void StressDivergenceTensors::computeFiniteDeformJacobian() { const RankTwoTensor I(RankTwoTensor::initIdentity); const RankFourTensor II_ijkl = I.mixedProductIkJl(I); // Bring back to unrotated config const RankTwoTensor unrotated_stress = (*_rotation_increment)[_qp].transpose() * _stress[_qp] * (*_rotation_increment)[_qp]; // Incremental deformation gradient Fhat const RankTwoTensor Fhat = (*_deformation_gradient)[_qp] * (*_deformation_gradient_old)[_qp].inverse(); const RankTwoTensor Fhatinv = Fhat.inverse(); const RankTwoTensor rot_times_stress = (*_rotation_increment)[_qp] * unrotated_stress; const RankFourTensor dstress_drot = I.mixedProductIkJl(rot_times_stress) + I.mixedProductJkIl(rot_times_stress); const RankFourTensor rot_rank_four = (*_rotation_increment)[_qp].mixedProductIkJl((*_rotation_increment)[_qp]); const RankFourTensor drot_dUhatinv = Fhat.mixedProductIkJl(I); const RankTwoTensor A = I - Fhatinv; // Ctilde = Chat^-1 - I const RankTwoTensor Ctilde = A * A.transpose() - A - A.transpose(); const RankFourTensor dCtilde_dFhatinv = -I.mixedProductIkJl(A) - I.mixedProductJkIl(A) + II_ijkl + I.mixedProductJkIl(I); // Second order approximation of Uhat - consistent with strain increment definition // const RankTwoTensor Uhat = I - 0.5 * Ctilde - 3.0/8.0 * Ctilde * Ctilde; RankFourTensor dUhatinv_dCtilde = 0.5 * II_ijkl - 1.0 / 8.0 * (I.mixedProductIkJl(Ctilde) + Ctilde.mixedProductIkJl(I)); RankFourTensor drot_dFhatinv = drot_dUhatinv * dUhatinv_dCtilde * dCtilde_dFhatinv; drot_dFhatinv -= Fhat.mixedProductIkJl((*_rotation_increment)[_qp].transpose()); _finite_deform_Jacobian_mult[_qp] = dstress_drot * drot_dFhatinv; const RankFourTensor dstrain_increment_dCtilde = -0.5 * II_ijkl + 0.25 * (I.mixedProductIkJl(Ctilde) + Ctilde.mixedProductIkJl(I)); _finite_deform_Jacobian_mult[_qp] += rot_rank_four * _Jacobian_mult[_qp] * dstrain_increment_dCtilde * dCtilde_dFhatinv; _finite_deform_Jacobian_mult[_qp] += Fhat.mixedProductJkIl(_stress[_qp]); const RankFourTensor dFhat_dFhatinv = -Fhat.mixedProductIkJl(Fhat.transpose()); const RankTwoTensor dJ_dFhatinv = dFhat_dFhatinv.innerProductTranspose(Fhat.ddet()); // Component from Jacobian derivative _finite_deform_Jacobian_mult[_qp] += _stress[_qp].outerProduct(dJ_dFhatinv); // Derivative of Fhatinv w.r.t. undisplaced coordinates const RankTwoTensor Finv = (*_deformation_gradient)[_qp].inverse(); const RankFourTensor dFhatinv_dGradu = -Fhatinv.mixedProductIkJl(Finv.transpose()); _finite_deform_Jacobian_mult[_qp] = _finite_deform_Jacobian_mult[_qp] * dFhatinv_dGradu; }
void ComputeRSphericalIncrementalStrain::computeTotalStrainIncrement(RankTwoTensor & total_strain_increment) { // Deformation gradient calculation in cylinderical coordinates RankTwoTensor A; // Deformation gradient RankTwoTensor Fbar; // Old Deformation gradient // Step through calculating the current and old deformation gradients // Only diagonal components are nonzero because this is a 1D material // Note: x_disp is the radial displacement A(0,0) = (*_grad_disp[0])[_qp](0); Fbar(0,0) = (*_grad_disp_old[0])[_qp](0); // The polar and azimuthal strains are functions of radial displacement if (!MooseUtils::relativeFuzzyEqual(_q_point[_qp](0), 0.0)) { A(1,1) = (*_disp[0])[_qp] / _q_point[_qp](0); Fbar(1,1) = _disp_old_0[_qp] / _q_point[_qp](0); } // The polar and azimuthal strains are equalivalent in this 1D problem A(2,2) = A(1,1); Fbar(2,2) = Fbar(1,1); // Gauss point deformation gradient _deformation_gradient[_qp] = A; _deformation_gradient[_qp].addIa(1.0); // very nearly A = gradU - gradUold, adapted to cylinderical coords A -= Fbar; total_strain_increment = 0.5 * (A + A.transpose()); }
