Exemple #1
0
/*!
    Returns the transformation matrix to apply to the projection matrix
    to present the scene as viewed from the camera position.

    The \a aspectRatio specifies the aspect ratio of the window the
    camera view is being displayed in.  An \a aspectRatio of 1 indicates that
    the window is square.  An \a aspectRatio greater than 1 indicates that
    the window is wider than it is high.  An \a aspectRatio less than 1
    indicates that the window is higher than it is wide.

    \sa apply(), modelViewMatrix()
*/
QMatrix4x4 Camera::projectionMatrix(qreal aspectRatio) const
{
    Q_D(const Camera);
    QMatrix4x4 m;
    if (!d->adjustForAspectRatio)
        aspectRatio = 1.0f;
    if (d->screenRotation != 0) {
        m.rotate((qreal)(d->screenRotation), 0.0f, 0.0f, 1.0f);
        if (d->screenRotation == 90 || d->screenRotation == 270) {
            if (aspectRatio != 0.0f)
                aspectRatio = 1.0f / aspectRatio;
        }
    }
    if (d->projectionType == Perspective && d->fieldOfView != 0.0f) {
        m.perspective(d->fieldOfView, aspectRatio,
                      d->nearPlane, d->farPlane);
    } else {
        qreal halfWidth = d->viewSize.width() / 2.0f;
        qreal halfHeight = d->viewSize.height() / 2.0f;
        if (aspectRatio > 1.0f) {
            halfWidth *= aspectRatio;
        } else if (aspectRatio > 0.0f && aspectRatio < 1.0f) {
            halfHeight /= aspectRatio;
        }
        if (d->projectionType == Perspective) {
            m.frustum(-halfWidth, halfWidth, -halfHeight, halfHeight,
                      d->nearPlane, d->farPlane);
        } else {
            m.ortho(-halfWidth, halfWidth, -halfHeight, halfHeight,
                    d->nearPlane, d->farPlane);
        }
    }
    return m;
}
Exemple #2
0
QMatrix4x4 PerspectiveCamera::getProjMatrix(int width, int height)
{
    // can probably remove this now
    float pixdx = 0;
    float pixdy = 0;

    // taken from gluPerspective docs
    float aspect = (float)width / (float)height;
    float zNear = .1f;
    float zFar = 100.0f;

    float top = tan(fov()*3.14159/360.0) * zNear;
    //float top = tan(fov*0.5) * zNear;
    float bottom = -top;

    float left = aspect * bottom;
    float right = aspect * top;

    //int viewport[4];
    //glGetIntegerv(GL_VIEWPORT, viewport);
    float xwsize = right - left;
    float ywsize = top - bottom;

    // MAINT: width/height should be pulled from viewport if it doesn't match
    // size of render
    float dx = -(pixdx * xwsize / (float)width);
    float dy = -(pixdy * ywsize / (float)height);

    QMatrix4x4 m;
    m.frustum(left+dx, right+dx, bottom+dy, top+dy, zNear, zFar);
    //m.perspective(PerspectiveCamera->fov(), aspect, zNear, zFar);
    return m;
}
Exemple #3
0
void CoverSwitchEffect::paintScreen(int mask, QRegion region, ScreenPaintData& data)
{
    effects->paintScreen(mask, region, data);

