Exemple #1
0
	double operator()(Individual& ind, RNG& rng, EA& ea) {
        // get the phenotype (markov network):
        typename EA::phenotype_type &N = ealib::phenotype(ind, ea);

        // probably want to reset the RNG for the markov network:
        N.reset(rng.seed());

        // now, set the values of the bits in the input vector:
        double f=0.0;
        for(std::size_t i=0; i<128; ++i) {
            // allocate space for the inputs:
            std::vector<int> inputs;//(net.ninput_states(), 0);
            inputs.push_back(rng.bit());
            inputs.push_back(rng.bit());
            
            // update the network n times:
            N.clear();
            N.update(inputs);
            
            if(*N.begin_output() == (inputs[0] ^ inputs[1])) {
                ++f;
            }
        }

        // and return some measure of fitness:
        return f;
    }
Exemple #2
0
Status GetRandomMatrix(int n, int ix, SpdMatrixT& orig, SpdMatrixT& reduced)
{
	typedef std::mt19937 RNG;   // the Mersenne Twister with a popular choice of parameters 
								//	http://stackoverflow.com/questions/7114043/random-number-generation-in-c11-how-to-generate-how-do-they-work
	std::uniform_int_distribution<int> dist(-5, 5);
	Matrix2D tmp(n);
	RNG rng;
	rng.seed();
	for( int i = 0; i < n; ++i )
	{
		tmp[i].resize(2*n);
		for( int j = 0; j < 2*n; ++j )
		{
			tmp[i][j] = dist(rng);
		}
	}

	Size_T ij = 0;
	for( int i = 0; i < n; ++i )
	{
		for( int j = 0; j <= i; ++j )
		{
			double s = 0.0;
			for( int k = 0; k < 2*n; ++k )
			{
				s += tmp[i][k] * tmp[j][k]; 
			}
			orig[ij++] = s;
		}
	}

	Compress(n, ix, orig, reduced);
	return Status::Success;
}
Exemple #3
0
	double operator()(Individual& ind, RNG& rng, EA& ea) {
        typedef sequence_matrix<data::db_type::record_type::vector_type> matrix_type;
        typedef retina2_iterator<matrix_type> iterator_type;
        
        // lazy load of the mnist data (so we don't have to wait unless we
        // absolutely have to).
        data::instance()->initialize(get<EVOCADX_TRAIN_FILE>(ea), get<EVOCADX_TEST_FILE>(ea));
        
        // get a markov network:
        typename EA::phenotype_type &N = ealib::phenotype(ind, ea);
        int seed = rng.seed(); // save the seed
        
        // don't let empty networks play:
        if(N.ngates() == 0) {
            return 0.0;
        }
        
        double w=0.0; // accumulated fitness

        // analyze the lidx records:
        for(int i=0; i<get<EVOCADX_EXAMINE_N>(ea); ++i) {
            N.reset(seed);
            N.clear();
            
            // build a matrix facade for the lix record we're looking at:
            data::db_type::record_type& R=data::instance()->training[i];
            matrix_type M(R.data,
                          data::instance()->training.dim(0),
                          data::instance()->training.dim(1));
            
            // now build a retina iterator over this matrix:
            iterator_type ci(M, get<EVOCADX_FOVEA_SIZE>(ea), get<EVOCADX_RETINA_SIZE>(ea));
            ci.position(M.size1()/2, M.size2()/2);

            int updates = get<mkv::MKV_UPDATE_N>(ea);
            for(int j=0; j<updates; ++j) {
                N.update(ci);
                ci.move(algorithm::bits2ternary(N.begin_output()), algorithm::bits2ternary(N.begin_output()+2));
            }
            
            std::vector<int> D;
            algorithm::range_pair2indices(N.begin_output()+4, N.end_output(), std::back_inserter(D));

            if((D.size() == 1) && (D[0] == R.label)) {
                w += 1.0;
            }
        }

        return w;
    }
Exemple #4
0
int main( int argc, char** argv )
{

	RNG rng;

	std::vector<uint32_t> seeds;
	seeds.push_back( 0x01234567 );
	seeds.push_back( 0xFACEFEED );
	seeds.push_back( 0x666DEAD0 );
	seeds.push_back( 0xDEADC0DE );

	TSP<130> ch130;
	ch130.LoadFromFile( "data/ch130.tsp" );
	printf("===GREEDY===\n");
	ch130.Greedy().Debug();
	printf("************\n");

	TSP<279> a279;
	a279.LoadFromFile( "data/a280.tsp" );
	printf("===GREEDY===\n");
	a279.Greedy().Debug();
	printf("************\n");

	TSP<654> p654;
	p654.LoadFromFile( "data/p654.tsp" );
	printf("===GREEDY===\n");
	p654.Greedy().Debug();
	printf("************\n");

	rng.seed( 0xFACEFEED );

	MH::Hormigas::SH<TSP<130>> TSP_sh130(
			ch130,
			rng,
			5,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1		// factor de evaporación
	);


