int main(int argc, char ** argv) { if (argc == 1) { cerr << "usage: " << string{argv[0]} << " <parameter file>." << endl << endl; exit (-1); } setNbThreads(16); ParamParser parser(string{argv[1]}); GeometryStructure geometry (parser); ProblemStructure problem (parser, geometry); OutputStructure output (parser, geometry, problem); problem.initializeProblem(); problem.updateForcingTerms(); problem.solveStokes(); problem.recalculateTimestep(); do { output.writeHDF5File (problem.getTimestepNumber()); cout << "<Timestep: " << problem.getTimestepNumber() << "; t=" << problem.getTime() << ">" << endl << endl; problem.updateForcingTerms(); problem.solveStokes(); problem.recalculateTimestep(); problem.solveAdvectionDiffusion(); } while (problem.advanceTimestep()); output.writeHDF5File (problem.getTimestepNumber()); cerr << "Timestep: " << problem.getTimestepNumber() << "; t = " << problem.getTime() << endl; output.writeHDF5File(); return 0; }
int main(int argc, char ** argv) { // The valid command line usage is "./mc-mini <parameter file>". Otherwise, throw an exception. if (argc == 1) { throw std::invalid_argument("usage: " + std::string{argv[0]} + " <parameter file>."); } // Initialize the parser with the specified parameter file. ParamParser parser(std::string{argv[1]}); // Initialize geometry parameters. GeometryStructure geometry (parser); // Initialize parameters related to the implementation of the employed numerical method. ProblemStructure problem (parser, geometry); // Initialize parameters related to output structure. OutputStructure output (parser, geometry, problem); // Initialize the initial data for the problem to be solved. problem.initializeProblem(); // Main loop where computations are made and data is output for each timestep of the problem. do { // 1. Solve Stokes equations. problem.solveStokes(); // 2. Initialize the right hand side (forcing terms). problem.updateForcingTerms(); // 3. Recalculate time step. problem.recalculateTimestep(); // 4. Output the solution data. output.outputData (problem.getTimestepNumber()); // 5. Solve advection-diffusion equation. problem.solveAdvectionDiffusion(); // 6. Output which time step is being computed. std::cout << "<Timestep: " << problem.getTimestepNumber() << "; t=" << problem.getTime() << ">" << std::endl; } while (problem.advanceTimestep()); // Loop termination criterion: problem.getTimestepNumber() = end_timestep. problem.solveStokes(); // Solve Stokes equations. output.outputData (problem.getTimestepNumber()); // Output the solution data. return 0; }