    if (mActivated || stop || stopRequested) {
        QMatrix4x4 origProjection;
        QMatrix4x4 origModelview;
        ShaderManager *shaderManager = ShaderManager::instance();
        if (effects->numScreens() > 1) {
            // unfortunatelly we have to change the projection matrix in dual screen mode
            QRect fullRect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
            float fovy = 60.0f;
            float aspect = 1.0f;
            float zNear = 0.1f;
            float zFar = 100.0f;
            float ymax = zNear * tan(fovy  * M_PI / 360.0f);
            float ymin = -ymax;
            float xmin =  ymin * aspect;
            float xmax = ymax * aspect;
            float xTranslate = 0.0;
            float yTranslate = 0.0;
            float xminFactor = 1.0;
            float xmaxFactor = 1.0;
            float yminFactor = 1.0;
            float ymaxFactor = 1.0;
            if (area.x() == 0 && area.width() != fullRect.width()) {
                // horizontal layout: left screen
                xminFactor = (float)area.width() / (float)fullRect.width();
                xmaxFactor = ((float)fullRect.width() - (float)area.width() * 0.5f) / ((float)fullRect.width() * 0.5f);
                xTranslate = (float)fullRect.width() * 0.5f - (float)area.width() * 0.5f;
            }
            if (area.x() != 0 && area.width() != fullRect.width()) {
                // horizontal layout: right screen
                xminFactor = ((float)fullRect.width() - (float)area.width() * 0.5f) / ((float)fullRect.width() * 0.5f);
                xmaxFactor = (float)area.width() / (float)fullRect.width();
                xTranslate = (float)fullRect.width() * 0.5f - (float)area.width() * 0.5f;
            }
            if (area.y() == 0 && area.height() != fullRect.height()) {
                // vertical layout: top screen
                yminFactor = ((float)fullRect.height() - (float)area.height() * 0.5f) / ((float)fullRect.height() * 0.5f);
                ymaxFactor = (float)area.height() / (float)fullRect.height();
                yTranslate = (float)fullRect.height() * 0.5f - (float)area.height() * 0.5f;
            }
            if (area.y() != 0 && area.height() != fullRect.height()) {
                // vertical layout: bottom screen
                yminFactor = (float)area.height() / (float)fullRect.height();
                ymaxFactor = ((float)fullRect.height() - (float)area.height() * 0.5f) / ((float)fullRect.height() * 0.5f);
                yTranslate = (float)fullRect.height() * 0.5f - (float)area.height() * 0.5f;
            }
            QMatrix4x4 projection;
            projection.frustum(xmin * xminFactor, xmax * xmaxFactor, ymin * yminFactor, ymax * ymaxFactor, zNear, zFar);
            QMatrix4x4 modelview;
            modelview.translate(xTranslate, yTranslate, 0.0);
            if (shaderManager->isShaderBound()) {
                GLShader *shader = shaderManager->pushShader(ShaderManager::GenericShader);
                origProjection = shader->getUniformMatrix4x4("projection");
                origModelview = shader->getUniformMatrix4x4("modelview");
                shader->setUniform("projection", projection);
                shader->setUniform("modelview", origModelview * modelview);
                shaderManager->popShader();
            } else {
#ifndef KWIN_HAVE_OPENGLES
                glMatrixMode(GL_PROJECTION);
                pushMatrix();
                loadMatrix(projection);
                glMatrixMode(GL_MODELVIEW);
                pushMatrix(modelview);
#endif
            }
        }

        QList< EffectWindow* > tempList = currentWindowList;
        int index = tempList.indexOf(selected_window);
        if (animation || start || stop) {
            if (!start && !stop) {
                if (direction == Right)
                    index++;
                else
                    index--;
                if (index < 0)
                    index = tempList.count() + index;
                if (index >= tempList.count())
                    index = index % tempList.count();
            }
            foreach (Direction direction, scheduled_directions) {
                if (direction == Right)
                    index++;
                else
                    index--;
                if (index < 0)
                    index = tempList.count() + index;
                if (index >= tempList.count())
                    index = index % tempList.count();
            }
        }
        int leftIndex = index - 1;
        if (leftIndex < 0)
            leftIndex = tempList.count() - 1;
        int rightIndex = index + 1;
        if (rightIndex == tempList.count())
            rightIndex = 0;

        EffectWindow* frontWindow = tempList[ index ];
        leftWindows.clear();
        rightWindows.clear();

        bool evenWindows = (tempList.count() % 2 == 0) ? true : false;
        int leftWindowCount = 0;
        if (evenWindows)
            leftWindowCount = tempList.count() / 2 - 1;
        else
            leftWindowCount = (tempList.count() - 1) / 2;
        for (int i = 0; i < leftWindowCount; i++) {
            int tempIndex = (leftIndex - i);
            if (tempIndex < 0)
                tempIndex = tempList.count() + tempIndex;
            leftWindows.prepend(tempList[ tempIndex ]);
        }
        int rightWindowCount = 0;
        if (evenWindows)
            rightWindowCount = tempList.count() / 2;
        else
            rightWindowCount = (tempList.count() - 1) / 2;
        for (int i = 0; i < rightWindowCount; i++) {
            int tempIndex = (rightIndex + i) % tempList.count();
            rightWindows.prepend(tempList[ tempIndex ]);
        }

