameterization myspacings( getPbc(), getArguments(), getAllReferenceConfigurations() );
    myspacings.reparameterize( fixedn[0], fixedn[1], tolerance );
  }
  if( (getStep()>0) && (getStep()%wstride==0) ) {
    pathfile.printf("# PATH AT STEP %d TIME %f \n", getStep(), getTime() );
    std::vector<std::unique_ptr<ReferenceConfiguration>>& myconfs=getAllReferenceConfigurations();
    std::vector<SetupMolInfo*> moldat=plumed.getActionSet().select<SetupMolInfo*>();
    if( moldat.size()>1 ) error("you should only have one MOLINFO action in your input file");
    SetupMolInfo* mymoldat=NULL; if( moldat.size()==1 ) mymoldat=moldat[0];
    std::vector<std::string> argument_names( getNumberOfArguments() );
    for(unsigned i=0; i<getNumberOfArguments(); ++i) argument_names[i] = getPntrToArgument(i)->getName();
    PDB mypdb; mypdb.setArgumentNames( argument_names );
    for(unsigned i=0; i<myconfs.size(); ++i) {
      pathfile.printf("REMARK TYPE=%s\n", myconfs[i]->getName().c_str() );
      mypdb.setAtomPositions( myconfs[i]->getReferencePositions() );
      for(unsigned j=0; j<getNumberOfArguments(); ++j) mypdb.setArgumentValue( getPntrToArgument(j)->getName(), myconfs[i]->getReferenceArgument(j) );
      mypdb.print( atoms.getUnits().getLength()/0.1, mymoldat, pathfile, ofmt );
    }
    pathfile.flush();
  }
}
TrigonometricPathVessel::TrigonometricPathVessel( const vesselbase::VesselOptions& da ):
  StoreDataVessel(da),
  projdir(ReferenceConfigurationOptions("DIRECTION")),
  mydpack1( 1, getAction()->getNumberOfDerivatives() ),
  mydpack2( 1, getAction()->getNumberOfDerivatives() ),
  mydpack3( 1, getAction()->getNumberOfDerivatives() ),
  mypack1( 0, 0, mydpack1 ),
  mypack2( 0, 0, mydpack2 ),
  mypack3( 0, 0, mydpack3 )
{
  mymap=dynamic_cast<Mapping*>( getAction() );
  plumed_massert( mymap, "Trigonometric path vessel can only be used with mappings");
  // Retrieve the index of the property in the underlying mapping
  if( mymap->getNumberOfProperties()!=1 ) error("cannot use trigonometric paths when there are multiple properties");

  for(unsigned i=0; i<mymap->getFullNumberOfTasks(); ++i) {
    if( mymap->getTaskCode(i)!=mymap->getPositionInFullTaskList(i) ) error("mismatched tasks and codes");
  }
  mymap->addComponentWithDerivatives("gspath"); mymap->componentIsNotPeriodic("gspath");
  sp=mymap->copyOutput( mymap->getNumberOfComponents()-1 ); sp->resizeDerivatives( mymap->getNumberOfDerivatives() );
  mymap->addComponentWithDerivatives("gzpath"); mymap->componentIsNotPeriodic("gzpath");
  zp=mymap->copyOutput( mymap->getNumberOfComponents()-1 ); zp->resizeDerivatives( mymap->getNumberOfDerivatives() );

  // Check we have PCA
  ReferenceConfiguration* ref0=mymap->getReferenceConfiguration(0);
  for(unsigned i=0; i<mymap->getFullNumberOfTasks(); ++i) {
    if( !(mymap->getReferenceConfiguration(i))->pcaIsEnabledForThisReference() ) error("pca must be implemented in order to use trigometric path");
    if( ref0->getName()!=(mymap->getReferenceConfiguration(i))->getName() ) error("cannot use mixed metrics");
    if( mymap->getNumberOfAtoms()!=(mymap->getReferenceConfiguration(i))->getNumberOfReferencePositions() ) error("all frames must use the same set of atoms");
    if( mymap->getNumberOfArguments()!=(mymap->getReferenceConfiguration(i))->getNumberOfReferenceArguments() ) error("all frames must use the same set of arguments");
  }

  cargs.resize( mymap->getNumberOfArguments() ); std::vector<std::string> argument_names( mymap->getNumberOfArguments() );
  for(unsigned i=0; i<mymap->getNumberOfArguments(); ++i) argument_names[i] = (mymap->getPntrToArgument(i))->getName();
  PDB mypdb; mypdb.setAtomNumbers( mymap->getAbsoluteIndexes() ); mypdb.addBlockEnd( mymap->getAbsoluteIndexes().size() );
  if( argument_names.size()>0 ) mypdb.setArgumentNames( argument_names );
  projdir.read( mypdb );
  mypack1.resize( mymap->getNumberOfArguments(), mymap->getNumberOfAtoms() ); ref0->setupPCAStorage( mypack1 );
  mypack2.resize( mymap->getNumberOfArguments(), mymap->getNumberOfAtoms() ); ref0->setupPCAStorage( mypack2 );
  mypack3.resize( mymap->getNumberOfArguments(), mymap->getNumberOfAtoms() );
  for(unsigned i=0; i<mymap->getNumberOfAtoms(); ++i) { mypack1.setAtomIndex(i,i); mypack2.setAtomIndex(i,i); mypack3.setAtomIndex(i,i); }
  mypack1_stashd_atoms.resize( mymap->getNumberOfAtoms() ); mypack1_stashd_args.resize( mymap->getNumberOfArguments() );
}