void loadtemplate(std::string name) { object = imread( name, CV_LOAD_IMAGE_GRAYSCALE ); if(object.empty()) { loglne("Can not load template image, exit!"); exit(-1); } buildPyramid(object, objpyr, ldetector.nOctaves-1); string model_filename = name + "_model.xml.gz"; loglni("[loadtemplate] try to load "<<model_filename<<"..."); FileStorage fs(model_filename, FileStorage::READ); if( fs.isOpened() ) { detector.read(fs.getFirstTopLevelNode()); loglni("[loadtemplate] successfully loaded "<<model_filename.c_str()); } else { loglni("[loadtemplate] try to train the model..."); ldetector.setVerbose(true); ldetector.getMostStable2D(object, objKeypoints, 100, gen); detector.setVerbose(true); detector.train(objpyr, objKeypoints, patchSize.width, 100, 11, 10000, ldetector, gen); loglni("[loadtemplate] training DONE! saving..."); if( fs.open(model_filename, FileStorage::WRITE) ) detector.write(fs, "ferns_model"); } fs.release(); cpts.push_back(Point2f(0,0)); cpts.push_back(Point2f(object.cols,0)); cpts.push_back(Point2f(object.cols,object.rows)); cpts.push_back(Point2f(0,object.rows)); }
//Override inline void operator()(cv::Mat& frame) { if(frame.empty()) return; static helper::PerformanceMeasurer PM(1000); PM.tic(); Mat gray; cvtColor(frame, gray, CV_RGB2GRAY); buildPyramid(gray, imgpyr, ldetector.nOctaves-1); double rms=-1, zncc=-1; double camR[3][3]={{1,0,0},{0,1,0},{0,0,1}},camT[3]={0}; vector<int> pairs; vector<Point2f> dst_corners; objKeypoints = detector.getModelPoints(); ldetector(imgpyr, imgKeypoints, 300); bool found = detector(imgpyr, imgKeypoints, H, dst_corners, &pairs); if(found && validateH(dst_corners) ) { evaluateH(gray, object, rms, zncc); static double crns[4][2] = { {0,object.rows}, {object.cols,object.rows}, {object.cols,0}, {0,0} }; helper::drawHomography(frame, H, crns); draw3D(frame); GetCameraPose(camR,camT); } else { for(int i=0; i<3; ++i) { camT[i]=numeric_limits<double>::quiet_NaN(); for(int j=0; j<3; ++j) camR[i][j]=numeric_limits<double>::quiet_NaN(); } rms = zncc = numeric_limits<double>::quiet_NaN(); } double dur = PM.toc(); cout<<"[evaluateH] RMS="<<rms<<"|ZNCC="<<zncc<<endl; cout<<"process duration="<<dur<<endl; if(savekeys) { CapKeyFrame(framecnt++, frame, camR, camT, rms, zncc, dur); } }
int main(int argc, char** argv) { int i; const char* object_filename = argc > 1 ? argv[1] : "box.png"; const char* scene_filename = argc > 2 ? argv[2] : "box_in_scene.png"; help(); Mat object = imread( object_filename, CV_LOAD_IMAGE_GRAYSCALE ); Mat scene = imread( scene_filename, CV_LOAD_IMAGE_GRAYSCALE ); if( !object.data || !scene.data ) { fprintf( stderr, "Can not load %s and/or %s\n", object_filename, scene_filename ); exit(-1); } double imgscale = 1; Mat image; resize(scene, image, Size(), 1./imgscale, 1./imgscale, INTER_CUBIC); cvNamedWindow("Object", 1); cvNamedWindow("Image", 1); cvNamedWindow("Object Correspondence", 1); Size patchSize(32, 32); LDetector ldetector(7, 20, 2, 2000, patchSize.width, 2); ldetector.setVerbose(true); PlanarObjectDetector detector; vector<Mat> objpyr, imgpyr; int blurKSize = 3; double sigma = 0; GaussianBlur(object, object, Size(blurKSize, blurKSize), sigma, sigma); GaussianBlur(image, image, Size(blurKSize, blurKSize), sigma, sigma); buildPyramid(object, objpyr, ldetector.nOctaves-1); buildPyramid(image, imgpyr, ldetector.nOctaves-1); vector<KeyPoint> objKeypoints, imgKeypoints; PatchGenerator gen(0,256,5,true,0.8,1.2,-CV_PI/2,CV_PI/2,-CV_PI/2,CV_PI/2); string model_filename = format("%s_model.xml.gz", object_filename); printf("Trying to load %s ...