QGeoCoordinate QGeoProjection::coordinateInterpolation(const QGeoCoordinate &from, const QGeoCoordinate &to, qreal progress) { QDoubleVector2D s = QGeoProjection::coordToMercator(from); QDoubleVector2D e = QGeoProjection::coordToMercator(to); double x = s.x(); if (0.5 < qAbs(e.x() - s.x())) { // handle dateline crossing double ex = e.x(); double sx = s.x(); if (ex < sx) sx -= 1.0; else if (sx < ex) ex -= 1.0; x = (1.0 - progress) * sx + progress * ex; if (!qFuzzyIsNull(x) && (x < 0.0)) x += 1.0; } else { x = (1.0 - progress) * s.x() + progress * e.x(); } double y = (1.0 - progress) * s.y() + progress * e.y(); QGeoCoordinate result = QGeoProjection::mercatorToCoord(QDoubleVector2D(x, y)); result.setAltitude((1.0 - progress) * from.altitude() + progress * to.altitude()); return result; }
void QDeclarativeGeoMap::fitViewportToGeoShape() { double bboxWidth; double bboxHeight; QGeoCoordinate centerCoordinate; switch (m_region.type()) { case QGeoShape::RectangleType: { QGeoRectangle rect = m_region; QDoubleVector2D topLeftPoint = m_map->coordinateToItemPosition(rect.topLeft(), false); QDoubleVector2D botRightPoint = m_map->coordinateToItemPosition(rect.bottomRight(), false); bboxWidth = qAbs(topLeftPoint.x() - botRightPoint.x()); bboxHeight = qAbs(topLeftPoint.y() - botRightPoint.y()); centerCoordinate = rect.center(); break; } case QGeoShape::CircleType: { QGeoCircle circle = m_region; centerCoordinate = circle.center(); QGeoCoordinate edge = centerCoordinate.atDistanceAndAzimuth(circle.radius(), 90); QDoubleVector2D centerPoint = m_map->coordinateToItemPosition(centerCoordinate, false); QDoubleVector2D edgePoint = m_map->coordinateToItemPosition(edge, false); bboxWidth = qAbs(centerPoint.x() - edgePoint.x()) * 2; bboxHeight = bboxWidth; break; } case QGeoShape::UnknownType: //Fallthrough to default default: return; } // position camera to the center of bounding box setProperty("center", QVariant::fromValue(centerCoordinate)); //If the shape is empty we just change centerposition, not zoom if (bboxHeight == 0 && bboxWidth == 0) return; // adjust zoom double bboxWidthRatio = bboxWidth / (bboxWidth + bboxHeight); double mapWidthRatio = width() / (width() + height()); double zoomRatio; if (bboxWidthRatio > mapWidthRatio) zoomRatio = bboxWidth / width(); else zoomRatio = bboxHeight / height(); qreal newZoom = std::log10(zoomRatio) / std::log10(0.5); newZoom = std::floor(qMax(minimumZoomLevel(), (m_map->mapController()->zoom() + newZoom))); setProperty("zoomLevel", QVariant::fromValue(newZoom)); }
QGeoCoordinate QGeoTiledMapData::screenPositionToCoordinate(const QDoubleVector2D &pos, bool clipToViewport) const { Q_D(const QGeoTiledMapData); if (clipToViewport) { int w = width(); int h = height(); if ((pos.x() < 0) || (w < pos.x()) || (pos.y() < 0) || (h < pos.y())) return QGeoCoordinate(); } return d->screenPositionToCoordinate(pos); }
QDoubleVector2D QGeoTiledMapData::coordinateToScreenPosition(const QGeoCoordinate &coordinate, bool clipToViewport) const { Q_D(const QGeoTiledMapData); QDoubleVector2D pos = d->coordinateToScreenPosition(coordinate); if (clipToViewport) { int w = width(); int h = height(); if ((pos.x() < 0) || (w < pos.x()) || (pos.y() < 0) || (h < pos.y())) return QDoubleVector2D(qQNaN(), qQNaN()); } return pos; }
