/**
 * @brief A point of the road is visible if it is between the robot and the laser beam running through it, and if the previous point was visible
 * All points in the road are updated
 * @param road ...
 * @param laserData ...
 * @return bool
 */
bool ElasticBand::checkVisiblePoints(InnerModel *innermodel, WayPoints &road, const RoboCompLaser::TLaserData &laserData)
{
	//Simplify laser polyline using Ramer-Douglas-Peucker algorithm
	std::vector<Point> points, res;
	QVec wd;
	for (auto &ld : laserData)
	{
		//wd = innermodel->laserTo("world", "laser", ld.dist, ld.angle); //OPTIMIZE THIS FOR ALL CLASS METHODS
		wd = innermodel->getNode<InnerModelLaser>("laser")->laserTo("world", ld.dist, ld.angle);
		points.push_back(Point(wd.x(), wd.z()));
	}
	res = simPath.simplifyWithRDP(points, 70); 
	//qDebug() << __FUNCTION__ << "laser polygon after simp" << res.size();

	// Create a QPolygon so we can check if robot outline falls inside
	QPolygonF polygon;
	for (auto &p: res)
		polygon << QPointF(p.x, p.y);

	// Move the robot along the road
	int robot = road.getIndexOfNextPoint();
	QVec memo = innermodel->transform6D("world", "robot");
	for(int it = robot; it<road.size(); ++it)
	{
		road[it].isVisible = true;
		innermodel->updateTransformValues("robot", road[it].pos.x(), road[it].pos.y(), road[it].pos.z(), 0, road[it].rot.y(), 0);
		//get Robot transformation matrix
		QMat m = innermodel->getTransformationMatrix("world", "robot");
		// Transform all points at one to world RS
		//m.print("m");
		//pointsMat.print("pointsMat");
		QMat newPoints = m * pointsMat;

		//Check if they are inside the laser polygon
		for (int i = 0; i < newPoints.nCols(); i++)
		{
// 			qDebug() << __FUNCTION__ << "----------------------------------";
// 			qDebug() << __FUNCTION__ << QPointF(newPoints(0, i), newPoints(2, i));
// 			qDebug() << __FUNCTION__ << polygon;
			if (polygon.containsPoint(QPointF(newPoints(0, i), newPoints(2, i)),Qt::OddEvenFill) == false)
			{
				road[it].isVisible = false;
				//qFatal("fary");
				break;
			}
		}
//		if( road[it].isVisible == false)
//		{
//			for (int k = it; k < road.size(); ++k)
//				road[k].isVisible = false;
//			break;
//		}
	}

	// Set the robot back to its original state
	innermodel->updateTransformValues("robot", memo.x(), memo.y(), memo.z(), 0, memo.ry(), 0);

	//road.print();
	return true;
}
Exemple #2
0
void RMat::QMat::SVD(QMat & U, QMat & D, QMat & V)
{
#ifdef COMPILE_IPP
// 	double ippA[rows*cols];
	double ippU[rows*rows], ippD[rows*cols], ippV[cols*cols];
	int i;
	
	U = QMat(rows, rows);
	D = QMat(rows, cols);
	V = QMat(cols, cols);

// 	for(i=0; i<rows*cols;i++)
// 	  ippA[i] = toData()[i];
	
	
	for(i=0; i<rows*rows;i++)
	  U.toData()[i] = ippU[i];
	
	for(i=0; i<cols;i+=1)
	  D.toData()[i*(cols+1)] = ippD[i];
	
	for(i=0; i<cols*cols;i++)
	  V.toData()[i] = ippV[i];
#else
	qFatal("QMat does not support eigen svd");
#endif