        if (reflection) {
            // no reflections during start and stop animation
            // except when using a shader
            if ((!start && !stop) || ShaderManager::instance()->isValid())
                paintScene(frontWindow, leftWindows, rightWindows, true);
            glEnable(GL_BLEND);
            glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
#ifndef KWIN_HAVE_OPENGLES
            glPolygonMode(GL_FRONT, GL_FILL);
#endif
            QRect fullRect = effects->clientArea(FullArea, activeScreen, effects->currentDesktop());
            // we can use a huge scale factor (needed to calculate the rearground vertices)
            // as we restrict with a PaintClipper painting on the current screen
            float reflectionScaleFactor = 100000 * tan(60.0 * M_PI / 360.0f) / area.width();
            float vertices[] = {
                -area.width() * 0.5f, area.height(), 0.0,
                area.width() * 0.5f, area.height(), 0.0,
                (float)area.width()*reflectionScaleFactor, area.height(), -5000,
                -(float)area.width()*reflectionScaleFactor, area.height(), -5000
            };
            // foreground
            if (start) {
                mirrorColor[0][3] = timeLine.currentValue();
            } else if (stop) {
                mirrorColor[0][3] = 1.0 - timeLine.currentValue();
            } else {
                mirrorColor[0][3] = 1.0;
            }

            int y = 0;
            // have to adjust the y values to fit OpenGL
            // in OpenGL y==0 is at bottom, in Qt at top
            if (effects->numScreens() > 1) {
                QRect fullArea = effects->clientArea(FullArea, 0, 1);
                if (fullArea.height() != area.height()) {
                    if (area.y() == 0)
                        y = fullArea.height() - area.height();
                    else
                        y = fullArea.height() - area.y() - area.height();
                }
            }
            // use scissor to restrict painting of the reflection plane to current screen
            glScissor(area.x(), y, area.width(), area.height());
            glEnable(GL_SCISSOR_TEST);

            if (shaderManager->isValid() && m_reflectionShader->isValid()) {
                shaderManager->pushShader(m_reflectionShader);
                QMatrix4x4 windowTransformation;
                windowTransformation.translate(area.x() + area.width() * 0.5f, 0.0, 0.0);
                m_reflectionShader->setUniform("windowTransformation", windowTransformation);
                m_reflectionShader->setUniform("u_frontColor", QVector4D(mirrorColor[0][0], mirrorColor[0][1], mirrorColor[0][2], mirrorColor[0][3]));
                m_reflectionShader->setUniform("u_backColor", QVector4D(mirrorColor[1][0], mirrorColor[1][1], mirrorColor[1][2], mirrorColor[1][3]));
                // TODO: make this one properly
                QVector<float> verts;
                QVector<float> texcoords;
                verts.reserve(18);
                texcoords.reserve(12);
                texcoords << 1.0 << 0.0;
                verts << vertices[6] << vertices[7] << vertices[8];
                texcoords << 1.0 << 0.0;
                verts << vertices[9] << vertices[10] << vertices[11];
                texcoords << 0.0 << 0.0;
                verts << vertices[0] << vertices[1] << vertices[2];
                texcoords << 0.0 << 0.0;
                verts << vertices[0] << vertices[1] << vertices[2];
                texcoords << 0.0 << 0.0;
                verts << vertices[3] << vertices[4] << vertices[5];
                texcoords << 1.0 << 0.0;
                verts << vertices[6] << vertices[7] << vertices[8];
                GLVertexBuffer *vbo = GLVertexBuffer::streamingBuffer();
                vbo->reset();
                vbo->setData(6, 3, verts.data(), texcoords.data());
                vbo->render(GL_TRIANGLES);

                shaderManager->popShader();
            } else {
#ifndef KWIN_HAVE_OPENGLES
                glPushMatrix();
                if (effects->numScreens() > 1 && area.x() != fullRect.x()) {
                    // have to change the reflection area in horizontal layout and right screen
                    glTranslatef(-area.x(), 0.0, 0.0);
                }
                glTranslatef(area.x() + area.width() * 0.5f, 0.0, 0.0);
                glColor4fv(mirrorColor[0]);
                glBegin(GL_POLYGON);
                glVertex3f(vertices[0], vertices[1], vertices[2]);
                glVertex3f(vertices[3], vertices[4], vertices[5]);
                // rearground
                glColor4fv(mirrorColor[1]);
                glVertex3f(vertices[6], vertices[7], vertices[8]);
                glVertex3f(vertices[9], vertices[10], vertices[11]);
                glEnd();