Real stzRHEVPFlowRatePowerLawJ2::computeEqvStress(const RankTwoTensor & pk2_dev, const RankTwoTensor & ce) const { RankTwoTensor sdev = pk2_dev * ce; Real val = sdev.doubleContraction(sdev.transpose()); return std::pow(1.0 * val, 0.5); }
Real FlowRateModel::computeEqvStress(const RankTwoTensor & pk2_dev, const RankTwoTensor & ce) const { RankTwoTensor sdev = pk2_dev * ce; Real val = sdev.doubleContraction(sdev.transpose()); return std::pow(3.0 * val/2.0, 0.5); }
void CappedDruckerPragerCosseratStressUpdate::setStressAfterReturn(const RankTwoTensor & stress_trial, Real p_ok, Real q_ok, Real /*gaE*/, const std::vector<Real> & /*intnl*/, const yieldAndFlow & /*smoothed_q*/, const RankFourTensor & /*Eijkl*/, RankTwoTensor & stress) const { // symm_stress is the symmetric part of the stress tensor. // symm_stress = (s_ij+s_ji)/2 + de_ij tr(stress) / 3 // = q / q_trial * (s_ij^trial+s_ji^trial)/2 + de_ij p / 3 // = q / q_trial * (symm_stress_ij^trial - de_ij tr(stress^trial) / 3) + de_ij p / 3 const Real p_trial = stress_trial.trace(); RankTwoTensor symm_stress = RankTwoTensor(RankTwoTensor::initIdentity) / 3.0 * (p_ok - (_in_q_trial == 0.0 ? 0.0 : p_trial * q_ok / _in_q_trial)); if (_in_q_trial > 0) symm_stress += q_ok / _in_q_trial * 0.5 * (stress_trial + stress_trial.transpose()); stress = symm_stress + 0.5 * (stress_trial - stress_trial.transpose()); }
Real RankTwoTensor::thirdInvariant() const { RankTwoTensor s = 0.5 * deviatoric(); s += s.transpose(); Real result = 0.0; result = s(0, 0) * (s(1, 1) * s(2, 2) - s(2, 1) * s(1, 2)); result -= s(1, 0) * (s(0, 1) * s(2, 2) - s(2, 1) * s(0, 2)); result += s(2, 0) * (s(0, 1) * s(1, 2) - s(1, 1) * s(0, 2)); return result; }
Real CylindricalRankTwoAux::computeValue() { Point loc_from_center = _q_point[_qp] - _center_point; Real theta = std::atan2(loc_from_center(1), loc_from_center(0)); RankTwoTensor R; R(0, 0) = std::cos(theta); R(0, 1) = std::sin(theta); R(1, 0) = -std::sin(theta); R(1, 1) = std::cos(theta); RankTwoTensor rotated_tensor = R * _tensor[_qp] * R.transpose(); return rotated_tensor(_i, _j); }
RankTwoTensor RankTwoTensor::dthirdInvariant() const { RankTwoTensor s = 0.5 * deviatoric(); s += s.transpose(); RankTwoTensor d; Real sec_over_three = secondInvariant() / 3.0; d(0, 0) = s(1, 1) * s(2, 2) - s(2, 1) * s(1, 2) + sec_over_three; d(0, 1) = s(2, 0) * s(1, 2) - s(1, 0) * s(2, 2); d(0, 2) = s(1, 0) * s(2, 1) - s(2, 0) * s(1, 1); d(1, 0) = s(2, 1) * s(0, 2) - s(0, 1) * s(2, 2); d(1, 1) = s(0, 0) * s(2, 2) - s(2, 0) * s(0, 2) + sec_over_three; d(1, 2) = s(2, 0) * s(0, 1) - s(0, 0) * s(2, 1); d(2, 0) = s(0, 1) * s(1, 2) - s(1, 1) * s(0, 2); d(2, 1) = s(1, 0) * s(0, 2) - s(0, 0) * s(1, 2); d(2, 2) = s(0, 0) * s(1, 1) - s(1, 0) * s(0, 1) + sec_over_three; return d; }