QGeoCoordinate QGeoProjection::mercatorToCoord(const QDoubleVector2D &mercator) { const double pi = M_PI; double fx = mercator.x(); double fy = mercator.y(); if (fy < 0.0) fy = 0.0; else if (fy > 1.0) fy = 1.0; double lat; if (fy == 0.0) lat = 90.0; else if (fy == 1.0) lat = -90.0; else lat = (180.0 / pi) * (2.0 * std::atan(std::exp(pi * (1.0 - 2.0 * fy))) - (pi / 2.0)); double lng; if (fx >= 0) { lng = realmod(fx, 1.0); } else { lng = realmod(1.0 - realmod(-1.0 * fx, 1.0), 1.0); } lng = lng * 360.0 - 180.0; return QGeoCoordinate(lat, lng, 0.0); }
/*! \internal */ void QGeoMapRectangleGeometry::updatePoints(const QGeoMap &map, const QGeoCoordinate &topLeft, const QGeoCoordinate &bottomRight) { if (!screenDirty_ && !sourceDirty_) return; QDoubleVector2D tl = map.coordinateToItemPosition(topLeft, false); QDoubleVector2D br = map.coordinateToItemPosition(bottomRight, false); // We can get NaN if the map isn't set up correctly, or the projection // is faulty -- probably best thing to do is abort if (!qIsFinite(tl.x()) || !qIsFinite(tl.y())) return; if (!qIsFinite(br.x()) || !qIsFinite(br.y())) return; if ( preserveGeometry_ ) { double unwrapBelowX = map.coordinateToItemPosition(geoLeftBound_, false).x(); if (br.x() < unwrapBelowX) br.setX(tl.x() + screenBounds_.width()); } QRectF re(tl.toPointF(), br.toPointF()); re.translate(-1 * tl.toPointF()); clear(); screenVertices_.reserve(6); screenVertices_ << re.topLeft(); screenVertices_ << re.topRight(); screenVertices_ << re.bottomLeft(); screenVertices_ << re.topRight(); screenVertices_ << re.bottomLeft(); screenVertices_ << re.bottomRight(); firstPointOffset_ = QPointF(0,0); srcOrigin_ = topLeft; screenBounds_ = re; screenOutline_ = QPainterPath(); screenOutline_.addRect(re); geoLeftBound_ = topLeft; }
// A workaround for circle path to be drawn correctly using a polygon geometry void QDeclarativeCircleMapItem::updateCirclePathForRendering(QList<QGeoCoordinate> &path, const QGeoCoordinate ¢er, qreal distance) { qreal poleLat = 90; qreal distanceToNorthPole = center.distanceTo(QGeoCoordinate(poleLat, 0)); qreal distanceToSouthPole = center.distanceTo(QGeoCoordinate(-poleLat, 0)); bool crossNorthPole = distanceToNorthPole < distance; bool crossSouthPole = distanceToSouthPole < distance; if (!crossNorthPole && !crossSouthPole) return; QList<int> wrapPathIndex; // calculate actual width of map on screen in pixels QDoubleVector2D midPoint = map()->coordinateToItemPosition(map()->cameraData().center(), false); QDoubleVector2D midPointPlusOne(midPoint.x() + 1.0, midPoint.y()); QGeoCoordinate coord1 = map()->itemPositionToCoordinate(midPointPlusOne, false); qreal geoDistance = coord1.longitude() - map()->cameraData().center().longitude(); if ( geoDistance < 0 ) geoDistance += 360; qreal mapWidth = 360.0 / geoDistance; mapWidth = qMin(static_cast<int>(mapWidth), map()->width()); QDoubleVector2D prev = map()->coordinateToItemPosition(path.at(0), false); // find the points in path where wrapping occurs for (int i = 1; i <= path.count(); ++i) { int index = i % path.count(); QDoubleVector2D point = map()->coordinateToItemPosition(path.at(index), false); if ( (qAbs(point.x() - prev.x())) >= mapWidth/2.0 ) { wrapPathIndex << index; if (wrapPathIndex.size() == 2 || !(crossNorthPole && crossSouthPole)) break; } prev = point; } // insert two additional coords at top/bottom map corners of the map for shape // to be drawn correctly if (wrapPathIndex.size() > 0) { qreal newPoleLat = 90; QGeoCoordinate wrapCoord = path.at(wrapPathIndex[0]); if (wrapPathIndex.size() == 2) { QGeoCoordinate wrapCoord2 = path.at(wrapPathIndex[1]); if (wrapCoord2.latitude() > wrapCoord.latitude()) newPoleLat = -90; } else if (center.latitude() < 0) { newPoleLat = -90; } for (int i = 0; i < wrapPathIndex.size(); ++i) { int index = wrapPathIndex[i] == 0 ? 0 : wrapPathIndex[i] + i*2; int prevIndex = (index - 1) < 0 ? (path.count() - 1): index - 1; QGeoCoordinate coord0 = path.at(prevIndex); QGeoCoordinate coord1 = path.at(index); coord0.setLatitude(newPoleLat); coord1.setLatitude(newPoleLat); path.insert(index ,coord1); path.insert(index, coord0); newPoleLat = -newPoleLat; } } }
