void Core::get_dependences_info_clause(PragmaCustomClause clause, DataSharingEnvironment& data_sharing, DependencyDirection dep_attr) { if (clause.is_defined()) { ObjectList<Nodecl::NodeclBase> expr_list = clause.get_arguments_as_expressions(); add_data_sharings(expr_list, data_sharing, dep_attr); } }
void SSValgrind::pragma_wait(PragmaCustomConstruct ctr) { PragmaCustomClause clause = ctr.get_clause("on"); if (clause.is_defined()) { ObjectList<Expression> expression_list = clause.get_expression_list(); Source src; for (ObjectList<Expression>::iterator it = expression_list.begin(); it != expression_list.end(); it++) { src << "wait_on_valgrind(" << *it << ");" ; } AST_t new_code = src.parse_statement(ctr.get_ast(), ctr.get_scope_link()); ctr.get_ast().replace(new_code); } }
void Core::ompss_common_target_handler_pre(TL::PragmaCustomLine pragma_line, OmpSs::TargetContext& target_ctx, TL::Scope scope, bool is_pragma_task) { PragmaCustomClause onto = pragma_line.get_clause("onto"); if (onto.is_defined()) { target_ctx.onto = onto.get_arguments_as_expressions(scope); } PragmaCustomClause device = pragma_line.get_clause("device"); if (device.is_defined()) { ObjectList<std::string> device_list = device.get_tokenized_arguments() .map<const char *>(&std::string::c_str) .map<std::string>(&strtolower); target_ctx.device_list.insert(device_list); } else { // In #pragma omp target a device is mandatory, for #pragma omp task // add it only if not empty std::string default_device = "smp"; bool set_default_device = false; if (!is_pragma_task) { warn_printf_at(pragma_line.get_locus(), "'#pragma omp target' without 'device' clause. Assuming 'device(smp)'\n"); set_default_device = true; } else if (target_ctx.device_list.empty()) { set_default_device = true; //If onto is defined and there is no device, default device is MPI if (onto.is_defined()) default_device = "mpi"; } if (set_default_device) { target_ctx.device_list.clear(); target_ctx.device_list.append(default_device); } } PragmaCustomClause copy_in = pragma_line.get_clause("copy_in"); if (copy_in.is_defined()) { target_ctx.copy_in = parse_dependences_ompss_clause(copy_in, scope); } PragmaCustomClause copy_out = pragma_line.get_clause("copy_out"); if (copy_out.is_defined()) { target_ctx.copy_out = parse_dependences_ompss_clause(copy_out, scope); } PragmaCustomClause copy_inout = pragma_line.get_clause("copy_inout"); if (copy_inout.is_defined()) { target_ctx.copy_inout = parse_dependences_ompss_clause(copy_inout, scope); } PragmaCustomClause ndrange = pragma_line.get_clause("ndrange"); if (ndrange.is_defined()) { target_ctx.ndrange = ndrange.get_arguments_as_expressions(scope); } PragmaCustomClause shmem = pragma_line.get_clause("shmem"); if (shmem.is_defined()) { if (ndrange.is_defined()) { target_ctx.shmem = shmem.get_arguments_as_expressions(scope); } else { warn_printf_at(pragma_line.get_locus(), "'shmem' clause cannot be used without the 'ndrange' clause, skipping\n"); } } PragmaCustomClause file = pragma_line.get_clause("file"); if (file.is_defined()) { ObjectList<std::string> file_list = file.get_tokenized_arguments(); if (file_list.size() != 1) { warn_printf_at(pragma_line.get_locus(), "clause 'file' expects one identifier, skipping\n"); } else { target_ctx.file = file_list[0]; } } PragmaCustomClause name = pragma_line.get_clause("name"); if (name.is_defined()) { ObjectList<std::string> name_list = name.get_tokenized_arguments(); if (name_list.size() != 1) { warn_printf_at(pragma_line.get_locus(), "clause 'name' expects one identifier, skipping\n"); } else { target_ctx.name = name_list[0]; } } PragmaCustomClause copy_deps = pragma_line.get_clause("copy_deps"); PragmaCustomClause no_copy_deps = pragma_line.get_clause("no_copy_deps"); if (target_ctx.copy_deps == OmpSs::TargetContext::UNDEF_COPY_DEPS) { target_ctx.copy_deps = OmpSs::TargetContext::NO_COPY_DEPS; if (!copy_deps.is_defined() && !no_copy_deps.is_defined()) { if (this->in_ompss_mode() && _copy_deps_by_default) { // Copy deps is true only if there is no copy_in, copy_out // or copy_inout if ( !copy_in.is_defined() && !copy_out.is_defined() && !copy_inout.is_defined()) { target_ctx.copy_deps = OmpSs::TargetContext::COPY_DEPS; if (!_already_informed_new_ompss_copy_deps) { info_printf_at(pragma_line.get_locus(), "unless 'no_copy_deps' is specified, " "the default in OmpSs is now 'copy_deps'\n"); info_printf_at(pragma_line.get_locus(), "this diagnostic is only shown for the " "first task found\n"); _already_informed_new_ompss_copy_deps = true; } } } } else if (copy_deps.is_defined()) { target_ctx.copy_deps = OmpSs::TargetContext::COPY_DEPS; } else if (no_copy_deps.is_defined()) { target_ctx.copy_deps = OmpSs::TargetContext::NO_COPY_DEPS; } else { internal_error("Code unreachable", 0); } } else if (target_ctx.copy_deps == OmpSs::TargetContext::NO_COPY_DEPS || target_ctx.copy_deps == OmpSs::TargetContext::COPY_DEPS) { if (copy_deps.is_defined()) { warn_printf_at(pragma_line.get_locus(), "ignoring 'copy_deps' clause because this context is already '%s'\n", target_ctx.copy_deps == OmpSs::TargetContext::NO_COPY_DEPS ? "no_copy_deps" : "copy_deps"); } if (no_copy_deps.is_defined()) { warn_printf_at(pragma_line.get_locus(), "ignoring 'no_copy_deps' clause because this context is already '%s'\n", target_ctx.copy_deps == OmpSs::TargetContext::NO_COPY_DEPS ? "no_copy_deps" : "copy_deps"); } } else { internal_error("Code unreachable", 0); } ERROR_CONDITION(target_ctx.copy_deps == OmpSs::TargetContext::UNDEF_COPY_DEPS, "Invalid value for copy_deps at this point", 0) PragmaCustomClause implements = pragma_line.get_clause("implements"); if (implements.is_defined()) { Symbol function_symbol (NULL); if (IS_C_LANGUAGE || IS_CXX_LANGUAGE) { ObjectList<Nodecl::NodeclBase> implements_list = implements.get_arguments_as_expressions(scope); ERROR_CONDITION(implements_list.size() != 1, "clause 'implements' expects one identifier", 0); Nodecl::NodeclBase implements_name = implements_list[0]; if (implements_name.is<Nodecl::Symbol>()) { function_symbol = implements_name.get_symbol(); } else if (implements_name.is<Nodecl::CxxDepNameSimple>()) { ObjectList<TL::Symbol> symbols = scope.get_symbols_from_name(implements_name.get_text()); ERROR_CONDITION(symbols.size() != 1, "The argument of the clause 'implements' cannot be an overloaded function identifier", 0); function_symbol = symbols[0]; } else { internal_error("Unexpected node", 0); } } else if (IS_FORTRAN_LANGUAGE) { ObjectList<std::string> implements_list = implements.get_tokenized_arguments(); ERROR_CONDITION(implements_list.size() != 1, "clause 'implements' expects one identifier", 0); // Restore the scope chain we broke in an INTERFACE block const decl_context_t* decl_context = scope.get_decl_context(); TL::Symbol current_procedure = scope.get_related_symbol(); decl_context->current_scope->contained_in = current_procedure.get_internal_symbol()->decl_context->current_scope; TL::Scope fixed_scope = TL::Scope(decl_context); ObjectList<TL::Symbol> symbols = fixed_scope.get_symbols_from_name(strtolower(implements_list[0].c_str())); ERROR_CONDITION(symbols.size() != 1,"Unreachable code", 0); function_symbol = symbols[0]; } else { internal_error("Unreachable code", 0); } if (function_symbol.is_valid() && function_symbol.is_function()) { target_ctx.has_implements = true; target_ctx.implements = function_symbol; } else { warn_printf_at(pragma_line.get_locus(), "the argument of the clause 'implements' is not a valid identifier, skipping\n"); } } }
void Core::collapse_loop_first(PragmaCustomConstruct& construct) { PragmaCustomClause collapse = construct.get_clause("collapse"); if (!collapse.is_defined()) return; ObjectList<Expression> expr_list = collapse.get_expression_list(); if (expr_list.size() != 1) { running_error("%s: error: 'collapse' clause must have one argument\n", construct.get_ast().get_locus().c_str()); } Expression &expr = expr_list.front(); if (!expr.is_constant()) { running_error("%s: error: 'collapse' clause argument '%s' is not a constant expression\n", expr.get_ast().get_locus().c_str(), expr.prettyprint().c_str()); } bool valid; int nest_level = expr.evaluate_constant_int_expression(valid); if (!valid) { running_error("%s: error: 'collapse' clause argument '%s' is not a constant expression\n", expr.get_ast().get_locus().c_str(), expr.prettyprint().c_str()); } if (nest_level <= 0) { running_error("%s: error: nesting level of 'collapse' clause must be a nonzero positive integer\n", expr.get_ast().get_locus().c_str()); } if (!ForStatement::predicate(construct.get_statement().get_ast())) { running_error("%s: error: collapsed '#pragma omp for' or '#pragma omp parallel for' require a for-statement\n", construct.get_statement().get_ast().get_locus().c_str()); } ForStatement for_stmt(construct.get_statement().get_ast(), construct.get_scope_link()); HLT::LoopCollapse loop_collapse(for_stmt); ObjectList<std::string> ancillary_names; Source header; loop_collapse .set_nesting_level(nest_level) .set_split_transform(header) .set_induction_private(true) .keep_ancillary_names(ancillary_names); Source collapsed_for = loop_collapse; Source transformed_code; AST_t pragma_placeholder; transformed_code << "{" << header << statement_placeholder(pragma_placeholder) << "}" ; AST_t tree = transformed_code.parse_statement(construct.get_ast(), construct.get_scope_link()); Source new_firstprivate_entities; Source pragma_line; Source omp_part_src; omp_part_src << "#pragma omp " << pragma_line << new_firstprivate_entities << "\n" << collapsed_for ; new_firstprivate_entities << "firstprivate(" << concat_strings(ancillary_names, ",") << ")"; pragma_line << construct.get_pragma_line().prettyprint_with_callback(functor(remove_collapse_clause)); AST_t omp_part_tree = omp_part_src.parse_statement(pragma_placeholder, construct.get_scope_link()); // Replace the pragma part pragma_placeholder.replace(omp_part_tree); // Replace the whole construct construct.get_ast().replace(tree); // Now overwrite the old construct with this new one construct = PragmaCustomConstruct(pragma_placeholder, construct.get_scope_link()); }