/// Emit code to release/destroy temporaries. void PartialApplyCombiner::releaseTemporaries() { // Insert releases and destroy_addrs as early as possible, // because we don't want to keep objects alive longer than // its really needed. for (auto Op : Tmps) { auto TmpType = Op->getType().getObjectType(); if (TmpType.isTrivial(PAI->getModule())) continue; for (auto *EndPoint : PAFrontier) { Builder.setInsertionPoint(EndPoint); if (!TmpType.isAddressOnly(PAI->getModule())) { auto *Load = Builder.createLoad(PAI->getLoc(), Op); Builder.createReleaseValue(PAI->getLoc(), Load, Atomicity::Atomic); } else { Builder.createDestroyAddr(PAI->getLoc(), Op); } } } }
/// Process an apply instruction which uses a partial_apply /// as its callee. /// Returns true on success. bool PartialApplyCombiner::processSingleApply(FullApplySite AI) { Builder.setInsertionPoint(AI.getInstruction()); Builder.setCurrentDebugScope(AI.getDebugScope()); // Prepare the args. SmallVector<SILValue, 8> Args; // First the ApplyInst args. for (auto Op : AI.getArguments()) Args.push_back(Op); SILInstruction *InsertionPoint = &*Builder.getInsertionPoint(); // Next, the partial apply args. // Pre-process partial_apply arguments only once, lazily. if (isFirstTime) { isFirstTime = false; if (!allocateTemporaries()) return false; } // Now, copy over the partial apply args. for (auto Op : PAI->getArguments()) { auto Arg = Op; // If there is new temporary for this argument, use it instead. if (isa<AllocStackInst>(Arg)) { if (ArgToTmp.count(Arg)) { Op = ArgToTmp.lookup(Arg); } } Args.push_back(Op); } Builder.setInsertionPoint(InsertionPoint); Builder.setCurrentDebugScope(AI.getDebugScope()); // The thunk that implements the partial apply calls the closure function // that expects all arguments to be consumed by the function. However, the // captured arguments are not arguments of *this* apply, so they are not // pre-incremented. When we combine the partial_apply and this apply into // a new apply we need to retain all of the closure non-address type // arguments. auto ParamInfo = PAI->getSubstCalleeType()->getParameters(); auto PartialApplyArgs = PAI->getArguments(); // Set of arguments that need to be released after each invocation. SmallVector<SILValue, 8> ToBeReleasedArgs; for (unsigned i = 0, e = PartialApplyArgs.size(); i < e; ++i) { SILValue Arg = PartialApplyArgs[i]; if (!Arg->getType().isAddress()) { // Retain the argument as the callee may consume it. Builder.emitRetainValueOperation(PAI->getLoc(), Arg); // For non consumed parameters (e.g. guaranteed), we also need to // insert releases after each apply instruction that we create. if (!ParamInfo[ParamInfo.size() - PartialApplyArgs.size() + i]. isConsumed()) ToBeReleasedArgs.push_back(Arg); } } auto *F = FRI->getReferencedFunction(); SILType FnType = F->getLoweredType(); SILType ResultTy = F->getLoweredFunctionType()->getSILResult(); ArrayRef<Substitution> Subs = PAI->getSubstitutions(); if (!Subs.empty()) { FnType = FnType.substGenericArgs(PAI->getModule(), Subs); ResultTy = FnType.getAs<SILFunctionType>()->getSILResult(); } FullApplySite NAI; if (auto *TAI = dyn_cast<TryApplyInst>(AI)) NAI = Builder.createTryApply(AI.getLoc(), FRI, FnType, Subs, Args, TAI->getNormalBB(), TAI->getErrorBB()); else NAI = Builder.createApply(AI.getLoc(), FRI, FnType, ResultTy, Subs, Args, cast<ApplyInst>(AI)->isNonThrowing()); // We also need to release the partial_apply instruction itself because it // is