int main(int argc, char *argv[])
{
    // parse arguments
    const char * optstring = "alho:npqsv:m";
    int c;
    string output;
    bool doPairwise = false;
    bool doAutoOpt = false;
    bool doNormalOpt = false;
    bool doLevel = false;
    bool chooseProj = false;
    bool quiet = false;
    bool doPhotometric = false;
    double hfov = 0.0;
    while ((c = getopt (argc, argv, optstring)) != -1)
    {
        switch (c) {
        case 'o':
            output = optarg;
            break;
        case 'h':
            usage(argv[0]);
            return 0;
        case 'p':
            doPairwise = true;
            break;
        case 'a':
            doAutoOpt = true;
            break;
        case 'n':
            doNormalOpt = true;
            break;
        case 'l':
            doLevel = true;
            break;
        case 's':
            chooseProj = true;
            break;
        case 'q':
            quiet = true;
            break;
        case 'v':
            hfov = atof(optarg);
            break;
        case 'm':
            doPhotometric = true;
            break;
        default:
            abort ();
        }
    }

    if (argc - optind != 1) {
        usage(argv[0]);
        return 1;
    }

    const char * scriptFile = argv[optind];

    Panorama pano;
    if (scriptFile[0] == '-') {
        DocumentData::ReadWriteError err = pano.readData(std::cin);
        if (err != DocumentData::SUCCESSFUL) {
            cerr << "error while reading script file from stdin." << endl;
            cerr << "DocumentData::ReadWriteError code: " << err << endl;
            return 1;
        }
    } else {
        ifstream prjfile(scriptFile);
        if (!prjfile.good()) {
            cerr << "could not open script : " << scriptFile << endl;
            return 1;
        }
        pano.setFilePrefix(hugin_utils::getPathPrefix(scriptFile));
        DocumentData::ReadWriteError err = pano.readData(prjfile);
        if (err != DocumentData::SUCCESSFUL) {
            cerr << "error while parsing panos tool script: " << scriptFile << endl;
            cerr << "DocumentData::ReadWriteError code: " << err << endl;
            return 1;
        }
    }

    if (pano.getNrOfImages() == 0) {
        cerr << "Panorama should consist of at least one image" << endl;
        return 1;
    }

    // for bad HFOV (from autopano-SIFT)
    for (unsigned i=0; i < pano.getNrOfImages(); i++) {
        SrcPanoImage img = pano.getSrcImage(i);
        if (img.getProjection() == SrcPanoImage::RECTILINEAR
            && img.getHFOV() >= 180)
        {
            // something is wrong here, try to read from exif data
            double focalLength = 0;
            double cropFactor = 0;
            cerr << "HFOV of image " << img.getFilename() << " invalid, trying to read EXIF tags" << endl;
            bool ok = img.readEXIF(focalLength, cropFactor, true, false);
            if (! ok) {
                if (hfov) {
                    img.setHFOV(hfov);
                } else {
                    cerr << "EXIF reading failed, please specify HFOV with -v" << endl;
                    return 1;
                }
            }
            pano.setSrcImage(i, img);
        }
    }

    if(pano.getNrOfCtrlPoints()==0 && (doPairwise || doAutoOpt || doNormalOpt))
    {
        cerr << "Panorama have to have control points to optimise positions" << endl;
        return 1;
    };


	
	
	if (doPairwise && ! doAutoOpt) {
        // do pairwise optimisation
        set<string> optvars;
        optvars.insert("r");
        optvars.insert("p");
        optvars.insert("y");
        AutoOptimise::autoOptimise(pano);

        // do global optimisation
        if (!quiet) std::cerr << "*** Pairwise position optimisation" << endl;
        PTools::optimize(pano);
    } else if (doAutoOpt) {
        if (!quiet) std::cerr << "*** Adaptive geometric optimisation" << endl;
        SmartOptimise::smartOptimize(pano);
    } else if (doNormalOpt) {
        if (!quiet) std::cerr << "*** Optimising parameters specified in PTO file" << endl;
        PTools::optimize(pano);
    } else {
        if (!quiet) std::cerr << "*** Geometric parameters not optimized" << endl;
    }

    if (doLevel)
    {
        bool hasVerticalLines=false;
        CPVector allCP=pano.getCtrlPoints();
        if(allCP.size()>0 && (doPairwise || doAutoOpt || doNormalOpt))
        {
            for(size_t i=0;i<allCP.size() && !hasVerticalLines;i++)
            {
                hasVerticalLines=(allCP[i].mode==ControlPoint::X);
            };
        };
        // straighten only if there are no vertical control points
        if(hasVerticalLines)
        {
            cout << "Skipping automatic leveling because of existing vertical control points." << endl;
        }
        else
        {
            StraightenPanorama(pano).run();
            CenterHorizontally(pano).run();
        };
    }

