/// /// Perform the prob scan. /// /// \param scanner - the scanner to run the scan with /// \param cId - the id of this combination on the command line /// void GammaComboEngine::make1dProbScan(MethodProbScan *scanner, int cId) { // load start parameters ParameterCache *pCache = new ParameterCache(arg); loadStartParameters(scanner, pCache, cId); scanner->initScan(); scanStrategy1d(scanner, pCache); cout << "\nResults:" << endl; cout << "========\n" << endl; scanner->printLocalMinima(); scanner->calcCLintervals(); if (!arg->isAction("pluginbatch") && !arg->plotpluginonly) { if ( arg->plotpulls ) scanner->plotPulls(); if ( arg->parevol ) { ParameterEvolutionPlotter plotter(scanner); plotter.plotParEvolution(); } if ( isScanVarObservable(scanner->getCombiner(), arg->var[0]) ) { ParameterEvolutionPlotter plotter(scanner); plotter.plotObsScanCheck(); } if (!arg->isAction("plugin")) { scanner->saveScanner(m_fnamebuilder->getFileNameScanner(scanner)); pCache->cacheParameters(scanner,m_fnamebuilder->getFileNamePar(scanner)); } } }
/// /// Make an Asimov toy: set all observables set to truth values. /// The truth values are loaded from a parameter file. /// void GammaComboEngine::loadAsimovPoint(Combiner* c, int cId) { if ( arg->asimov[cId]==0 ) return; cout << "\nAsimov point configuration:\n" << endl; ParameterCache *pCache = new ParameterCache(arg); TString asimovfile; TString asimovfile2 = m_fnamebuilder->getFileNameAsimovPar(c); TString asimovfile3 = m_fnamebuilder->getFileNameStartPar(c); // this gets the start parameter file of the Asimov combiner asimovfile3.ReplaceAll(m_fnamebuilder->getAsimovCombinerNameAddition(arg->asimov[cId]),""); TString asimovfile4 = m_fnamebuilder->getFileNamePar(c); // this gets the result parameter file of the Asimov combiner asimovfile4.ReplaceAll(m_fnamebuilder->getAsimovCombinerNameAddition(arg->asimov[cId]),""); bool filefound = false; // try the file provided through --asimovfile if ( arg->asimovfile.size()>cId && ! arg->asimovfile[cId].EqualTo("default") ) { asimovfile = arg->loadParamsFile[cId]; filefound = FileExists(asimovfile); } // requested file not found, try default if ( ! filefound ) { asimovfile = asimovfile2; filefound = FileExists(asimovfile); } // requested file not found, try the start parameter file of the corresponding non-Asimov combiner if ( ! filefound ) { asimovfile = asimovfile3; filefound = FileExists(asimovfile); } // requested file not found, try the result parameter file of the corresponding non-Asimov combiner if ( ! filefound ) { asimovfile = asimovfile4; filefound = FileExists(asimovfile); } // if no parameter file exits, we use point from the ParameterAbs class if ( ! filefound ) { cout << " No Asimov point parameter file found. Using start values configured in ParameterAbs class." << endl; cout << " Point files are looked for in the following order:" << endl; cout << " 1. --asimovfile" << endl; cout << " 2. " << asimovfile2 << endl; cout << " 3. " << asimovfile3 << endl; cout << " 4. " << asimovfile4 << endl; } else { cout << " Loading Asimov points from file: " << asimovfile << endl; bool loaded = pCache->loadPoints(asimovfile); if ( !loaded ) { cout << " Error loading file. Exit." << endl; exit(1); } cout << " Setting point number: " << arg->asimov[cId] << endl; pCache->setPoint(c,arg->asimov[cId]-1); } setAsimovObservables(c); }
/// /// Make a 2D prob scan. /// - load start parameters /// - perform scan /// - save scanner and parameters /// /// \param scanner - the scanner /// \param cId - the id of this combination on the command line /// void GammaComboEngine::make2dProbScan(MethodProbScan *scanner, int cId) { // load start parameters ParameterCache *pCache = new ParameterCache(arg); loadStartParameters(scanner, pCache, cId); // scan scanner->initScan(); scanStrategy2d(scanner,pCache); cout << endl; scanner->printLocalMinima(); // save scanner->saveScanner(m_fnamebuilder->getFileNameScanner(scanner)); pCache->cacheParameters(scanner, m_fnamebuilder->getFileNamePar(scanner)); }
