/**
 * Calculate the wrapping of one path segment over one wrap object.
 *
 * @param aPoint1 The first patth point
 * @param aPoint2 The second path point
 * @param aPathWrap An object holding the parameters for this path/wrap-object pairing
 * @param aWrapResult The result of the wrapping (tangent points, etc.)
 * @return The status, as a WrapAction enum
 */
int WrapObject::wrapPathSegment(const SimTK::State& s, PathPoint& aPoint1, PathPoint& aPoint2,
										  const PathWrap& aPathWrap, WrapResult& aWrapResult) const
{
   int return_code = noWrap;
	bool p_flag;
	Vec3 pt1(0.0);
	Vec3 pt2(0.0);

	// Convert the path points from the frames of the bodies they are attached
	// to to the frame of the wrap object's body
	_model->getSimbodyEngine().transformPosition(s, aPoint1.getBody(), aPoint1.getLocation(), getBody(), pt1);

	_model->getSimbodyEngine().transformPosition(s, aPoint2.getBody(), aPoint2.getLocation(), getBody(), pt2);

	// Convert the path points from the frame of the wrap object's body
	// into the frame of the wrap object
	pt1 = _pose.shiftBaseStationToFrame(pt1);
	pt2 = _pose.shiftBaseStationToFrame(pt2);

	return_code = wrapLine(s, pt1, pt2, aPathWrap, aWrapResult, p_flag);

   if (p_flag == true && return_code > 0) {
		// Convert the tangent points from the frame of the wrap object to the
		// frame of the wrap object's body
		aWrapResult.r1 = _pose.shiftFrameStationToBase(aWrapResult.r1);
		aWrapResult.r2 = _pose.shiftFrameStationToBase(aWrapResult.r2);

		// Convert the surface points (between the tangent points) from the frame of
		// the wrap object to the frame of the wrap object's body
		for (int i = 0; i < aWrapResult.wrap_pts.getSize(); i++)
			aWrapResult.wrap_pts.get(i) = _pose.shiftFrameStationToBase(aWrapResult.wrap_pts.get(i));
   }

   return return_code;
}
Exemple #2
0
// get the path as PointForceDirections directions 
// CAUTION: the return points are heap allocated; you must delete them yourself! 
// (TODO: that is really lame)
void GeometryPath::
getPointForceDirections(const SimTK::State& s, 
                        OpenSim::Array<PointForceDirection*> *rPFDs) const
{
    int i;
    PathPoint* start;
    PathPoint* end;
    const OpenSim::PhysicalFrame* startBody;
    const OpenSim::PhysicalFrame* endBody;
    const Array<PathPoint*>& currentPath = getCurrentPath(s);

    int np = currentPath.getSize();
    rPFDs->ensureCapacity(np);
    
    for (i = 0; i < np; i++) {
        PointForceDirection *pfd = 
            new PointForceDirection(currentPath[i]->getLocation(), 
                                    currentPath[i]->getBody(), Vec3(0));
        rPFDs->append(pfd);
    }

    for (i = 0; i < np-1; i++) {
        start = currentPath[i];
        end = currentPath[i+1];
        startBody = &start->getBody();
        endBody = &end->getBody();

        if (startBody != endBody)
        {
            Vec3 posStart, posEnd;
            Vec3 direction(0);

            // Find the positions of start and end in the inertial frame.
            //engine.getPosition(s, start->getBody(), start->getLocation(), posStart);
            posStart = start->getLocationInGround(s);
            
            //engine.getPosition(s, end->getBody(), end->getLocation(), posEnd);
            posEnd = end->getLocationInGround(s);

            // Form a vector from start to end, in the inertial frame.
            direction = (posEnd - posStart);

            // Check that the two points are not coincident.
            // This can happen due to infeasible wrapping of the path,
            // when the origin or insertion enters the wrapping surface.
            // This is a temporary fix, since the wrap algorithm should
            // return NaN for the points and/or throw an Exception- aseth
            if (direction.norm() < SimTK::SignificantReal){
                direction = direction*SimTK::NaN;
            }
            else{
                direction = direction.normalize();
            }