RankFourTensor RankTwoTensor::d2thirdInvariant() const { RankTwoTensor s = 0.5 * deviatoric(); s += s.transpose(); RankFourTensor d2; for (unsigned int i = 0; i < N; ++i) for (unsigned int j = 0; j < N; ++j) for (unsigned int k = 0; k < N; ++k) for (unsigned int l = 0; l < N; ++l) { d2(i, j, k, l) = (i==j)*s(k, l)/3.0 + (k==l)*s(i, j)/3.0; //for (unsigned int a = 0; a < N; ++a) // for (unsigned int b = 0; b < N; ++b) // d2(i, j, k, l) += 0.5*(PermutationTensor::eps(i, k, a)*PermutationTensor::eps(j, l, b) + PermutationTensor::eps(i, l, a)*PermutationTensor::eps(j, k, b))*s(a, b); } // I'm not sure which is more readable: the above // PermutationTensor stuff, or the stuff below. // Anyway, they yield the same result, and so i leave // both of them here to enlighten you! d2(0, 0, 1, 1) += s(2, 2); d2(0, 0, 1, 2) -= s(2, 1); d2(0, 0, 2, 1) -= s(1, 2); d2(0, 0, 2, 2) += s(1, 1); d2(0, 1, 0, 1) -= s(2, 2)/2.0; d2(0, 1, 1, 0) -= s(2, 2)/2.0; d2(0, 1, 0, 2) += s(1, 2)/2.0; d2(0, 1, 2, 0) += s(1, 2)/2.0; d2(0, 1, 1, 2) += s(2, 0)/2.0; d2(0, 1, 2, 1) += s(2, 0)/2.0; d2(0, 1, 2, 2) -= s(1, 0); d2(0, 2, 0, 1) += s(2, 1)/2.0; d2(0, 2, 1, 0) += s(2, 1)/2.0; d2(0, 2, 0, 2) -= s(1, 1)/2.0; d2(0, 2, 2, 0) -= s(1, 1)/2.0; d2(0, 2, 1, 1) -= s(2, 0); d2(0, 2, 1, 2) += s(1, 0)/2.0; d2(0, 2, 2, 1) += s(1, 0)/2.0; d2(1, 0, 0, 1) -= s(2, 2)/2.0; d2(1, 0, 1, 0) -= s(2, 2)/2.0; d2(1, 0, 0, 2) += s(1, 2)/2.0; d2(1, 0, 2, 0) += s(1, 2)/2.0; d2(1, 0, 1, 2) += s(2, 0)/2.0; d2(1, 0, 2, 1) += s(2, 0)/2.0; d2(1, 0, 2, 2) -= s(1, 0); d2(1, 1, 0, 0) += s(2, 2); d2(1, 1, 0, 2) -= s(2, 0); d2(1, 1, 2, 0) -= s(2, 0); d2(1, 1, 2, 2) += s(0, 0); d2(1, 2, 0, 0) -= s(2, 1); d2(1, 2, 0, 1) += s(2, 0)/2.0; d2(1, 2, 1, 0) += s(2, 0)/2.0; d2(1, 2, 0, 2) += s(0, 1)/2.0; d2(1, 2, 2, 0) += s(0, 1)/2.0; d2(1, 2, 1, 2) -= s(0, 0)/2.0; d2(1, 2, 2, 1) -= s(0, 0)/2.0; d2(2, 0, 0, 1) += s(2, 1)/2.0; d2(2, 0, 1, 0) += s(2, 1)/2.0; d2(2, 0, 0, 2) -= s(1, 1)/2.0; d2(2, 0, 2, 0) -= s(1, 1)/2.0; d2(2, 0, 1, 1) -= s(2, 0); d2(2, 0, 1, 2) += s(1, 0)/2.0; d2(2, 0, 2, 1) += s(1, 0)/2.0; d2(2, 1, 0, 0) -= s(2, 1); d2(2, 1, 0, 1) += s(2, 0)/2.0; d2(2, 1, 1, 0) += s(2, 0)/2.0; d2(2, 1, 0, 2) += s(0, 1)/2.0; d2(2, 1, 2, 0) += s(0, 1)/2.0; d2(2, 1, 1, 2) -= s(0, 0)/2.0; d2(2, 1, 2, 1) -= s(0, 0)/2.0; d2(2, 2, 0, 0) += s(1, 1); d2(2, 2, 0, 1) -= s(1, 0); d2(2, 2, 1, 0) -= s(1, 0); d2(2, 2, 1, 1) += s(0, 0); return d2; }
void FiniteStrainMaterial::computeQpStrain(const RankTwoTensor & Fhat) { //Cinv - I = A A^T - A - A^T; RankTwoTensor A; //A = I - Fhatinv A.addIa(1.0); A -= Fhat.inverse(); RankTwoTensor Cinv_I = A*A.transpose() - A - A.transpose(); //strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ... _strain_increment[_qp] = -Cinv_I*0.5 + Cinv_I*Cinv_I*0.25; /*RankTwoTensor Chat = Fhat.transpose()*Fhat; RankTwoTensor A = Chat; A.addIa(-1.0); RankTwoTensor B = Chat*0.25; B.addIa(-0.75); _strain_increment[_qp] = -B*A;*/ RankTwoTensor D = _strain_increment[_qp]/_t_step; _strain_rate[_qp] = D; //Calculate rotation R_incr RankTwoTensor invFhat(Fhat.inverse()); std::vector<Real> a(3); a[0] = invFhat(1,2) - invFhat(2,1); a[1] = invFhat(2,0) - invFhat(0,2); a[2] = invFhat(0,1) - invFhat(1,0); Real q = (a[0]*a[0] + a[1]*a[1] + a[2]*a[2])/4.0; Real trFhatinv_1 = invFhat.trace() - 1.0; Real p = trFhatinv_1*trFhatinv_1/4.0; // Real y = 1.0/((q + p)*(q + p)*(q + p)); /*Real C1 = std::sqrt(p * (1 + (p*(q+q+(q+p))) * (1-(q+p)) * y)); Real C2 = 0.125 + q * 0.03125 * (p*p - 12*(p-1)) / (p*p); Real C3 = 0.5 * std::sqrt( (p*q*(3-q) + p*p*p + q*q)*y ); */ Real C1 = std::sqrt(p + 3.0*p*p*(1.0 - (p + q))/((p+q)*(p+q)) - 2.0*p*p*p*(1-(p+q))/((p+q)*(p+q)*(p+q))); //cos theta_a Real C2 = 0.0; if (q > 0.01) C2 = (1.0 - C1)/(4.0*q); // (1-cos theta_a)/4q else //alternate form for small q C2 = 0.125 + q*0.03125*(p*p - 12*(p-1))/(p*p) + q*q*(p - 2.0)*(p*p - 10.0*p + 32.0)/(p*p*p) + q*q*q*(1104.0 - 992.0*p + 376.0*p*p - 72*p*p*p + 5.0*p*p*p*p)/(512.0*p*p*p*p); Real C3 = 0.5*std::sqrt((p*q*(3.0 - q) + p*p*p + q*q)/((p + q)*(p + q)*(p + q))); //sin theta_a/(2 sqrt(q)) //Calculate incremental rotation. Note that this value is the transpose of that from Rashid, 93, so we transpose it before storing RankTwoTensor R_incr; R_incr.addIa(C1); for (unsigned int i=0; i<3; ++i) for (unsigned int j = 0; j < 3; ++j) R_incr(i,j) += C2*a[i]*a[j]; R_incr(0,1) += C3*a[2]; R_incr(0,2) -= C3*a[1]; R_incr(1,0) -= C3*a[2]; R_incr(1,2) += C3*a[0]; R_incr(2,0) += C3*a[1]; R_incr(2,1) -= C3*a[0]; _rotation_increment[_qp] = R_incr.transpose(); }
void CappedDruckerPragerCosseratStressUpdate::consistentTangentOperator( const RankTwoTensor & /*stress_trial*/, Real /*p_trial*/, Real /*q_trial*/, const RankTwoTensor & stress, Real /*p*/, Real q, Real gaE, const yieldAndFlow & smoothed_q, const RankFourTensor & Eijkl, bool compute_full_tangent_operator, RankFourTensor & cto) const { if (!compute_full_tangent_operator) { cto = Eijkl; return; } RankFourTensor EAijkl; for (unsigned i = 0; i < _tensor_dimensionality; ++i) for (unsigned j = 0; j < _tensor_dimensionality; ++j) for (unsigned k = 0; k < _tensor_dimensionality; ++k) for (unsigned l = 0; l < _tensor_dimensionality; ++l) { cto(i, j, k, l) = 0.5 * (Eijkl(i, j, k, l) + Eijkl(j, i, k, l)); EAijkl(i, j, k, l) = 0.5 * (Eijkl(i, j, k, l) - Eijkl(j, i, k, l)); } const RankTwoTensor s_over_q = (q == 0.0 ? RankTwoTensor() : (0.5 * (stress + stress.transpose()) - stress.trace() * RankTwoTensor(RankTwoTensor::initIdentity) / 3.0) / q); const RankTwoTensor E_s_over_q = Eijkl.innerProductTranspose(s_over_q); // not symmetric in kl const RankTwoTensor Ekl = RankTwoTensor(RankTwoTensor::initIdentity).initialContraction(Eijkl); // symmetric in kl for (unsigned i = 0; i < _tensor_dimensionality; ++i) for (unsigned j = 0; j < _tensor_dimensionality; ++j) for (unsigned k = 0; k < _tensor_dimensionality; ++k) for (unsigned l = 0; l < _tensor_dimensionality; ++l) { cto(i, j, k, l) -= (i == j) * (1.0 / 3.0) * (Ekl(k, l) * (1.0 - _dp_dpt) + 0.5 * E_s_over_q(k, l) * (-_dp_dqt)); cto(i, j, k, l) -= s_over_q(i, j) * (Ekl(k, l) * (-_dq_dpt) + 0.5 * E_s_over_q(k, l) * (1.0 - _dq_dqt)); } if (smoothed_q.dg[1] != 0.0) { const RankFourTensor Tijab = _Ehost * (gaE / _Epp) * smoothed_q.dg[1] * d2qdstress2(stress); RankFourTensor inv = RankFourTensor(RankFourTensor::initIdentitySymmetricFour) + Tijab; try { inv = inv.transposeMajor().invSymm(); } catch (const MooseException & e) { // Cannot form the inverse, so probably at some degenerate place in stress space. // Just return with the "best estimate" of the cto. mooseWarning("CappedDruckerPragerCosseratStressUpdate: Cannot invert 1+T in consistent " "tangent operator computation at quadpoint ", _qp, " of element ", _current_elem->id()); return; } cto = (cto.transposeMajor() * inv).transposeMajor(); } cto += EAijkl; }