static Scalar density(const FluidState &fluidState, const ParameterCache ¶mCache, unsigned phaseIdx) { assert(0 <= phaseIdx && phaseIdx < numPhases); static_assert(std::is_same<Evaluation, Scalar>::value, "The SPE-5 fluid system is currently only implemented for the scalar case."); return fluidState.averageMolarMass(phaseIdx)/paramCache.molarVolume(phaseIdx); }
static Scalar update_(FluidState &fluidState, ParameterCache ¶mCache, Dune::FieldVector<Evaluation, numComponents> &x, Dune::FieldVector<Evaluation, numComponents> &b, int phaseIdx, const Dune::FieldVector<Evaluation, numComponents> &targetFug) { typedef MathToolbox<Evaluation> Toolbox; // store original composition and calculate relative error Dune::FieldVector<Evaluation, numComponents> origComp; Scalar relError = 0; Evaluation sumDelta = Toolbox::createConstant(0.0); Evaluation sumx = Toolbox::createConstant(0.0); for (int i = 0; i < numComponents; ++i) { origComp[i] = fluidState.moleFraction(phaseIdx, i); relError = std::max(relError, std::abs(Toolbox::value(x[i]))); sumx += Toolbox::abs(fluidState.moleFraction(phaseIdx, i)); sumDelta += Toolbox::abs(x[i]); } // chop update to at most 20% change in composition const Scalar maxDelta = 0.2; if (sumDelta > maxDelta) x /= (sumDelta/maxDelta); // change composition for (int i = 0; i < numComponents; ++i) { Evaluation newx = origComp[i] - x[i]; // only allow negative mole fractions if the target fugacity is negative if (targetFug[i] > 0) newx = Toolbox::max(0.0, newx); // only allow positive mole fractions if the target fugacity is positive else if (targetFug[i] < 0) newx = Toolbox::min(0.0, newx); // if the target fugacity is zero, the mole fraction must also be zero else newx = 0; fluidState.setMoleFraction(phaseIdx, i, newx); } paramCache.updateComposition(fluidState, phaseIdx); return relError; }
static void solveIdealMix_(FluidState &fluidState, ParameterCache ¶mCache, int phaseIdx, const ComponentVector &fugacities) { for (int i = 0; i < numComponents; ++ i) { const Evaluation& phi = FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, i); const Evaluation& gamma = phi * fluidState.pressure(phaseIdx); Valgrind::CheckDefined(phi); Valgrind::CheckDefined(gamma); Valgrind::CheckDefined(fugacities[i]); fluidState.setFugacityCoefficient(phaseIdx, i, phi); fluidState.setMoleFraction(phaseIdx, i, fugacities[i]/gamma); }; paramCache.updatePhase(fluidState, phaseIdx); const Evaluation& rho = FluidSystem::density(fluidState, paramCache, phaseIdx); fluidState.setDensity(phaseIdx, rho); return; }
static void solve(FluidState &fluidState, ParameterCache ¶mCache, int phasePresence, const MMPCAuxConstraint<Evaluation> *auxConstraints, unsigned numAuxConstraints, bool setViscosity, bool setInternalEnergy) { typedef MathToolbox<typename FluidState::Scalar> FsToolbox; static_assert(std::is_same<typename FluidState::Scalar, Evaluation>::value, "The scalar type of the fluid state must be 'Evaluation'"); #ifndef NDEBUG // currently this solver can only handle fluid systems which // assume ideal mixtures of all fluids. TODO: relax this // (requires solving a non-linear system of equations, i.e. using // newton method.) for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { assert(FluidSystem::isIdealMixture(phaseIdx)); } #endif // compute all fugacity coefficients for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { paramCache.updatePhase(fluidState, phaseIdx); // since we assume ideal mixtures, the fugacity // coefficients of the components cannot depend on // composition, i.e. the parameters in the cache are valid for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { Evaluation fugCoeff = FsToolbox::template toLhs<Evaluation>( FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, compIdx)); fluidState.setFugacityCoefficient(phaseIdx, compIdx, fugCoeff); } } // create the linear system of equations which