QGeoCoordinate QGeoCoordinateInterpolator2D::interpolate(const QGeoCoordinate &start, const QGeoCoordinate &end, qreal progress) { if (start == end) { if (progress < 0.5) { return start; } else { return end; } } QGeoCoordinate s2 = start; QGeoCoordinate e2 = end; QDoubleVector2D s = QGeoProjection::coordToMercator(s2); QDoubleVector2D e = QGeoProjection::coordToMercator(e2); double x = s.x(); if (0.5 < qAbs(e.x() - s.x())) { // handle dateline crossing double ex = e.x(); double sx = s.x(); if (ex < sx) sx -= 1.0; else if (sx < ex) ex -= 1.0; x = (1.0 - progress) * sx + progress * ex; if (!qFuzzyIsNull(x) && (x < 0.0)) x += 1.0; } else { x = (1.0 - progress) * s.x() + progress * e.x(); } double y = (1.0 - progress) * s.y() + progress * e.y(); QGeoCoordinate result = QGeoProjection::mercatorToCoord(QDoubleVector2D(x, y)); result.setAltitude((1.0 - progress) * start.altitude() + progress * end.altitude()); return result; }
QGeoCoordinate QGeoTiledMapGoogle::itemPositionToCoordinate(const QDoubleVector2D &pos, bool clipToViewport) const { if (clipToViewport) { int w = width(); int h = height(); if ((pos.x() < 0) || (w < pos.x()) || (pos.y() < 0) || (h < pos.y())) return QGeoCoordinate(); } QGeoCoordinate coor = QGeoTiledMap::itemPositionToCoordinate(pos, clipToViewport); //GCJ-02 to WGS84 if("cn" == m_szLocale) { //qDebug() << "transformFromGCJToWGS:"; //qDebug() << "lat:" << coor.latitude() << ";lng:" << coor.longitude(); coor = QCoordTrans::GCJToWGS(coor); //qDebug() << "lat:" << coor.latitude() << ";lng:" << coor.longitude(); } return coor; }
QDoubleVector2D QGeoTiledMapGoogle::coordinateToItemPosition(const QGeoCoordinate &coordinate, bool clipToViewport) const { QGeoCoordinate coor = coordinate; //WGS84 to GCJ-02 if("cn" == m_szLocale) { //qDebug() << "transformFromWGSToGCJ:"; //qDebug() << "lat:" << coor.latitude() << ";lng:" << coor.longitude(); coor = QCoordTrans::WGSToGCJ(coor); //qDebug() << "lat:" << coor.latitude() << ";lng:" << coor.longitude(); } QDoubleVector2D pos = QGeoTiledMap::coordinateToItemPosition(coor, clipToViewport); if (clipToViewport) { int w = width(); int h = height(); if ((pos.x() < 0) || (w < pos.x()) || (pos.y() < 0) || (h < pos.y())) return QDoubleVector2D(qQNaN(), qQNaN()); } return pos; }
void QDeclarativeGeoMap::fitViewportToGeoShape() { int margins = 10; if (!m_map || width() <= margins || height() <= margins) return; QGeoCoordinate topLeft; QGeoCoordinate bottomRight; switch (m_region.type()) { case QGeoShape::RectangleType: { QGeoRectangle rect = m_region; topLeft = rect.topLeft(); bottomRight = rect.bottomRight(); break; } case QGeoShape::CircleType: { const double pi = M_PI; QGeoCircle circle = m_region; QGeoCoordinate centerCoordinate = circle.center(); // calculate geo bounding box of the circle // circle tangential points with meridians and the north pole create // spherical triangle, we use spherical law of sines // sin(lon_delta_in_rad)/sin(r_in_rad) = // sin(alpha_in_rad)/sin(pi/2 - lat_in_rad), where: // * lon_delta_in_rad - delta of longitudes of circle center // and tangential points // * r_in_rad - angular radius of the circle // * lat_in_rad - latitude of circle center // * alpha_in_rad - angle between