	MH::Hormigas::SH<TSP<279>> TSP_sh279(
			a279,
			rng,
			10,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1		// factor de evaporación
	);
	MH::Hormigas::SH<TSP<654>> TSP_sh654(
			p654,
			rng,
			15,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1		// factor de evaporación
	);


	MH::Hormigas::SHE<TSP<130>> TSP_she130(
			ch130,
			rng,
			5,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1		// factor de evaporación
	);
	MH::Hormigas::SHE<TSP<279>> TSP_she279(
			a279,
			rng,
			10,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1		// factor de evaporación
	);
	MH::Hormigas::SHE<TSP<654>> TSP_she654(
			p654,
			rng,
			15,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1		// factor de evaporación
	);



	MH::Hormigas::SCH<TSP<130>> TSP_sch130(
			ch130,
			rng,
			5,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1f,		// factor de evaporación
			0.1f,
			0.98f
	);
	MH::Hormigas::SCH<TSP<279>> TSP_sch279(
			a279,
			rng,
			10,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1f,		// factor de evaporación
			0.1f,
			0.98f
	);
	MH::Hormigas::SCH<TSP<654>> TSP_sch654(
			p654,
			rng,
			15,		// minutos de funcionamiento
			20,		// numero de hormigas
			1,		// exponente de feromonas
			2,		// exponente de heuristica
			0.1f,		// factor de evaporación
			0.1f,
			0.98f
	);


	printf("HORMIGAS BASICO\n==================\n");
	test( ch130, TSP_sh130,  5, true );
	test( a279,  TSP_sh279,  5, true );
	test( p654,  TSP_sh654,  5, true );

	printf("HORMIGAS ELITE\n==================\n");
	test( ch130, TSP_she130, 5, true );
	test( a279,  TSP_she279, 5, true );
	test( p654,  TSP_she654, 5, true );

	printf("HORMIGAS COLONIA\n==================\n");
	test( ch130, TSP_sch130, 5, true );
	test( a279,  TSP_sch279, 5, true );
	test( p654,  TSP_sch654, 5, true );

	return 0;
}
Exemple #5
0
RNG*
JKISS32::split() {
	RNG* k = new JKISS32();
	k->seed(this);
	return k;
}
    double operator()(Individual& ind, RNG& rng, EA& ea) {

        int max_x = get<X_SIZE>(ea,10);
        int max_y = get<Y_SIZE>(ea,10);
        int grid_size = max_x * max_y;
        vector<int> agent_pos (grid_size, -1);
        vector<int> exec_order (grid_size);
        double f=0.0;


        // get the "prototype" phenotype (markov network):
        typename EA::phenotype_type &N = ealib::phenotype(ind, ea);

        // start with one agent...
        vector<typename EA::phenotype_type> as; //
        for (int q=0; q<get<NUM_START_AGENTS>(ea,1); q++) {
            as.push_back(N); //grid_size, N); // my agents or networks
            agent_pos[q] = q;
            as[q].reset(rng.seed());
        }

        for (int i=0; i<grid_size; ++i) {
            exec_order[i] = i;
        }

        std::vector< std::vector<int> > cell_color(grid_size, std::vector<int>(2, 0));
        update_world_stigmergic_communication_N(get<WORLD_UPDATES>(ea,10), agent_pos, exec_order, as, cell_color, ind, rng, ea);


        double f1_01 = 1.0;
        double f2_11 = 1.0;
        double f3_10 = 1.0;


        // Compute fitness.
        for (int xy = 0; xy<grid_size; xy++) {

            // set the input states...
            int agent_x = floor(xy / max_x);
            int agent_y = xy % max_x;

            int p = agent_pos[xy];

            if (p == -1) {
                continue;
            }



            if (agent_x < (floor(max_x) / 2 )) {
                if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 0)) {
                    ++f3_10;
                }

            } else if (agent_x >= (floor(max_x) / 2 )) {
                if ((agent_x ==0) || (agent_y == 0) || (agent_x == (max_x -1)) || (agent_y == (max_y -1))) {
                    if (((as[p]).output(0) == 0) &&  ((as[p]).output(1) == 1)) {
                        ++f1_01;
                    }
                } else if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 1)) {
                    ++f2_11;
                }
            }




        }


        //f = f1_01 * f2_11 * f3_10;
        double e = f1_01 + f2_11 + f3_10 - 3;
        f = pow(1.5, e);

        return f;
    }
Exemple #7
0
 double operator()(Individual& ind, RNG& rng, EA& ea) {
     
     int max_x = get<X_SIZE>(ea,10);
     int max_y = get<Y_SIZE>(ea,10);
     int grid_size = max_x * max_y;
     vector<int> agent_pos (grid_size, -1);
     vector<int> exec_order (grid_size);
     double f=0.0;
     