                glPopMatrix();
#endif
            }
            glDisable(GL_SCISSOR_TEST);
            glDisable(GL_BLEND);
        }
        paintScene(frontWindow, leftWindows, rightWindows);

        if (effects->numScreens() > 1) {
            if (shaderManager->isShaderBound())  {
                GLShader *shader = shaderManager->pushShader(ShaderManager::GenericShader);
                shader->setUniform("projection", origProjection);
                shader->setUniform("modelview", origModelview);
                shaderManager->popShader();
            } else {
#ifndef KWIN_HAVE_OPENGLES
                popMatrix();
                // revert change of projection matrix
                glMatrixMode(GL_PROJECTION);
                popMatrix();
                glMatrixMode(GL_MODELVIEW);
#endif
            }
        }

        // Render the caption frame
        if (windowTitle) {
            double opacity = 1.0;
            if (start)
                opacity = timeLine.currentValue();
            else if (stop)
                opacity = 1.0 - timeLine.currentValue();
            if (animation)
                captionFrame->setCrossFadeProgress(timeLine.currentValue());
            captionFrame->render(region, opacity);
        }

        if ((thumbnails && (!dynamicThumbnails ||
                           (dynamicThumbnails && currentWindowList.size() >= thumbnailWindows)))
                && !(start || stop)) {
            BoxSwitchEffectProxy *proxy =
                static_cast<BoxSwitchEffectProxy*>(effects->getProxy("boxswitch"));
            if (proxy)
                proxy->paintWindowsBox(region);
        }
    }
Exemple #4
0
void CubeWindow::paintGL()
{
    float timeSinceLastFrame;

    if (m_lastFrameTime == -1) {
        m_lastFrameTime = QDateTime::currentMSecsSinceEpoch();
        timeSinceLastFrame = 0;
    } else {
        qint64 timeNow = QDateTime::currentMSecsSinceEpoch();
        timeSinceLastFrame = timeNow - m_lastFrameTime;
        m_lastFrameTime = timeNow;
    }
    float rotationScale = timeSinceLastFrame / (ROTATION_TIME * 1000.0f);
    float xAngle = 0.0f, yAngle = 0.0f;

    switch(m_currentDirection) {
    case RIGHT:
        yAngle = rotationScale * 360.0f;
        break;
    case LEFT:
        yAngle = - rotationScale * 360.0f;
        break;
    case UP:
        xAngle = - rotationScale * 360.0f;
        break;
    case DOWN:
        xAngle = rotationScale * 360.0f;
        break;
    }

    QMatrix4x4 perspectiveMatrix;
    perspectiveMatrix.frustum(-0.75f, 0.75f, -0.75f, 0.75f, 1.0f, 3.0f);

    QMatrix4x4 matrix;
    matrix.translate(0, 0, -2);
    matrix.rotate(xAngle, 1.0f, 0.0f, 0.0f);
    matrix.rotate(yAngle, 0.0f, 1.0f, 0.0f);
    matrix.translate(0, 0, 2);
    for (int i = 0; i < CUBE_VERTICES; i += 4) {
        QVector4D vector(cubeVertices[i], cubeVertices[i + 1],
                cubeVertices[i + 2], cubeVertices[i + 3]);
        vector = matrix * vector;
        cubeVertices[i] = vector.x();
        cubeVertices[i + 1] = vector.y();
        cubeVertices[i + 2] = vector.z();
        cubeVertices[i + 3] = vector.w();
    }

    glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
    glClearDepthf(1.0f);
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

    m_program->bind();
    m_program->setUniformValue(m_perspectiveMatrixUniform, perspectiveMatrix);

    m_program->enableAttributeArray(m_posAtr);
    m_program->setAttributeArray(m_posAtr, cubeVertices, 4);
    m_program->enableAttributeArray(m_colorAtr);
    m_program->setAttributeArray(m_colorAtr, colorData, 4);

    glDrawArrays(GL_TRIANGLES, 0, 3 * 12);

    m_program->disableAttributeArray(m_posAtr);
    m_program->disableAttributeArray(m_colorAtr);

    m_program->release();
}