    if (chooseProj) {
        PanoramaOptions opts = pano.getOptions();
        double hfov, vfov;
        CalculateFitPanorama fitPano = CalculateFitPanorama(pano);
        fitPano.run();
        opts.setHFOV(fitPano.getResultHorizontalFOV());
        opts.setHeight(roundi(fitPano.getResultHeight()));
        vfov = opts.getVFOV();
        hfov = opts.getHFOV();
        // avoid perspective projection if field of view > 100 deg
        double mf = 100;
        if (vfov < mf) {
            // cylindrical or rectilinear
            if (hfov < mf) {
                opts.setProjection(PanoramaOptions::RECTILINEAR);
            } else {
                opts.setProjection(PanoramaOptions::CYLINDRICAL);
            }
        }

        // downscale pano a little
        double sizeFactor = 0.7;

        pano.setOptions(opts);
        double w = CalculateOptimalScale::calcOptimalScale(pano);
        opts.setWidth(roundi(opts.getWidth()*w*sizeFactor), true);
        pano.setOptions(opts);
    }

    if(doPhotometric)
    {
        // photometric estimation
        PanoramaOptions opts = pano.getOptions();
        int nPoints = 200;
        int pyrLevel=3;
        bool randomPoints = true;
        nPoints = nPoints * pano.getNrOfImages();
 
        std::vector<vigra_ext::PointPairRGB> points;
        ProgressDisplay *progressDisplay;
        if(!quiet)
            progressDisplay=new StreamProgressDisplay(std::cout);
        else
            progressDisplay=new DummyProgressDisplay();
        try 
        {
            loadImgsAndExtractPoints(pano, nPoints, pyrLevel, randomPoints, *progressDisplay, points, !quiet);
        } 
        catch (std::exception & e)
        {
            cerr << "caught exception: " << e.what() << endl;
            return 1;
        };
        if(!quiet)
            cout << "\rSelected " << points.size() << " points" << endl;

        if (points.size() == 0)
        {
            cerr << "Error: no overlapping points found, exiting" << endl;
            return 1;
        }

        progressDisplay->startSubtask("Photometric Optimization", 0.0);
        // first, ensure that vignetting and response coefficients are linked
        const HuginBase::ImageVariableGroup::ImageVariableEnum vars[] = {
                HuginBase::ImageVariableGroup::IVE_EMoRParams,
                HuginBase::ImageVariableGroup::IVE_ResponseType,
                HuginBase::ImageVariableGroup::IVE_VigCorrMode,
                HuginBase::ImageVariableGroup::IVE_RadialVigCorrCoeff,
                HuginBase::ImageVariableGroup::IVE_RadialVigCorrCenterShift
        };
        HuginBase::StandardImageVariableGroups variable_groups(pano);
        HuginBase::ImageVariableGroup & lenses = variable_groups.getLenses();
        for (size_t i = 0; i < lenses.getNumberOfParts(); i++)
        {
            std::set<HuginBase::ImageVariableGroup::ImageVariableEnum> links_needed;
            links_needed.clear();
            for (int v = 0; v < 5; v++)
            {
                if (!lenses.getVarLinkedInPart(vars[v], i))
                {
                    links_needed.insert(vars[v]);
                }
            };
            if (!links_needed.empty())
            {
                std::set<HuginBase::ImageVariableGroup::ImageVariableEnum>::iterator it;
                for (it = links_needed.begin(); it != links_needed.end(); it++)
                {
                    lenses.linkVariablePart(*it, i);
                }
            }
        }

        HuginBase::SmartPhotometricOptimizer::PhotometricOptimizeMode optmode = 
            HuginBase::SmartPhotometricOptimizer::OPT_PHOTOMETRIC_LDR;
        if (opts.outputMode == PanoramaOptions::OUTPUT_HDR)
        {
            optmode = HuginBase::SmartPhotometricOptimizer::OPT_PHOTOMETRIC_HDR;
        }
        SmartPhotometricOptimizer photoOpt(pano, progressDisplay, pano.getOptimizeVector(), points, optmode);
        photoOpt.run();

        // calculate the mean exposure.
        opts.outputExposureValue = CalculateMeanExposure::calcMeanExposure(pano);
        pano.setOptions(opts);
        progressDisplay->finishSubtask();
        delete progressDisplay;
    };

    // write result
    OptimizeVector optvec = pano.getOptimizeVector();
    UIntSet imgs;
    fill_set(imgs,0, pano.getNrOfImages()-1);
    if (output != "") {
        ofstream of(output.c_str());
        pano.printPanoramaScript(of, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(scriptFile));
    } else {
        pano.printPanoramaScript(cout, optvec, pano.getOptions(), imgs, false, hugin_utils::getPathPrefix(scriptFile));
    }
    return 0;
}
SmallRemappedImageCache::MRemappedImage *
SmallRemappedImageCache::getRemapped(const PanoramaData& pano,
                                     const PanoramaOptions & popts,
                                     unsigned int imgNr,
                                     vigra::Rect2D outputROI,
                                     AppBase::MultiProgressDisplay& progress)
{
    // always map to HDR mode. curve and exposure is applied in preview window, for speed
    PanoramaOptions opts = popts;
    opts.outputMode = PanoramaOptions::OUTPUT_HDR;
    opts.outputExposureValue = 0.0;