bool TensorMechanicsPlasticTensileMulti::doReturnMap(const RankTwoTensor & trial_stress, const Real & intnl_old, const RankFourTensor & E_ijkl, Real /*ep_plastic_tolerance*/, RankTwoTensor & returned_stress, Real & returned_intnl, std::vector<Real> & dpm, RankTwoTensor & delta_dp, std::vector<Real> & yf, bool & trial_stress_inadmissible) const { mooseAssert(dpm.size() == 3, "TensorMechanicsPlasticTensileMulti size of dpm should be 3 but it is " << dpm.size()); std::vector<Real> eigvals; RankTwoTensor eigvecs; trial_stress.symmetricEigenvaluesEigenvectors(eigvals, eigvecs); eigvals[0] += _shift; eigvals[2] -= _shift; Real str = tensile_strength(intnl_old); yf.resize(3); yf[0] = eigvals[0] - str; yf[1] = eigvals[1] - str; yf[2] = eigvals[2] - str; if (yf[0] <= _f_tol && yf[1] <= _f_tol && yf[2] <= _f_tol) { // purely elastic (trial_stress, intnl_old) trial_stress_inadmissible = false; return true; } trial_stress_inadmissible = true; delta_dp.zero(); returned_stress.zero(); // In the following i often assume that E_ijkl is // for an isotropic situation. This reduces FLOPS // substantially which is important since the returnMap // is potentially the most compute-intensive function // of a simulation. // In many comments i write the general expression, and // i hope that might guide future coders if they are // generalising to a non-istropic E_ijkl // n[alpha] = E_ijkl*r[alpha]_kl expressed in principal stress space // (alpha = 0, 1, 2, corresponding to the three surfaces) // Note that in principal stress space, the flow // directions are, expressed in 'vector' form, // r[0] = (1,0,0), r[1] = (0,1,0), r[2] = (0,0,1). // Similar for _n: // so _n[0] = E_ij00*r[0], _n[1] = E_ij11*r[1], _n[2] = E_ij22*r[2] // In the following I assume that the E_ijkl is // for an isotropic situation. // In the anisotropic situation, we couldn't express // the flow directions as vectors in the same principal // stress space as the stress: they'd be full rank-2 tensors std::vector<std::vector<Real> > n(3); for (unsigned i = 0 ; i < 3 ; ++i) n[i].resize(3); n[0][0] = E_ijkl(0,0,0,0); n[0][1] = E_ijkl(1,1,0,0); n[0][2] = E_ijkl(2,2,0,0); n[1][0] = E_ijkl(0,0,1,1); n[1][1] = E_ijkl(1,1,1,1); n[1][2] = E_ijkl(2,2,1,1); n[2][0] = E_ijkl(0,0,2,2); n[2][1] = E_ijkl(1,1,2,2); n[2][2] = E_ijkl(2,2,2,2); // With non-zero Poisson's ratio and hardening // it is not computationally cheap to know whether // the trial stress will return to the tip, edge, // or plane. The following is correct for zero // Poisson's ratio and no hardening, and at least // gives a not-completely-stupid guess in the // more general case. // trial_order[0] = type of return to try first // trial_order[1] = type of return to try second // trial_order[2] = type of return to try third std::vector<int> trial_order(3); if (yf[0] > 0) // all the yield functions are positive, since eigvals are ordered eigvals[0] <= eigvals[1] <= eigvals[2] { trial_order[0] = tip; trial_order[1] = edge; trial_order[2] = plane; } else if (yf[1] > 0) // two yield functions are positive { trial_order[0] = edge; trial_order[1] = tip; trial_order[2] = plane; } else { trial_order[0] = plane; trial_order[1] = edge; trial_order[2] = tip; } unsigned trial; bool nr_converged; for (trial = 0 ; trial < 3 ; ++trial) { switch (trial_order[trial]) { case tip: nr_converged = returnTip(eigvals, n, dpm, returned_stress, intnl_old, 0); break; case edge: nr_converged = returnEdge(eigvals, n, dpm, returned_stress, intnl_old, 0); break; case plane: nr_converged = returnPlane(eigvals, n, dpm, returned_stress, intnl_old, 0); break; } str = tensile_strength(intnl_old + dpm[0] + dpm[1] + dpm[2]); if (nr_converged && KuhnTuckerOK(returned_stress, dpm, str)) break; } if (trial == 3) { Moose::err << "Trial stress = \n"; trial_stress.print(Moose::err); Moose::err << "Internal parameter = " << intnl_old << "\n"; mooseError("TensorMechanicsPlasticTensileMulti: FAILURE! You probably need to implement a line search\n"); // failure - must place yield function values at trial stress into yf str = tensile_strength(intnl_old); yf[0] = eigvals[0] - str; yf[1] = eigvals[1] - str; yf[2] = eigvals[2] - str; return false; } // success returned_intnl = intnl_old; for (unsigned i = 0 ; i < 3 ; ++i) { yf[i] = returned_stress(i, i) - str; delta_dp(i, i) = dpm[i]; returned_intnl += dpm[i]; } returned_stress = eigvecs*returned_stress*(eigvecs.transpose()); delta_dp = eigvecs*delta_dp*(eigvecs.transpose()); return true; }
bool TensorMechanicsPlasticMohrCoulombMulti::doReturnMap(const RankTwoTensor & trial_stress, Real intnl_old, const RankFourTensor & E_ijkl, Real ep_plastic_tolerance, RankTwoTensor & returned_stress, Real & returned_intnl, std::vector<Real> & dpm, RankTwoTensor & delta_dp, std::vector<Real> & yf, bool & trial_stress_inadmissible) const { mooseAssert(dpm.size() == 6, "TensorMechanicsPlasticMohrCoulombMulti size of dpm should be 6 but it is " << dpm.size()); std::vector<Real> eigvals; RankTwoTensor eigvecs; trial_stress.symmetricEigenvaluesEigenvectors(eigvals, eigvecs); eigvals[0] += _shift; eigvals[2] -= _shift; Real sinphi = std::sin(phi(intnl_old)); Real cosphi = std::cos(phi(intnl_old)); Real coh = cohesion(intnl_old); Real cohcos = coh*cosphi; yieldFunctionEigvals(eigvals[0], eigvals[1], eigvals[2], sinphi, cohcos, yf); if (yf[0] <= _f_tol && yf[1] <= _f_tol && yf[2] <= _f_tol && yf[3] <= _f_tol && yf[4] <= _f_tol && yf[5] <= _f_tol) { // purely elastic (trial_stress, intnl_old) trial_stress_inadmissible = false; return true; } trial_stress_inadmissible = true; delta_dp.zero(); returned_stress = RankTwoTensor(); // these are the normals to the 6 yield surfaces, which are const because of the assumption of no psi hardening std::vector<RealVectorValue> norm(6); const Real sinpsi = std::sin(psi(intnl_old)); const Real oneminus = 0.5*(1 - sinpsi); const Real oneplus = 0.5*(1 + sinpsi); norm[0](0) = oneplus; norm[0](1) = -oneminus; norm[0](2) = 0; norm[1](0) = -oneminus; norm[1](1) = oneplus; norm[1](2) = 0; norm[2](0) = oneplus; norm[2](1) = 0; norm[2](2) = -oneminus; norm[3](0) = -oneminus; norm[3](1) = 0; norm[3](2) = oneplus; norm[4](0) = 0; norm[4](1) = oneplus; norm[4](2) = -oneminus; norm[5](0) = 0; norm[5](1) = -oneminus; norm[5](2) = oneplus; // the flow directions are these norm multiplied by Eijkl. // I call the flow directions "n". // In the following I assume that the Eijkl is // for an isotropic situation. Then I don't have to // rotate to the principal-stress frame, and i don't // have to worry about strange off-diagonal things std::vector<RealVectorValue> n(6); for (unsigned ys = 0; ys < 6; ++ys) for (unsigned i = 0; i < 3; ++i) for (unsigned j = 0; j < 3; ++j) n[ys](i) += E_ijkl(i,i,j,j)*norm[ys](j); const Real mag_E = E_ijkl(0, 0, 0, 0); // With non-zero Poisson's ratio and hardening // it is not computationally cheap to know whether // the trial stress will return to the tip, edge, // or plane. The following at least // gives a not-completely-stupid guess // trial_order[0] = type of return to try first // trial_order[1] = type of return to try second // trial_order[2] = type of return to try third // trial_order[3] = type of return to try fourth // trial_order[4] = type of return to try fifth // In the following the "binary" stuff indicates the // deactive (0) and active (1) surfaces, eg // 