consumed by the apply_instruction. if (auto *TAI = dyn_cast<TryApplyInst>(AI)) { Builder.setInsertionPoint(TAI->getNormalBB()->begin()); for (auto Arg : ToBeReleasedArgs) { Builder.emitReleaseValueOperation(PAI->getLoc(), Arg); } Builder.createStrongRelease(AI.getLoc(), PAI, Atomicity::Atomic); Builder.setInsertionPoint(TAI->getErrorBB()->begin()); // Release the non-consumed parameters. for (auto Arg : ToBeReleasedArgs) { Builder.emitReleaseValueOperation(PAI->getLoc(), Arg); } Builder.createStrongRelease(AI.getLoc(), PAI, Atomicity::Atomic); Builder.setInsertionPoint(AI.getInstruction()); } else { // Release the non-consumed parameters. for (auto Arg : ToBeReleasedArgs) { Builder.emitReleaseValueOperation(PAI->getLoc(), Arg); } Builder.createStrongRelease(AI.getLoc(), PAI, Atomicity::Atomic); } SilCombiner->replaceInstUsesWith(*AI.getInstruction(), NAI.getInstruction()); SilCombiner->eraseInstFromFunction(*AI.getInstruction()); return true; }
/// Returns true on success. bool PartialApplyCombiner::allocateTemporaries() { // Copy the original arguments of the partial_apply into // newly created temporaries and use these temporaries instead of // the original arguments afterwards. // This is done to "extend" the life-time of original partial_apply // arguments, as they may be destroyed/deallocated before the last // use by one of the apply instructions. // TODO: // Copy arguments of the partial_apply into new temporaries // only if the lifetime of arguments ends before their uses // by apply instructions. bool needsReleases = false; CanSILFunctionType PAITy = dyn_cast<SILFunctionType>(PAI->getCallee()->getType().getSwiftType()); // Emit a destroy value for each captured closure argument. ArrayRef<SILParameterInfo> Params = PAITy->getParameters(); auto Args = PAI->getArguments(); unsigned Delta = Params.size() - Args.size(); llvm::SmallVector<std::pair<SILValue, unsigned>, 8> ArgsToHandle; for (unsigned AI = 0, AE = Args.size(); AI != AE; ++AI) { SILValue Arg = Args[AI]; SILParameterInfo Param = Params[AI + Delta]; if (Param.isIndirectMutating()) continue; // Create a temporary and copy the argument into it, if: // - the argument stems from an alloc_stack // - the argument is consumed by the callee and is indirect // (e.g. it is an @in argument) if (isa<AllocStackInst>(Arg) || (Param.isConsumed() && Param.isIndirect())) { // If the temporary is non-trivial, we need to release it later. if (!Arg->getType().isTrivial(PAI->getModule())) needsReleases = true; ArgsToHandle.push_back(std::make_pair(Arg, AI)); } } if (needsReleases) { // Compute the set of endpoints, which will be used to insert releases of // temporaries. This may fail if the frontier is located on a critical edge // which we may not split (no CFG changes in SILCombine). ValueLifetimeAnalysis VLA(PAI); if (!VLA.computeFrontier(PAFrontier, ValueLifetimeAnalysis::DontModifyCFG)) return false; } for (auto ArgWithIdx : ArgsToHandle) { SILValue Arg = ArgWithIdx.first; Builder.setInsertionPoint(PAI->getFunction()->begin()->begin()); // Create a new temporary at the beginning of a function. auto *Tmp = Builder.createAllocStack(PAI->getLoc(), Arg->getType(), {/*Constant*/ true, ArgWithIdx.second}); Builder.setInsertionPoint(PAI); // Copy argument into this temporary. Builder.createCopyAddr(PAI->getLoc(), Arg, Tmp, IsTake_t::IsNotTake, IsInitialization_t::IsInitialization); Tmps.push_back(Tmp); ArgToTmp.insert(std::make_pair(Arg, Tmp)); } return true; }