    // return old image, if already in cache and if it has changed since the last rendering
    if (set_contains(m_images, imgNr)) {
        // return cached image if the parameters of the image have not changed
        SrcPanoImage oldParam = m_imagesParam[imgNr];
        if (oldParam == pano.getSrcImage(imgNr)
                && m_panoOpts[imgNr].getHFOV() == opts.getHFOV()
                && m_panoOpts[imgNr].getWidth() == opts.getWidth()
                && m_panoOpts[imgNr].getHeight() == opts.getHeight()
                && m_panoOpts[imgNr].getProjection() == opts.getProjection()
                && m_panoOpts[imgNr].getProjectionParameters() == opts.getProjectionParameters()
           )
        {
            DEBUG_DEBUG("using cached remapped image " << imgNr);
            return m_images[imgNr];
        }
    }

    ImageCache::getInstance().softFlush();

    typedef  BasicImageView<RGBValue<unsigned char> > BRGBImageView;

//    typedef NumericTraits<PixelType>::RealPromote RPixelType;

    // remap image
    DEBUG_DEBUG("remapping image " << imgNr);

    // load image
    const SrcPanoImage & img = pano.getImage(imgNr);

    ImageCache::EntryPtr e = ImageCache::getInstance().getSmallImage(img.getFilename().c_str());
    if ( (e->image8->width() == 0) && (e->image16->width() == 0) && (e->imageFloat->width() == 0) ) {
        throw std::runtime_error("could not retrieve small source image for preview generation");
    }
    Size2D srcImgSize;
    if (e->image8->width() > 0)
        srcImgSize = e->image8->size();
    else if (e->image16->width() > 0)
        srcImgSize = e->image16->size();
    else
        srcImgSize = e->imageFloat->size();

    MRemappedImage *remapped = new MRemappedImage;
    SrcPanoImage srcPanoImg = pano.getSrcImage(imgNr);
    // adjust distortion parameters for small preview image
    srcPanoImg.resize(srcImgSize);

    FImage srcFlat;
    // use complete image, by supplying an empty mask image
    BImage srcMask;

    if (img.getVigCorrMode() & SrcPanoImage::VIGCORR_FLATFIELD) {
        ImageCache::EntryPtr e = ImageCache::getInstance().getSmallImage(img.getFlatfieldFilename().c_str());
        if (!e) {
            throw std::runtime_error("could not retrieve flatfield image for preview generation");
        }
        if (e->image8->width()) {
            srcFlat.resize(e->image8->size());
            copyImage(srcImageRange(*(e->image8),
                                    RGBToGrayAccessor<RGBValue<UInt8> >()),
                      destImage(srcFlat));
        } else if (e->image16->width()) {
            srcFlat.resize(e->image16->size());
            copyImage(srcImageRange(*(e->image16),
                                           RGBToGrayAccessor<RGBValue<vigra::UInt16> >()),
                             destImage(srcFlat));
        } else {
            srcFlat.resize(e->imageFloat->size());
            copyImage(srcImageRange(*(e->imageFloat),
                                    RGBToGrayAccessor<RGBValue<float> >()),
                      destImage(srcFlat));
        }
    }
    progress.pushTask(AppBase::ProgressTask("remapping", "", 0));

    // compute the bounding output rectangle here!
    vigra::Rect2D outROI = estimateOutputROI(pano, opts, imgNr);
    DEBUG_DEBUG("srcPanoImg size: " << srcPanoImg.getSize() << " pano roi:" << outROI);

    if (e->imageFloat->width()) {
        // remap image
        remapImage(*(e->imageFloat),
                   srcMask,
                   srcFlat,
                   srcPanoImg,
                   opts,
                   outROI,
                   *remapped,
                   progress);
    } else if (e->image16->width()) {
        // remap image
        remapImage(*(e->image16),
                   srcMask,
                   srcFlat,
                   srcPanoImg,
                   opts,
                   outROI,
                   *remapped,
                   progress);
    } else {
        remapImage(*(e->image8),
                     srcMask,
                     srcFlat,
                     srcPanoImg,
                     opts,
                     outROI,
                     *remapped,
                     progress);
    }

    progress.popTask();

    m_images[imgNr] = remapped;
    m_imagesParam[imgNr] = pano.getSrcImage(imgNr);
    m_panoOpts[imgNr] = opts;
    return remapped;
}