defines the // mole fractions static const int numEq = numComponents*numPhases; Dune::FieldMatrix<Evaluation, numEq, numEq> M(Toolbox::createConstant(0.0)); Dune::FieldVector<Evaluation, numEq> x(Toolbox::createConstant(0.0)); Dune::FieldVector<Evaluation, numEq> b(Toolbox::createConstant(0.0)); // assemble the equations expressing the fact that the // fugacities of each component are equal in all phases for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { const Evaluation& entryCol1 = fluidState.fugacityCoefficient(/*phaseIdx=*/0, compIdx) *fluidState.pressure(/*phaseIdx=*/0); unsigned col1Idx = compIdx; for (unsigned phaseIdx = 1; phaseIdx < numPhases; ++phaseIdx) { unsigned rowIdx = (phaseIdx - 1)*numComponents + compIdx; unsigned col2Idx = phaseIdx*numComponents + compIdx; const Evaluation& entryCol2 = fluidState.fugacityCoefficient(phaseIdx, compIdx) *fluidState.pressure(phaseIdx); M[rowIdx][col1Idx] = entryCol1; M[rowIdx][col2Idx] = -entryCol2; } } // assemble the equations expressing the assumption that the // sum of all mole fractions in each phase must be 1 for the // phases present. unsigned presentPhases = 0; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (!(phasePresence & (1 << phaseIdx))) continue; unsigned rowIdx = numComponents*(numPhases - 1) + presentPhases; presentPhases += 1; b[rowIdx] = Toolbox::createConstant(1.0); for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { unsigned colIdx = phaseIdx*numComponents + compIdx; M[rowIdx][colIdx] = Toolbox::createConstant(1.0); } } assert(presentPhases + numAuxConstraints == numComponents); // incorperate the auxiliary equations, i.e., the explicitly given mole fractions for (unsigned auxEqIdx = 0; auxEqIdx < numAuxConstraints; ++auxEqIdx) { unsigned rowIdx = numComponents*(numPhases - 1) + presentPhases + auxEqIdx; b[rowIdx] = auxConstraints[auxEqIdx].value(); unsigned colIdx = auxConstraints[auxEqIdx].phaseIdx()*numComponents + auxConstraints[auxEqIdx].compIdx(); M[rowIdx][colIdx] = 1.0; } // solve for all mole fractions try { Dune::FMatrixPrecision<Scalar>::set_singular_limit(1e-50); M.solve(x, b); } catch (const Dune::FMatrixError &e) { OPM_THROW(NumericalProblem, "Numerical problem in MiscibleMultiPhaseComposition::solve(): " << e.what() << "; M="<<M); } catch (...) { throw; } // set all mole fractions and the additional quantities in // the fluid state for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { for (unsigned compIdx = 0; compIdx < numComponents; ++compIdx) { unsigned rowIdx = phaseIdx*numComponents + compIdx; fluidState.setMoleFraction(phaseIdx, compIdx, x[rowIdx]); } paramCache.updateComposition(fluidState, phaseIdx); const Evaluation& rho = FluidSystem::density(fluidState, paramCache, phaseIdx); fluidState.setDensity(phaseIdx, rho); if (setViscosity) { const Evaluation& mu = FluidSystem::viscosity(fluidState, paramCache, phaseIdx); fluidState.setViscosity(phaseIdx, mu); } if (setInternalEnergy) { const Evaluation& h = FluidSystem::enthalpy(fluidState, paramCache, phaseIdx); fluidState.setEnthalpy(phaseIdx, h); } } }
void checkFluidSystem() { std::cout << "Testing fluid system '" << Dune::className<FluidSystem>() << "'\n"; // make sure the fluid system provides the number of phases and // the number of components enum { numPhases = FluidSystem::numPhases }; enum { numComponents = FluidSystem::numComponents }; typedef HairSplittingFluidState<RhsEval, FluidSystem> FluidState; FluidState fs; fs.allowTemperature(true); fs.allowPressure(true); fs.allowComposition(true); fs.restrictToPhase(-1); // initialize memory the fluid state fs.base().setTemperature(273.15 + 20.0); for (int phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { fs.base().setPressure(phaseIdx, 1e5); fs.base().setSaturation(phaseIdx, 1.0/numPhases); for (int compIdx = 0; compIdx < numComponents; ++ compIdx) { fs.base().setMoleFraction(phaseIdx, compIdx, 1.0/numComponents); } } static_assert(std::is_same<typename