meridian and radius to the circle => // this is tangential point => sin(alpha) = 1 // * lat_delta_in_rad - delta of latitudes of circle center and // latitude of points where great circle (going through circle // center) crosses circle and the pole double r_in_rad = circle.radius() / EARTH_MEAN_RADIUS; // angular r double lat_delta_in_deg = r_in_rad * 180 / pi; double lon_delta_in_deg = std::asin(std::sin(r_in_rad) / std::cos(centerCoordinate.latitude() * pi / 180)) * 180 / pi; topLeft.setLatitude(centerCoordinate.latitude() + lat_delta_in_deg); topLeft.setLongitude(centerCoordinate.longitude() - lon_delta_in_deg); bottomRight.setLatitude(centerCoordinate.latitude() - lat_delta_in_deg); bottomRight.setLongitude(centerCoordinate.longitude() + lon_delta_in_deg); // adjust if circle reaches poles => cross all meridians and // fit into Mercator projection bounds if (topLeft.latitude() > 90 || bottomRight.latitude() < -90) { topLeft.setLatitude(qMin(topLeft.latitude(), 85.05113)); topLeft.setLongitude(-180.0); bottomRight.setLatitude(qMax(bottomRight.latitude(), -85.05113)); bottomRight.setLongitude(180.0); } break; } case QGeoShape::UnknownType: //Fallthrough to default default: return; } // adjust zoom, use reference world to keep things simple // otherwise we would need to do the error prone longitudes // wrapping QDoubleVector2D topLeftPoint = m_map->referenceCoordinateToItemPosition(topLeft); QDoubleVector2D bottomRightPoint = m_map->referenceCoordinateToItemPosition(bottomRight); double bboxWidth = bottomRightPoint.x() - topLeftPoint.x(); double bboxHeight = bottomRightPoint.y() - topLeftPoint.y(); // find center of the bounding box QGeoCoordinate centerCoordinate = m_map->referenceItemPositionToCoordinate( (topLeftPoint + bottomRightPoint)/2); // position camera to the center of bounding box setCenter(centerCoordinate); // if the shape is empty we just change center position, not zoom if (bboxHeight == 0 && bboxWidth == 0) return; double zoomRatio = qMax(bboxWidth / (width() - margins), bboxHeight / (height() - margins)); // fixme: use log2 with c++11 zoomRatio = std::log(zoomRatio) / std::log(2.0); double newZoom = qMax((double)minimumZoomLevel(), m_map->mapController()->zoom() - zoomRatio); setZoomLevel(newZoom); m_validRegion = true; }
/*! \qmlmethod QtLocation::Map::fitViewportToGeoShape(QGeoShape shape) Fits the current viewport to the boundary of the shape. The camera is positioned in the center of the shape, and at the largest integral zoom level possible which allows the whole shape to be visible on screen */ void QDeclarativeGeoMap::fitViewportToGeoShape(const QVariant &variantShape) { if (!map_ || !mappingManagerInitialized_) return; QGeoShape shape; if (variantShape.userType() == qMetaTypeId<QGeoRectangle>()) shape = variantShape.value<QGeoRectangle>(); else if (variantShape.userType() == qMetaTypeId<QGeoCircle>()) shape = variantShape.value<QGeoCircle>(); else if (variantShape.userType() == qMetaTypeId<QGeoShape>()) shape = variantShape.value<QGeoShape>(); if (!shape.isValid()) return; double bboxWidth; double bboxHeight; QGeoCoordinate centerCoordinate; switch (shape.type()) { case QGeoShape::RectangleType: { QGeoRectangle rect = shape; QDoubleVector2D topLeftPoint = map_->coordinateToScreenPosition(rect.topLeft(), false); QDoubleVector2D botRightPoint = map_->coordinateToScreenPosition(rect.bottomRight(), false); bboxWidth = qAbs(topLeftPoint.x() - botRightPoint.x()); bboxHeight = qAbs(topLeftPoint.y() - botRightPoint.y()); centerCoordinate = rect.center(); break; } case