110100 means that surfaces 0, 1 and 3 are active // and 2, 4 and 5 are deactive const unsigned int number_of_return_paths = 5; std::vector<int> trial_order(number_of_return_paths); if (yf[1] > _f_tol && yf[3] > _f_tol && yf[5] > _f_tol) { trial_order[0] = tip110100; trial_order[1] = edge010100; trial_order[2] = plane000100; trial_order[3] = edge000101; trial_order[4] = tip010101; } else if (yf[1] <= _f_tol && yf[3] > _f_tol && yf[5] > _f_tol) { trial_order[0] = edge000101; trial_order[1] = plane000100; trial_order[2] = tip110100; trial_order[3] = tip010101; trial_order[4] = edge010100; } else if (yf[1] <= _f_tol && yf[3] > _f_tol && yf[5] <= _f_tol) { trial_order[0] = plane000100; trial_order[1] = edge000101; trial_order[2] = edge010100; trial_order[3] = tip110100; trial_order[4] = tip010101; } else { trial_order[0] = edge010100; trial_order[1] = plane000100; trial_order[2] = edge000101; trial_order[3] = tip110100; trial_order[4] = tip010101; } unsigned trial; bool nr_converged = false; bool kt_success = false; std::vector<RealVectorValue> ntip(3); std::vector<Real> dpmtip(3); for (trial = 0; trial < number_of_return_paths; ++trial) { switch (trial_order[trial]) { case tip110100: for (unsigned int i = 0; i < 3; ++i) { ntip[0](i) = n[0](i); ntip[1](i) = n[1](i); ntip[2](i) = n[3](i); } kt_success = returnTip(eigvals, ntip, dpmtip, returned_stress, intnl_old, sinphi, cohcos, 0, nr_converged, ep_plastic_tolerance, yf); if (nr_converged && kt_success) { dpm[0] = dpmtip[0]; dpm[1] = dpmtip[1]; dpm[3] = dpmtip[2]; dpm[2] = dpm[4] = dpm[5] = 0; } break; case tip010101: for (unsigned int i = 0; i < 3; ++i) { ntip[0](i) = n[1](i); ntip[1](i) = n[3](i); ntip[2](i) = n[5](i); } kt_success = returnTip(eigvals, ntip, dpmtip, returned_stress, intnl_old, sinphi, cohcos, 0, nr_converged, ep_plastic_tolerance, yf); if (nr_converged && kt_success) { dpm[1] = dpmtip[0]; dpm[3] = dpmtip[1]; dpm[5] = dpmtip[2]; dpm[0] = dpm[2] = dpm[4] = 0; } break; case edge000101: kt_success = returnEdge000101(eigvals, n, dpm, returned_stress, intnl_old, sinphi, cohcos, 0, mag_E, nr_converged, ep_plastic_tolerance, yf); break; case edge010100: kt_success = returnEdge010100(eigvals, n, dpm, returned_stress, intnl_old, sinphi, cohcos, 0, mag_E, nr_converged, ep_plastic_tolerance, yf); break; case plane000100: kt_success = returnPlane(eigvals, n, dpm, returned_stress, intnl_old, sinphi, cohcos, 0, nr_converged, ep_plastic_tolerance, yf); break; } if (nr_converged && kt_success) break; } if (trial == number_of_return_paths) { sinphi = std::sin(phi(intnl_old)); cosphi = std::cos(phi(intnl_old)); coh = cohesion(intnl_old); cohcos = coh*cosphi; yieldFunctionEigvals(eigvals[0], eigvals[1], eigvals[2], sinphi, cohcos, yf); Moose::err << "Trial stress = \n"; trial_stress.print(Moose::err); Moose::err << "which has eigenvalues = " << eigvals[0] << " " << eigvals[1] << " " << eigvals[2] << "\n"; Moose::err << "and yield functions = " << yf[0] << " " << yf[1] << " " << yf[2] << " " << yf[3] << " " << yf[4] << " " << yf[5] << "\n"; Moose::err << "Internal parameter = " << intnl_old << "\n"; mooseError("TensorMechanicsPlasticMohrCoulombMulti: FAILURE! You probably need to implement a line search if your hardening is too severe, or you need to tune your tolerances (eg, yield_function_tolerance should be a little smaller than (young modulus)*ep_plastic_tolerance).\n"); return false; } // success returned_intnl = intnl_old; for (unsigned i = 0; i < 6; ++i) returned_intnl += dpm[i]; for (unsigned i = 0; i < 6; ++i) for (unsigned j = 0; j < 3; ++j) delta_dp(j, j) += dpm[i]*norm[i](j); returned_stress = eigvecs*returned_stress*(eigvecs.transpose()); delta_dp = eigvecs*delta_dp*(eigvecs.transpose()); return true; }