}
Exemple #3
0
/**
 * \brief Matrix to matrix product operator; \f$ C = this * A \f$
 *
 * IPP coge (columnas, filas) en las llamadas
 * @param A matrix factor for operation
 * @return QMat New matrix result
 */
QMat QMat::operator * ( const QMat & A ) const
{
// 	printf("Operator *: (%d,%d) x (%d,%d)\n", rows, cols, A.rows, A.cols);
	QMat C=zeros( rows, A.nCols() );
	if ( cols != A.nRows())
	{
		QString ex= "QMat::operator* - a.cols!=b.rows";
		throw ex;
	}
	else
	{
#ifdef COMPILE_IPP
	ippmMul_mm_32f ( toDataConst(), cols*sizeof ( T ), sizeof ( T ), cols, rows, A.toDataConst(), A.nCols() *sizeof ( T ), sizeof ( T ), A.nCols(), A.nRows(), C.toData(), C.nCols() *sizeof ( T ), sizeof ( T ) );
#else
	for(int i=0;i<rows;i++)
	{
		for(int j=0;j<A.cols;j++)
		{
			C(i,j)=0;
			for(int k=0;k<cols;k++)
			{
				C(i,j) += operator()(i,k)*A(k,j);
			}
// 			printf("%f ", C(i,j));
		}
// 		printf("\n");
	}
#endif
	}
	return C;
}
Exemple #4
0
/**
 * \brief Matrix to vector product operator; \f$ C = this * vector \f$
 * @param A vector factor for operation
 * @return QVec New vector result
 */
QVec RMat::QMat::operator *(const QVec & vector) const
{
	Q_ASSERT ( cols == vector.size());
	QMat aux = vector.toColumnMatrix();
	QMat result = operator*(aux);
	return result.toVector();
}
Exemple #5
0
QMat RMat::QMat::sqrt( )
{
	int i;
	QMat R ( rows, cols );
	for ( i=0;i< rows*cols;i++ )
		R.getWriteData()[i] = ::sqrt ( fabs ( getReadData()[i]) );
	return R;
}
Exemple #6
0
/**
 * \brief Copy function
 *
 * Return a copy of this matrix
 * @return QMat matrix copied
*/
QMat QMat::copy()
{
	QMat A (rows, cols);
#ifdef COMPILE_IPP
	ippmCopy_ma_32f_SS ( toData(), rows*cols*sizeof ( T ), cols*sizeof ( T ), sizeof ( T ), A.toData(),rows*cols*sizeof ( T ), cols*sizeof ( T ), sizeof ( T ),  cols, rows, 1 );
#else
	memcpy(A.toData(), toData(), rows*cols*sizeof(T));
#endif
	return A;
}
Exemple #7
0
/**
 * \brief Change the order of the indexes in the matrix \f$ C = this^t \f$
 * @return QMat new matrix with indexes reordered
 */
QMat QMat::transpose( ) const
{
	QMat C ( cols, rows );
#ifdef COMPILE_IPP
	ippmTranspose_m_32f ( toDataConst(), cols*sizeof ( T ), sizeof ( T ), cols, rows, C.toData(), rows*sizeof ( T ), sizeof ( T ) );
#else
	for (int fila=0; fila<rows; fila++ )
		for ( int columna=0; columna<cols; columna++ )
			C(columna,fila) = operator()(fila,columna);
#endif
	return C;
}
/**
 * @brief Moves a virtual copy of the robot along the road checking for enough free space around it
 * 
 * @param innermodel ...
 * @param road ...
 * @param laserData ...
 * @param robotRadius ...
 * @return bool
 */
 bool ElasticBand::checkCollisionAlongRoad(InnerModel *innermodel, const RoboCompLaser::TLaserData& laserData, WayPoints &road,  WayPoints::const_iterator robot,
                                            WayPoints::const_iterator target, float robotRadius)
 {
	//Simplify laser polyline using Ramer-Douglas-Peucker algorithm
	std::vector<Point> points, res;
	QVec wd;
	for( auto &ld : laserData)
	{
		wd = innermodel->laserTo("world", "laser", ld.dist, ld.angle);      //OPTIMIZE THIS FOR ALL CLASS METHODS
		points.push_back(Point(wd.x(), wd.z()));
	}
	res = simPath.simplifyWithRDP(points, 70);
	qDebug() << __FUNCTION__ << "laser polygon after simp" << res.size();

	// Create a QPolygon so we can check if robot outline falls inside
	QPolygonF polygon;
	for (auto &p: res)
		polygon << QPointF(p.x, p.y);

	// Move the robot along the road
	QVec memo = innermodel->transform6D("world","robot");
	bool free = false;
	for( WayPoints::const_iterator it = robot; it != target; ++it)
	{
		if( it->isVisible == false)
			break;
		// compute orientation of the robot at the point

		innermodel->updateTransformValues("robot", it->pos.x(), it->pos.y(), it->pos.z(), 0, it->rot.y(), 0);
		//get Robot transformation matrix
		QMat m = innermodel->getTransformationMatrix("world", "robot");
		// Transform all points at one
		qDebug() << __FUNCTION__ << "hello2";
		m.print("m");
		pointsMat.print("pointsMat");
		QMat newPoints = m * pointsMat;
		qDebug() << __FUNCTION__ << "hello3";