QGeoShape::CircleType: { QGeoCircle circle = shape; centerCoordinate = circle.center(); QGeoCoordinate edge = centerCoordinate.atDistanceAndAzimuth(circle.radius(), 90); QDoubleVector2D centerPoint = map_->coordinateToScreenPosition(centerCoordinate, false); QDoubleVector2D edgePoint = map_->coordinateToScreenPosition(edge, false); bboxWidth = qAbs(centerPoint.x() - edgePoint.x()) * 2; bboxHeight = bboxWidth; break; } case QGeoShape::UnknownType: //Fallthrough to default default: return; } // position camera to the center of bounding box setProperty("center", QVariant::fromValue(centerCoordinate)); //If the shape is empty we just change centerposition, not zoom if (bboxHeight == 0 && bboxWidth == 0) return; // adjust zoom double bboxWidthRatio = bboxWidth / (bboxWidth + bboxHeight); double mapWidthRatio = width() / (width() + height()); double zoomRatio; if (bboxWidthRatio > mapWidthRatio) zoomRatio = bboxWidth / width(); else zoomRatio = bboxHeight / height(); qreal newZoom = log10(zoomRatio) / log10(0.5); newZoom = floor(qMax(minimumZoomLevel(), (map_->mapController()->zoom() + newZoom))); setProperty("zoomLevel", QVariant::fromValue(newZoom)); }
/*! \internal */ void QGeoMapPolylineGeometry::updateSourcePoints(const QGeoMap &map, const QList<QGeoCoordinate> &path) { bool foundValid = false; double minX = -1.0; double minY = -1.0; double maxX = -1.0; double maxY = -1.0; if (!sourceDirty_) return; // clear the old data and reserve enough memory srcPoints_.clear(); srcPoints_.reserve(path.size() * 2); srcPointTypes_.clear(); srcPointTypes_.reserve(path.size()); QDoubleVector2D origin, lastPoint, lastAddedPoint; double unwrapBelowX = 0; if (preserveGeometry_) unwrapBelowX = map.coordinateToScreenPosition(geoLeftBound_, false).x(); for (int i = 0; i < path.size(); ++i) { const QGeoCoordinate &coord = path.at(i); if (!coord.isValid()) continue; QDoubleVector2D point = map.coordinateToScreenPosition(coord, false); // We can get NaN if the map isn't set up correctly, or the projection // is faulty -- probably best thing to do is abort if (!qIsFinite(point.x()) || !qIsFinite(point.y())) return; // unwrap x to preserve geometry if moved to border of map if (preserveGeometry_ && point.x() < unwrapBelowX && !qFuzzyCompare(point.x(), unwrapBelowX)) point.setX(unwrapBelowX + geoDistanceToScreenWidth(map, geoLeftBound_, coord)); if (!foundValid) { foundValid = true; srcOrigin_ = coord; origin = point; point = QDoubleVector2D(0,0); minX = point.x(); maxX = minX; minY = point.y(); maxY = minY; srcPoints_ << point.x() << point.y(); srcPointTypes_ << QPainterPath::MoveToElement; lastAddedPoint = point; } else { point -= origin; minX = qMin(point.x(), minX); minY = qMin(point.y(), minY); maxX = qMax(point.x(), maxX); maxY = qMax(point.y(), maxY); if ((point - lastAddedPoint).manhattanLength() > 3 || i == path.size() - 1) { srcPoints_ << point.x() << point.y(); srcPointTypes_ << QPainterPath::LineToElement; lastAddedPoint = point; } } lastPoint = point; } sourceBounds_ = QRectF(QPointF(minX, minY), QPointF(maxX, maxY)); geoLeftBound_ = map.screenPositionToCoordinate( QDoubleVector2D(minX + origin.x(), minY + origin.y()), false); }