     
     // get the "prototype" phenotype (markov network):
     typename EA::phenotype_type &N = ealib::phenotype(ind, ea);
     vector<typename EA::phenotype_type> as; //
     
     
     for (int q=0; q<get<NUM_START_AGENTS>(ea,1); q++) {
         as.push_back(N); //grid_size, N); // my agents or networks
         agent_pos[q] = q;
         as[q].reset(rng.seed());
     }
     
     for (int i=0; i<grid_size; ++i) {
         exec_order[i] = i;
     }
     
     
     update_world_N(get<WORLD_UPDATES>(ea,10), agent_pos, exec_order, as, ind, rng, ea);
     
     double f1_10 = 1.0;
     double f1_01 = 1.0;
     double f1_11 = 1.0;
     
     double f2_10 = 1.0;
     double f2_01 = 1.0;
     double f2_11 = 1.0;
     
     double f3_10 = 1.0;
     double f3_01 = 1.0;
     double f3_11 = 1.0;
     
     
     // Compute fitness.
     for (int xy = 0; xy<grid_size; xy++) {
         
         // set the input states...
         int agent_x = floor(xy / max_x);
         int agent_y = xy % max_x;
         
         int p = agent_pos[xy];
         
         if (p == -1) {
             continue;
         }
         
         if (agent_x <= (floor(max_x) / 3 )) {
             if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 0)){
                 ++f1_10;
             } else if (((as[p]).output(0) == 0) &&  ((as[p]).output(1) == 1)){
                 ++f1_01;
             } else if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 1)){
                 ++f1_11;
             }
             
         } else if ((agent_x > (floor(max_x) / 3))  && (agent_x < ((floor(max_x) / 3 * 2)))) {
             if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 0)){
                 ++f2_10;
             } else if (((as[p]).output(0) == 0) &&  ((as[p]).output(1) == 1)){
                 ++f2_01;
             } else if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 1)){
                 ++f2_11;
             }
         } else if (agent_x >= ((floor(max_x) / 3 * 2))) {
             if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 0)){
                 ++f3_10;
             } else if (((as[p]).output(0) == 0) &&  ((as[p]).output(1) == 1)){
                 ++f3_01;
             } else if (((as[p]).output(0) == 1) &&  ((as[p]).output(1) == 1)){
                 ++f3_11;
             }
         }
         
     }
     
     accumulator_set<double, stats<tag::max> > fs;
     
     double fx = f1_10 * f2_01 * f3_11;
     fs(fx);
     
     fx = f1_10 * f2_11 * f3_01;
     fs(fx);
     
     fx = f1_01 * f2_10 * f3_11;
     fs(fx);
     
     fx = f1_01 * f2_11 * f3_10;
     fs(fx);
     
     fx = f1_11 * f2_01 * f3_10;
     fs(fx);
     
     fx = f1_11 * f2_10 * f3_01;
     fs(fx);
     
     f = boost::accumulators::max(fs);
     return f;
 }
    double operator()(Individual& ind, RNG& rng, EA& ea) {
        
        int max_x = get<X_SIZE>(ea,10);
        int max_y = get<Y_SIZE>(ea,10);
        int grid_size = max_x * max_y;
        vector<int> agent_pos (grid_size, -1);
        vector<int> exec_order (grid_size);
        double f=0.0;
        
        
        // get the "prototype" phenotype (markov network):
        typename EA::phenotype_type &N = ealib::phenotype(ind, ea);
        vector<typename EA::phenotype_type> as; //
        
        
        for (int q=0; q<get<NUM_START_AGENTS>(ea,1); q++) {
            as.push_back(N); //grid_size, N); // my agents or networks
            agent_pos[q] = q;
            as[q].reset(rng.seed());
        }
        
        for (int i=0; i<grid_size; ++i) {
            exec_order[i] = i;
        }
        
        
        std::vector< std::vector<int> > cell_color(grid_size, std::vector<int>(2, 0));
        std::vector<int> apop_count(grid_size,0);
        update_world_stigmergic_communication_apop_N(get<WORLD_UPDATES>(ea,10), agent_pos, exec_order, as, cell_color, apop_count, ind, rng, ea);
        
        
        int fit_func = get<BODYPLAN>(ea,0) ;
        switch(fit_func) {
            case 0:
                f = body_plan0(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 1:
                f = body_plan1(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 2:
                f = body_plan2(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 3:
                f = body_plan3(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 4:
                f = body_plan4(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 5:
                f = body_plan5(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 6:
                f = body_plan6(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 7:
                f = body_plan7(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 8:
                f = body_plan8(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 9:
                f = body_plan9(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 10:
                f = body_plan10(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 11:
                f = body_plan11(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 12:
                f = body_plan12(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 13:
                f = body_plan13(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 14:
                f = body_plan14(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 15:
                f = body_plan15(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 16:
                f = body_plan16(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 17:
                f = body_plan17(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 18:
                f = body_plan18(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
            case 19:
                f = body_plan19(grid_size, max_x, max_y, agent_pos, as, ea);
                break;
        }

        if (f == 0) {
            f = 1; 
        }
        return (f);
        
        
        
        
    }