		//Check if they are inside the laser polygon
		for( int i=0; i<newPoints.nRows(); i++)
			if( polygon.containsPoint(QPointF(pointsMat(i,0)/pointsMat(i,3), pointsMat(i,2)/pointsMat(i,3)), Qt::OddEvenFill ) == false)
			{
				free = false;
				break;
			}
		free = true;
	}
	 qDebug() << __FUNCTION__ << "hello";

	 // Set the robot back to its original state
	innermodel->updateTransformValues("robot", memo.x(), memo.y(), memo.z(), 0, memo.ry(), 0);
	return free ? true : false;
 }
Exemple #9
0
/**
 * \brief Matrix Subtraction operator: \f$ C = this - A \f$
 * @param A Matrix subtrahend
 * @return QMat Operation result
 */
QMat QMat::operator- ( const QMat & A ) const
{
	Q_ASSERT ( equalSize ( *this, A ));
	QMat C ( rows,cols );
#ifdef COMPILE_IPP
	ippmSub_mm_32f ( toDataConst(), cols*sizeof ( T ), sizeof ( T ), A.toDataConst(), cols*sizeof ( T ), sizeof ( T ), C.toData(), cols*sizeof ( T ), sizeof ( T ), cols, rows );
#else
 	for(int r=0; r<A.rows; r++)
 		for(int c=0; c<A.cols; c++)
 			C(r, c) = A(r,c) - operator()(r, c);
#endif	
	return C;
}
Exemple #10
0
/**
 * \brief Construct a diagonal matrix 
 *
 * Use diagonal values to create a new diagonal matrix
 * @param d Matrix to get diagonal values
 * @return QMat new diagonal matrix
 */
QMat QMat::diagonal ( const QMat & d )
{
	QMat R ( d.nRows(),d.nRows() );
	for (int i=0; i<d.nRows(); i++)
	{
		for (int j=0; j<d.nCols(); j++)
		{
			R(i,j) = 0;
		}
	}
	for ( int i=0; i < d.nRows(); i++ )
		R ( i,i ) = d ( i );
	return R;
}
Exemple #11
0
QMat RMat::QMat::makeDefPos()
{
	QVec vals ( rows,0. );
	QMat V = eigenValsVectors ( vals );
	//V.print("autovectores originales");
	for ( int i=0; i< rows; i++ )
	{
		if ( vals ( i ) <= 0. )
			vals ( i ) = 0.0000001;
	}
	QMat DD = QMat::makeDiagonal ( vals );
	QMat R = ( V * ( DD * V.transpose() ) );

	return R;
}
Exemple #12
0
QMat QMat::invert( ) const
{
	Q_ASSERT( isSquare() );
	QMat R ( rows, cols );
#ifdef COMPILE_IPP
	T pBuffer[cols*cols+cols];
	IppStatus status = ippmInvert_m_32f ( getReadData(), cols*sizeof ( T ), sizeof ( T ), pBuffer, R.toData(), cols*sizeof ( T ), sizeof ( T ), cols );
#else
	int status =1;
	if(determinant()!=0)
	{
		status=0;
		gsl_matrix *u = *this;
		gsl_vector *s = gsl_vector_alloc (cols);
		gsl_matrix *v = gsl_matrix_alloc (cols,cols);
		gsl_vector *work = gsl_vector_alloc (cols);
		
		gsl_matrix *X = gsl_matrix_alloc (cols,cols);
		gsl_linalg_SV_decomp_mod(u, X, v, s, work);
		gsl_matrix_free(X);

		// pasamos de vuelta:
		QMat U = u;
		QMat V = v;
		gsl_matrix_free(u);
		gsl_matrix_free(v);
		gsl_vector_free(work);
		
		QMat S = QMat::zeros(rows,cols);
		for (int i = 0; i < cols; i++)
			S(i,i) = 1 / gsl_vector_get(s, i);

		gsl_vector_free(s);
		return V * S * U.transpose();
	}
#endif
	if ( status == 0 )
		return R;
	else
	{
		QString ex= "QMat::invert() - Singular matrix";
		throw ex;
	}
}
Exemple #13
0
QMat RMat::QMat::matSqrt( )
{
	Q_ASSERT( isSquare() );
	//QMat T = makeDefPos();
	QVec vals ( rows );
	QMat V = eigenValsVectors ( vals );
	//V.print("autovectores");
	QMat VI = V.invert();
	//VI.print("VI");
	QMat D = VI * ( ( *this ) * V );
	for ( int i=0; i<rows;i++ )
		for ( int j=0;j<cols;j++ )
			if ( i != j ) D ( i,j ) =0.;
			else D ( i,j ) = ::sqrt ( fabs ( D ( i,j ) ) );
	//D.print("D");
	QMat R = ( V * ( D * VI ) );
	return R;