QSet<QGeoTileSpec> QGeoCameraTilesPrivate::tilesFromPolygon(const Polygon &polygon) const { int numPoints = polygon.size(); if (numPoints == 0) return QSet<QGeoTileSpec>(); QVector<int> tilesX(polygon.size()); QVector<int> tilesY(polygon.size()); // grab tiles at the corners of the polygon for (int i = 0; i < numPoints; ++i) { QDoubleVector2D p = polygon.at(i).toVector2D(); int x = 0; int y = 0; if (qFuzzyCompare(p.x(), sideLength_ * 1.0)) x = sideLength_ - 1; else { x = static_cast<int>(p.x()) % sideLength_; if ( !qFuzzyCompare(p.x(), 1.0 * x) && qFuzzyCompare(p.x(), 1.0 * (x + 1)) ) x++; } if (qFuzzyCompare(p.y(), sideLength_ * 1.0)) y = sideLength_ - 1; else { y = static_cast<int>(p.y()) % sideLength_; if ( !qFuzzyCompare(p.y(), 1.0 * y) && qFuzzyCompare(p.y(), 1.0 * (y + 1)) ) y++; } tilesX[i] = x; tilesY[i] = y; } QGeoCameraTilesPrivate::TileMap map; // walk along the edges of the polygon and add all tiles covered by them for (int i1 = 0; i1 < numPoints; ++i1) { int i2 = (i1 + 1) % numPoints; double x1 = polygon.at(i1).get(0); double x2 = polygon.at(i2).get(0); bool xFixed = qFuzzyCompare(x1, x2); bool xIntegral = qFuzzyCompare(x1, std::floor(x1)) || qFuzzyCompare(x1 + 1.0, std::floor(x1 + 1.0)); QList<QPair<double, int> > xIntersects = tileIntersections(x1, tilesX.at(i1), x2, tilesX.at(i2)); double y1 = polygon.at(i1).get(1); double y2 = polygon.at(i2).get(1); bool yFixed = qFuzzyCompare(y1, y2); bool yIntegral = qFuzzyCompare(y1, std::floor(y1)) || qFuzzyCompare(y1 + 1.0, std::floor(y1 + 1.0)); QList<QPair<double, int> > yIntersects = tileIntersections(y1, tilesY.at(i1), y2, tilesY.at(i2)); int x = xIntersects.takeFirst().second; int y = yIntersects.takeFirst().second; /* If the polygon coincides with the tile edges we must be inclusive and grab all tiles on both sides. We also need to handle tiles with corners coindent with the corners of the polygon. e.g. all tiles marked with 'x' will be added "+" - tile boundaries "O" - polygon boundary + + + + + + + + + + + + + + + + + + + + + + + + + + + + + x + x + x + + + + + + + + + + + + + + + + O O O O O + + + + + + + + + + O 0 + + + + x O x 0 x + + + + O 0 + + + + + + + + + + O 0 0 0 0 + + + + + + + + + + + + + + + + x + x + x + + + + + + + + + + + + + + + + + + + + + + + + + + + + + */ int xOther = x; int yOther = y; if (xFixed && xIntegral) { if (y2 < y1) { xOther = qMax(0, x - 1); } } if (yFixed && yIntegral) { if (x1 < x2) { yOther = qMax(0, y - 1); } } if (xIntegral) { map.add(xOther, y); if (yIntegral) map.add(xOther, yOther); } if (yIntegral) map.add(x, yOther); map.add(x,y); // top left corner int iPrev = (i1 + numPoints - 1) % numPoints; double xPrevious = polygon.at(iPrev).get(0); double yPrevious = polygon.at(iPrev).get(1); bool xPreviousFixed = qFuzzyCompare(xPrevious, x1); if (xIntegral && xPreviousFixed && yIntegral && yFixed) { if ((x2 > x1) && (yPrevious > y1)) { if ((x - 1) > 0 && (y - 1) > 0) map.add(x - 1, y - 1); } else if ((x2 < x1) && (yPrevious < y1)) { // what? } } // for the simple case where intersections do not coincide with // the boundaries, we move along the edge and add tiles until // the x and y intersection lists are exhausted while (!xIntersects.isEmpty() && !yIntersects.isEmpty()) { QPair<double, int> nextX = xIntersects.first(); QPair<double, int> nextY = yIntersects.first(); if (nextX.first < nextY.first) { x = nextX.second; map.add(x, y); xIntersects.removeFirst(); } else if (nextX.first > nextY.first) { y = nextY.second; map.add(x, y); yIntersects.removeFirst(); } else { map.add(x, nextY.second); map.add(nextX.second, y); x = nextX.second; y = nextY.second; map.add(x, y); xIntersects.removeFirst(); yIntersects.removeFirst(); } } while (!xIntersects.isEmpty()) { x = xIntersects.takeFirst().second; map.add(x, y); if (yIntegral && yFixed) map.add(x, yOther); } while (!yIntersects.isEmpty()) { y = yIntersects.takeFirst().second; map.add(x, y); if (xIntegral && xFixed) map.add(xOther, y); } } QSet<QGeoTileSpec> results; int z = intZoomLevel_; typedef QMap<int, QPair<int, int> >::const_iterator iter; iter i = map.data.constBegin(); iter end = map.data.constEnd(); for (; i != end; ++i) { int y = i.key(); int minX = i->first; int maxX = i->second; for (int x = minX; x <= maxX; ++x) { results.insert(QGeoTileSpec(pluginString_, mapType_.mapId(), z, x, y, mapVersion_)); } } return results; }