            // Get resultant direction at each point 
            rPFDs->get(i)->addToDirection(direction);
            rPFDs->get(i+1)->addToDirection(-direction);
        }
    }
}
Exemple #3
0
/* add in the equivalent spatial forces on bodies for an applied tension 
    along the GeometryPath to a set of bodyForces */
void GeometryPath::addInEquivalentForces(const SimTK::State& s,
    const double& tension, 
    SimTK::Vector_<SimTK::SpatialVec>& bodyForces,
    SimTK::Vector& mobilityForces) const
{
    PathPoint* start = NULL;
    PathPoint* end = NULL;
    const SimTK::MobilizedBody* bo = NULL;
    const SimTK::MobilizedBody* bf = NULL;
    const Array<PathPoint*>& currentPath = getCurrentPath(s);
    int np = currentPath.getSize();

    const SimTK::SimbodyMatterSubsystem& matter = 
                                        getModel().getMatterSubsystem();

    // start point, end point,  direction, and force vectors in ground
    Vec3 po(0), pf(0), dir(0), force(0);
    // partial velocity of point in body expressed in ground 
    Vec3 dPodq_G(0), dPfdq_G(0);

    // gen force (torque) due to moving point under tension
    double fo, ff;

    for (int i = 0; i < np-1; ++i) {
        start = currentPath[i];
        end = currentPath[i+1];

        bo = &start->getBody().getMobilizedBody();
        bf = &end->getBody().getMobilizedBody();

        if (bo != bf) {
            // Find the positions of start and end in the inertial frame.
            po = start->getLocationInGround(s);
            pf = end->getLocationInGround(s);

            // Form a vector from start to end, in the inertial frame.
            dir = (pf - po);

            // Check that the two points are not coincident.
            // This can happen due to infeasible wrapping of the path,
            // when the origin or insertion enters the wrapping surface.
            // This is a temporary fix, since the wrap algorithm should
            // return NaN for the points and/or throw an Exception- aseth
            if (dir.norm() < SimTK::SignificantReal){
                dir = dir*SimTK::NaN;
            }
            else{
                dir = dir.normalize();
            }

            force = tension*dir;

            const MovingPathPoint* mppo =
                dynamic_cast<MovingPathPoint *>(start);

            // do the same for the end point of this segment of the path
            const MovingPathPoint* mppf =
                dynamic_cast<MovingPathPoint *>(end);

            // add in the tension point forces to body forces
            if (mppo) {// moving path point location is a function of the state
                // transform of the frame of the point to the base mobilized body
                auto X_BF = mppo->getParentFrame().findTransformInBaseFrame();
                bo->applyForceToBodyPoint(s, X_BF*mppo->getLocation(s), force,
                    bodyForces);
            }
            else {
                // transform of the frame of the point to the base mobilized body
                auto X_BF = start->getParentFrame().findTransformInBaseFrame();
                bo->applyForceToBodyPoint(s, X_BF*start->getLocation(), force,
                    bodyForces);
            }

            if (mppf) {// moving path point location is a function of the state
                // transform of the frame of the point to the base mobilized body
                auto X_BF = mppf->getParentFrame().findTransformInBaseFrame();
                bf->applyForceToBodyPoint(s, X_BF*mppf->getLocation(s), -force,
                    bodyForces);
            }
            else {
                // transform of the frame of the point to the base mobilized body
                auto X_BF = end->getParentFrame().findTransformInBaseFrame();
                bf->applyForceToBodyPoint(s, X_BF*end->getLocation(), -force,
                    bodyForces);
            }

            // Now account for the work being done by virtue of the moving
            // path point motion relative to the body it is on
            if(mppo){
                // torque (genforce) contribution due to relative movement 
                // of a via point w.r.t. the body it is connected to.
                dPodq_G = bo->expressVectorInGroundFrame(s, start->getdPointdQ(s));
                fo = ~dPodq_G*force;            

                // get the mobilized body the coordinate is couple to.
                const SimTK::MobilizedBody& mpbod =
                    matter.getMobilizedBody(mppo->getXCoordinate().getBodyIndex());

                // apply the generalized (mobility) force to the coordinate's body
                mpbod.applyOneMobilityForce(s, 
                    mppo->getXCoordinate().getMobilizerQIndex(), 
                    fo, mobilityForces);
            }

            if(mppf){
                dPfdq_G = bf->expressVectorInGroundFrame(s, end->getdPointdQ(s));
                ff = ~dPfdq_G*(-force);

                // get the mobilized body the coordinate is couple to.
                const SimTK::MobilizedBody& mpbod =
                    matter.getMobilizedBody(mppf->getXCoordinate().getBodyIndex());

                mpbod.applyOneMobilityForce(s, 
                    mppf->getXCoordinate().getMobilizerQIndex(), 
                    ff, mobilityForces);
            }
        }       
    }
}