}
Exemple #14
0
QMat RMat::QMat::eigenValsVectors ( QVec & vals )
{
	if ( isSquare() and ( vals.size() ==cols ) )
	{
		QMat R ( rows,cols,0.);
#ifdef COMPILE_IPP
			T valsIm[cols];
			int SizeBytes;
			ippmEigenValuesVectorsGetBufSize_32f(cols, &SizeBytes);
			Ipp8u pBuffer[SizeBytes];
			IppStatus status = ippmEigenValuesVectorsRight_m_32f (toData(), cols*sizeof(T), sizeof(T), R.toData(), cols*sizeof(T), sizeof(T), vals.getWriteData(),valsIm, cols, pBuffer); 

			if ( status == ippStsNoErr )
				return R;
			else
			{
				printf ( "EigenValsVectors error: %d, %s\n", status, ippGetStatusString ( status ) );
				( *this ).print ( "this" );
				QString s="QMat::eigenVectors() - Error returned by IPP"; throw s;
			}
#else
// 			qFatal("eigen values using Eigen has not been properly tested yet");
			double data[this->getDataSize()];
			const T *dataBuffer = this->getReadData();
			for(int i = 0; i < this->getDataSize(); i++)
				data[i] = (double)dataBuffer[i];

			gsl_matrix_view m = gsl_matrix_view_array (data, rows,rows);
			gsl_vector *eval = gsl_vector_alloc (rows);
			gsl_matrix *evec = gsl_matrix_alloc (rows, rows);

			gsl_eigen_symmv_workspace * w = gsl_eigen_symmv_alloc (rows);
			gsl_eigen_symmv (&m.matrix, eval, evec, w);
			gsl_eigen_symmv_free (w);
			gsl_eigen_symmv_sort (eval, evec, GSL_EIGEN_SORT_ABS_DESC);

			for(int i=0;i<rows;i++)
				vals(i) = gsl_vector_get(eval,i);
			QMat P(evec);
			
			gsl_vector_free (eval);
			gsl_matrix_free (evec);

			return P;
#endif
	}
	QString s="QMat::EigenValsVectors() - Not Square Matrix"; throw s;
	return QMat();
}
Exemple #15
0
/**
 * \brief Multiplies a n-column vector times a m-row vector to generate a nxm matrix
 * @param vector vector to play the rol of row vector
 * @return resulting QMat matrix
 */
QMat QVec::externProduct(const QVec & vector) const
{
	Q_ASSERT(size() == vector.size());

	const int s = size();
	QMat C ( size(), vector.size() );
#ifdef COMPILE_IPP
	ippmMul_mm_32f ( getReadData(), s * sizeof ( T ), sizeof ( T ), s , s , vector.getReadData(), vector.size() * sizeof ( T ), sizeof ( T ), vector.size() , vector.size() , C.getWriteData(), vector.size() * sizeof ( T ), sizeof ( T ) );
#else
	for(int r=0;r<s;r++)
		for(int c=0;c<vector.size();c++)
			C(r,c) = this->operator()(r) * vector(c);
#endif
	return C;
}
Exemple #16
0
void DMRGCat::SuperBlock::getReNormU(QMat& U, BlockQBase& UBase)const{
	QMat waveMat;
	GsWave.wave2QMat(PToS->QSpace, PToM->QSpace, PToN->QSpace, PToE->QSpace, waveMat);
	waveMat.getReNormUAndBase(Para->getD(), U, UBase);
}
Exemple #17
0
int QMat::minDim ( const QMat &A )
{
	return qMin ( A.nRows(), A.nCols() );
}
Exemple #18
0
int QMat::maxDim ( const QMat &A )
{
	return qMax ( A.nRows(), A.nCols() );
}
Exemple #19
0
bool QMat::isSquare ( const QMat &A ) const
{
	return ( A.nRows() == A.nCols() );
}
Exemple #20
0
bool RMat::QMat::is3ColumnVector(const QMat & A) const
{
	return (A.nRows() == 3 and A.nCols() == 1);
}
Exemple #21
0
QMat RMat::QMat::zeros(const int m, const int n)
{
	QMat R ( m, n );
	R.set(0.);
	return R;
}
Exemple #22
0
QMat QMat::ones ( int m, int n )
{
	QMat R ( m, n );
	R.ones();
	return R;
}
Exemple #23
0
QMat QMat::identity(int m)
{
	QMat R (m, m);
	R.makeIdentity();
	return R;
}