QDebug operator<<(QDebug dbg, const QDoubleVector2D &vector) { dbg.nospace() << "QDoubleVector2D(" << vector.x() << ", " << vector.y() << ')'; return dbg.space(); }
/*! \internal */ void QGeoMapCircleGeometry::updateScreenPointsInvert(const QGeoMap &map) { if (!screenDirty_) return; if (map.width() == 0 || map.height() == 0) { clear(); return; } QPointF origin = map.coordinateToItemPosition(srcOrigin_, false).toPointF(); QPainterPath ppi = srcPath_; clear(); // a circle requires at least 3 points; if (ppi.elementCount() < 3) return; // translate the path into top-left-centric coordinates QRectF bb = ppi.boundingRect(); ppi.translate(-bb.left(), -bb.top()); firstPointOffset_ = -1 * bb.topLeft(); ppi.closeSubpath(); // calculate actual width of map on screen in pixels QGeoCoordinate mapCenter(0, map.cameraData().center().longitude()); QDoubleVector2D midPoint = map.coordinateToItemPosition(mapCenter, false); QDoubleVector2D midPointPlusOne = QDoubleVector2D(midPoint.x() + 1.0, midPoint.y()); QGeoCoordinate coord1 = map.itemPositionToCoordinate(midPointPlusOne, false); double geoDistance = coord1.longitude() - map.cameraData().center().longitude(); if ( geoDistance < 0 ) geoDistance += 360.0; double mapWidth = 360.0 / geoDistance; qreal leftOffset = origin.x() - (map.width()/2.0 - mapWidth/2.0) - firstPointOffset_.x(); qreal topOffset = origin.y() - (midPoint.y() - mapWidth/2.0) - firstPointOffset_.y(); QPainterPath ppiBorder; ppiBorder.moveTo(QPointF(-leftOffset, -topOffset)); ppiBorder.lineTo(QPointF(mapWidth - leftOffset, -topOffset)); ppiBorder.lineTo(QPointF(mapWidth - leftOffset, mapWidth - topOffset)); ppiBorder.lineTo(QPointF(-leftOffset, mapWidth - topOffset)); screenOutline_ = ppiBorder; std::vector<p2t::Point*> borderPts; borderPts.reserve(4); std::vector<p2t::Point*> curPts; curPts.reserve(ppi.elementCount()); for (int i = 0; i < ppi.elementCount(); ++i) { const QPainterPath::Element e = ppi.elementAt(i); if (e.isMoveTo() || i == ppi.elementCount() - 1 || (qAbs(e.x - curPts.front()->x) < 0.1 && qAbs(e.y - curPts.front()->y) < 0.1)) { if (curPts.size() > 2) { for (int j = 0; j < 4; ++j) { const QPainterPath::Element e2 = ppiBorder.elementAt(j); borderPts.push_back(new p2t::Point(e2.x, e2.y)); } p2t::CDT *cdt = new p2t::CDT(borderPts); cdt->AddHole(curPts); cdt->Triangulate(); std::vector<p2t::Triangle*> tris = cdt->GetTriangles(); screenVertices_.reserve(screenVertices_.size() + int(tris.size())); for (size_t i = 0; i < tris.size(); ++i) { p2t::Triangle *t = tris.at(i); for (int j = 0; j < 3; ++j) { p2t::Point *p = t->GetPoint(j); screenVertices_ << QPointF(p->x, p->y); } } delete cdt; } curPts.clear(); curPts.reserve(ppi.elementCount() - i); curPts.push_back(new p2t::Point(e.x, e.y)); } else if (e.isLineTo()) { curPts.push_back(new p2t::Point(e.x, e.y)); } else { qWarning("Unhandled element type in circle painterpath"); } } if (curPts.size() > 0) { qDeleteAll(curPts.begin(), curPts.end()); curPts.clear(); } if (borderPts.size() > 0) { qDeleteAll(borderPts.begin(), borderPts.end()); borderPts.clear(); } screenBounds_ = ppiBorder.boundingRect(); }