FluidSystem::Scalar, Scalar>::value, "The type used for floating point used by the fluid system must be the same" " as the one passed to the checkFluidSystem() function"); // check whether the parameter cache adheres to the API typedef typename FluidSystem::template ParameterCache<LhsEval> ParameterCache; ParameterCache paramCache; try { paramCache.updateAll(fs); } catch (...) {}; try { paramCache.updateAll(fs, /*except=*/ParameterCache::None); } catch (...) {}; try { paramCache.updateAll(fs, /*except=*/ParameterCache::Temperature | ParameterCache::Pressure | ParameterCache::Composition); } catch (...) {}; try { paramCache.updateAllPressures(fs); } catch (...) {}; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { fs.restrictToPhase(static_cast<int>(phaseIdx)); try { paramCache.updatePhase(fs, phaseIdx); } catch (...) {}; try { paramCache.updatePhase(fs, phaseIdx, /*except=*/ParameterCache::None); } catch (...) {}; try { paramCache.updatePhase(fs, phaseIdx, /*except=*/ParameterCache::Temperature | ParameterCache::Pressure | ParameterCache::Composition); } catch (...) {}; try { paramCache.updateTemperature(fs, phaseIdx); } catch (...) {}; try { paramCache.updatePressure(fs, phaseIdx); } catch (...) {}; try { paramCache.updateComposition(fs, phaseIdx); } catch (...) {}; try { paramCache.updateSingleMoleFraction(fs, phaseIdx, /*compIdx=*/0); } catch (...) {}; } // some value to make sure the return values of the fluid system // are convertible to scalars LhsEval val = 0.0; Scalar scalarVal = 0.0; scalarVal = 2*scalarVal; // get rid of GCC warning (only occurs with paranoid warning flags) val = 2*val; // get rid of GCC warning (only occurs with paranoid warning flags) // actually check the fluid system API try { FluidSystem::init(); } catch (...) {}; for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { fs.restrictToPhase(static_cast<int>(phaseIdx)); fs.allowPressure(FluidSystem::isCompressible(phaseIdx)); fs.allowComposition(true); fs.allowDensity(false); try { auto tmpVal OPM_UNUSED = FluidSystem::density(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template density<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template density<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; fs.allowPressure(true); fs.allowDensity(true); try { auto tmpVal OPM_UNUSED = FluidSystem::viscosity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { auto tmpVal OPM_UNUSED = FluidSystem::enthalpy(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { auto tmpVal OPM_UNUSED = FluidSystem::heatCapacity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { auto tmpVal OPM_UNUSED= FluidSystem::thermalConductivity(fs, paramCache, phaseIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template viscosity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { val = FluidSystem::template enthalpy<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { val = FluidSystem::template heatCapacity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { val = FluidSystem::template thermalConductivity<FluidState, LhsEval>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template viscosity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template enthalpy<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template heatCapacity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; try { scalarVal = FluidSystem::template thermalConductivity<FluidState, Scalar>(fs, paramCache, phaseIdx); } catch (...) {}; for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) { fs.allowComposition(!FluidSystem::isIdealMixture(phaseIdx)); try { auto tmpVal OPM_UNUSED = FluidSystem::fugacityCoefficient(fs, paramCache, phaseIdx, compIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template fugacityCoefficient<FluidState, LhsEval>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; try { scalarVal = FluidSystem::template fugacityCoefficient<FluidState, Scalar>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; fs.allowComposition(true); try { auto tmpVal OPM_UNUSED = FluidSystem::diffusionCoefficient(fs, paramCache, phaseIdx, compIdx); static_assert(std::is_same<decltype(tmpVal), RhsEval>::value, "The default return value must be the scalar used by the fluid state!"); } catch (...) {}; try { val = FluidSystem::template diffusionCoefficient<FluidState, LhsEval>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; try { scalarVal = FluidSystem::template fugacityCoefficient<FluidState, Scalar>(fs, paramCache, phaseIdx, compIdx); } catch (...) {}; } } // test for phaseName(), isLiquid() and isIdealGas() for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) { std::string name OPM_UNUSED = FluidSystem::phaseName(phaseIdx); bool bVal = FluidSystem::isLiquid(phaseIdx); bVal = FluidSystem::isIdealGas(phaseIdx); bVal = !bVal; // get rid of GCC warning (only occurs with paranoid warning flags) } // test for molarMass() and componentName() for (unsigned compIdx = 0; compIdx < numComponents; ++ compIdx) { val = FluidSystem::molarMass(compIdx); std::string name = FluidSystem::componentName(compIdx); } std::cout << "----------------------------------\n"; }
static void solve(FluidState &fluidState, ParameterCache ¶mCache, int refPhaseIdx, bool setViscosity, bool setEnthalpy) { typedef MathToolbox<typename FluidState::Scalar> FsToolbox; // compute the density and enthalpy of the // reference phase paramCache.updatePhase(fluidState, refPhaseIdx); fluidState.setDensity(refPhaseIdx, FluidSystem::density(fluidState, paramCache, refPhaseIdx)); if (setEnthalpy) fluidState.setEnthalpy(refPhaseIdx, FluidSystem::enthalpy(fluidState, paramCache, refPhaseIdx)); if (setViscosity) fluidState.setViscosity(refPhaseIdx, FluidSystem::viscosity(fluidState, paramCache, refPhaseIdx)); // compute the fugacities of all components in the reference phase for (int compIdx = 0; compIdx < numComponents; ++compIdx) { fluidState.setFugacityCoefficient(refPhaseIdx, compIdx, FluidSystem::fugacityCoefficient(fluidState, paramCache, refPhaseIdx, compIdx)); } // compute all quantities for the non-reference phases for (int phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) { if (phaseIdx == refPhaseIdx) continue; // reference phase is already calculated ComponentVector fugVec; for (int compIdx = 0; compIdx < numComponents; ++compIdx) { const auto& fug = fluidState.fugacity(refPhaseIdx, compIdx); fugVec[compIdx] = FsToolbox::template toLhs<Evaluation>(fug); } CompositionFromFugacities::solve(fluidState, paramCache, phaseIdx, fugVec); if (setViscosity) fluidState.setViscosity(phaseIdx, FluidSystem::viscosity(fluidState, paramCache, phaseIdx)); if (setEnthalpy) fluidState.setEnthalpy(phaseIdx, FluidSystem::enthalpy(fluidState, paramCache, phaseIdx)); } }
static void solve(FluidState &fluidState, ParameterCache ¶mCache, int phaseIdx, const ComponentVector &targetFug) { typedef MathToolbox<Evaluation> Toolbox; // use a much more efficient method in case the phase is an // ideal mixture if (FluidSystem::isIdealMixture(phaseIdx)) { solveIdealMix_(fluidState, paramCache, phaseIdx, targetFug); return; } //Dune::FMatrixPrecision<Scalar>::set_singular_limit(1e-25); // save initial composition in case something goes wrong Dune::FieldVector<Evaluation, numComponents> xInit; for (int i = 0; i < numComponents; ++i) { xInit[i] = fluidState.moleFraction(phaseIdx, i); } ///////////////////////// // Newton method ///////////////////////// // Jacobian matrix Dune::FieldMatrix<Evaluation, numComponents, numComponents> J; // solution, i.e. phase composition Dune::FieldVector<Evaluation, numComponents> x; // right hand side Dune::FieldVector<Evaluation, numComponents> b; paramCache.updatePhase(fluidState, phaseIdx); // maximum number of iterations const int nMax = 25; for (int nIdx = 0; nIdx < nMax; ++nIdx) { // calculate Jacobian matrix and right hand side linearize_(J, b, fluidState, paramCache, phaseIdx, targetFug); Valgrind::CheckDefined(J); Valgrind::CheckDefined(b); /* std::cout << FluidSystem::phaseName(phaseIdx) << "Phase composition: "; for (int i = 0; i < FluidSystem::numComponents; ++i) std::cout << fluidState.moleFraction(phaseIdx, i) << " "; std::cout << "\n"; std::cout << FluidSystem::phaseName(phaseIdx) << "Phase phi: "; for (int i = 0; i < FluidSystem::numComponents; ++i) std::cout << fluidState.fugacityCoefficient(phaseIdx, i) << " "; std::cout << "\n"; */ // Solve J*x = b x = Toolbox::createConstant(0.0); try { J.solve(x, b); } catch (Dune::FMatrixError e) { throw Opm::NumericalIssue(e.what()); } //std::cout << "original delta: " << x << "\n"; Valgrind::CheckDefined(x); /* std::cout << FluidSystem::phaseName(phaseIdx) << "Phase composition: "; for (int i = 0; i < FluidSystem::numComponents; ++i) std::cout << fluidState.moleFraction(phaseIdx, i) << " "; std::cout << "\n"; std::cout << "J: " << J << "\n"; std::cout << "rho: " << fluidState.density(phaseIdx) << "\n"; std::cout << "delta: " << x << "\n"; std::cout << "defect: " << b << "\n"; std::cout << "J: " << J << "\n"; std::cout << "---------------------------\n"; */ // update the fluid composition. b is also used to store // the defect for the next iteration. Scalar relError = update_(fluidState, paramCache, x, b, phaseIdx, targetFug); if (relError < 1e-9) { const Evaluation& rho = FluidSystem::density(fluidState, paramCache, phaseIdx); fluidState.setDensity(phaseIdx, rho); //std::cout << "num iterations: " << nIdx << "\n"; return; } } OPM_THROW(Opm::NumericalIssue, "Calculating the " << FluidSystem::phaseName(phaseIdx) << "Phase composition failed. Initial {x} = {" << xInit << "}, {fug_t} = {" << targetFug << "}, p = " << fluidState.pressure(phaseIdx) << ", T = " << fluidState.temperature(phaseIdx)); }
static Scalar linearize_(Dune::FieldMatrix<Evaluation, numComponents, numComponents> &J, Dune::FieldVector<Evaluation, numComponents> &defect, FluidState &fluidState, ParameterCache ¶mCache, int phaseIdx, const ComponentVector &targetFug) { typedef MathToolbox<Evaluation> Toolbox; // reset jacobian J = 0; Scalar absError = 0; // calculate the defect (deviation of the current fugacities // from the target fugacities) for (int i = 0; i < numComponents; ++ i) { const Evaluation& phi = FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, i); const Evaluation& f = phi*fluidState.pressure(phaseIdx)*fluidState.moleFraction(phaseIdx, i); fluidState.setFugacityCoefficient(phaseIdx, i, phi); defect[i] = targetFug[i] - f; absError = std::max(absError, std::abs(Toolbox::value(defect[i]))); } // assemble jacobian matrix of the constraints for the composition static const Scalar eps = std::numeric_limits<Scalar>::epsilon()*1e6; for (int i = 0; i < numComponents; ++ i) { //////// // approximately calculate partial derivatives of the // fugacity defect of all components in regard to the mole // fraction of the i-th component. This is done via // forward differences // deviate the mole fraction of the i-th component Evaluation xI = fluidState.moleFraction(phaseIdx, i); fluidState.setMoleFraction(phaseIdx, i, xI + eps); paramCache.updateSingleMoleFraction(fluidState, phaseIdx, i); // compute new defect and derivative for all component // fugacities for (int j = 0; j < numComponents; ++j) { // compute the j-th component's fugacity coefficient ... const Evaluation& phi = FluidSystem::fugacityCoefficient(fluidState, paramCache, phaseIdx, j); // ... and its fugacity ... const Evaluation& f = phi * fluidState.pressure(phaseIdx) * fluidState.moleFraction(phaseIdx, j); // as well as the defect for this fugacity const Evaluation& defJPlusEps = targetFug[j] - f; // use forward differences to calculate the defect's // derivative J[j][i] = (defJPlusEps - defect[j])/eps; } // reset composition to original value fluidState.setMoleFraction(phaseIdx, i, xI); paramCache.updateSingleMoleFraction(fluidState, phaseIdx, i); // end forward differences //////// } return absError; }