\n", model_filename.c_str()); FileStorage fs(model_filename, FileStorage::READ); if( fs.isOpened() ) { detector.read(fs.getFirstTopLevelNode()); printf("Successfully loaded %s.\n", model_filename.c_str()); } else { printf("The file not found and can not be read. Let's train the model.\n"); printf("Step 1. Finding the robust keypoints ...\n"); ldetector.setVerbose(true); ldetector.getMostStable2D(object, objKeypoints, 100, gen); printf("Done.\nStep 2. Training ferns-based planar object detector ...\n"); detector.setVerbose(true); detector.train(objpyr, objKeypoints, patchSize.width, 100, 11, 10000, ldetector, gen); printf("Done.\nStep 3. Saving the model to %s ...\n", model_filename.c_str()); if( fs.open(model_filename, FileStorage::WRITE) ) detector.write(fs, "ferns_model"); } printf("Now find the keypoints in the image, try recognize them and compute the homography matrix\n"); fs.release(); vector<Point2f> dst_corners; Mat correspond( object.rows + image.rows, std::max(object.cols, image.cols), CV_8UC3); correspond = Scalar(0.); Mat part(correspond, Rect(0, 0, object.cols, object.rows)); cvtColor(object, part, CV_GRAY2BGR); part = Mat(correspond, Rect(0, object.rows, image.cols, image.rows)); cvtColor(image, part, CV_GRAY2BGR); vector<int> pairs; Mat H; double t = (double)getTickCount(); objKeypoints = detector.getModelPoints(); ldetector(imgpyr, imgKeypoints, 300); std::cout << "Object keypoints: " << objKeypoints.size() << "\n"; std::cout << "Image keypoints: " << imgKeypoints.size() << "\n"; bool found = detector(imgpyr, imgKeypoints, H, dst_corners, &pairs); t = (double)getTickCount() - t; printf("%gms\n", t*1000/getTickFrequency()); if( found ) { for( i = 0; i < 4; i++ ) { Point r1 = dst_corners[i%4]; Point r2 = dst_corners[(i+1)%4]; line( correspond, Point(r1.x, r1.y+object.rows), Point(r2.x, r2.y+object.rows), Scalar(0,0,255) ); } } for( i = 0; i < (int)pairs.size(); i += 2 ) { line( correspond, objKeypoints[pairs[i]].pt, imgKeypoints[pairs[i+1]].pt + Point2f(0,(float)object.rows), Scalar(0,255,0) ); } imshow( "Object Correspondence", correspond ); Mat objectColor; cvtColor(object, objectColor, CV_GRAY2BGR); for( i = 0; i < (int)objKeypoints.size(); i++ ) { circle( objectColor, objKeypoints[i].pt, 2, Scalar(0,0,255), -1 ); circle( objectColor, objKeypoints[i].pt, (1 << objKeypoints[i].octave)*15, Scalar(0,255,0), 1 ); } Mat imageColor; cvtColor(image, imageColor, CV_GRAY2BGR); for( i = 0; i < (int)imgKeypoints.size(); i++ ) { circle( imageColor, imgKeypoints[i].pt, 2, Scalar(0,0,255), -1 ); circle( imageColor, imgKeypoints[i].pt, (1 << imgKeypoints[i].octave)*15, Scalar(0,255,0), 1 ); } imwrite("correspond.png", correspond ); imshow( "Object", objectColor ); imshow( "Image", imageColor ); waitKey(0); return 0; }