void TensorMechanicsPlasticTensileMulti::activeConstraints(const std::vector<Real> & f, const RankTwoTensor & stress, const Real & intnl, const RankFourTensor & Eijkl, std::vector<bool> & act, RankTwoTensor & returned_stress) const { act.assign(3, false); if (f[0] <= _f_tol && f[1] <= _f_tol && f[2] <= _f_tol) { returned_stress = stress; return; } returned_stress = RankTwoTensor(); std::vector<Real> eigvals; RankTwoTensor eigvecs; stress.symmetricEigenvaluesEigenvectors(eigvals, eigvecs); eigvals[0] += _shift; eigvals[2] -= _shift; Real str = tensile_strength(intnl); std::vector<Real> v(3); v[0] = eigvals[0] - str; v[1] = eigvals[1] - str; v[2] = eigvals[2] - str; // these are the normals to the 3 yield surfaces std::vector<std::vector<Real> > n(3); n[0].resize(3); n[0][0] = 1 ; n[0][1] = 0 ; n[0][2] = 0; n[1].resize(3); n[1][0] = 0 ; n[1][1] = 1 ; n[1][2] = 0; n[2].resize(3); n[2][0] = 0 ; n[2][1] = 0 ; n[2][2] = 1; // the flow directions are these n multiplied by Eijkl. // I re-use the name "n" for the flow directions // In the following I assume that the Eijkl is // for an isotropic situation. This is the most // common when using TensileMulti, and remember // that the returned_stress need not be perfect // anyway. // I divide by E(0,0,0,0) so the n remain of order 1 Real ratio = Eijkl(1,1,0,0)/Eijkl(0,0,0,0); n[0][1] = n[0][2] = ratio; n[1][0] = n[1][2] = ratio; n[2][0] = n[2][1] = ratio; // 111 (tip) // For tip-return to satisfy Kuhn-Tucker, we need // v = alpha*n[0] + beta*n[1] * gamma*n[2] // with alpha, beta, and gamma all being non-negative (they are // the plasticity multipliers) Real denom = triple(n[0], n[1], n[2]); if (triple(v, n[0], n[1])/denom >= 0 && triple(v, n[1], n[2])/denom >= 0 && triple(v, n[2], n[0])/denom >= 0) { act[0] = act[1] = act[2] = true; returned_stress(0, 0) = returned_stress(1, 1) = returned_stress(2, 2) = str; returned_stress = eigvecs*returned_stress*(eigvecs.transpose()); return; } // 011 (edge) std::vector<Real> n1xn2(3); n1xn2[0] = n[1][1]*n[2][2] - n[1][2]*n[2][1]; n1xn2[1] = n[1][2]*n[2][0] - n[1][0]*n[2][2]; n1xn2[2] = n[1][0]*n[2][1] - n[1][1]*n[2][0]; // work out the point to which we would return, "a". It is defined by // f1 = 0 = f2, and that (p - a).(n1 x n2) = 0, where "p" is the // starting position (p = eigvals). // In the following a = (a0, str, str) Real pdotn1xn2 = dot(eigvals, n1xn2); Real a0 = (-str*n1xn2[1] - str*n1xn2[2] + pdotn1xn2)/n1xn2[0]; // we need p - a = alpha*n1 + beta*n2, where alpha and beta are non-negative // for Kuhn-Tucker to be satisfied std::vector<Real> pminusa(3); pminusa[0] = eigvals[0] - a0; pminusa[1] = v[1]; pminusa[2] = v[2]; if ((pminusa[2] - pminusa[0])/(1.0 - ratio) >= 0 && (pminusa[1] - pminusa[0])/(1.0 - ratio) >= 0) { returned_stress(0, 0) = a0; returned_stress(1, 1) = str; returned_stress(2, 2) = str; returned_stress = eigvecs*returned_stress*(eigvecs.transpose()); act[1] = act[2] = true; return; } // 001 (plane) // the returned point, "a", is defined by f2=0 and // a = p - alpha*n2 Real alpha = (eigvals[2] - str)/n[2][2]; act[2] = true; returned_stress(0, 0) = eigvals[0] - alpha*n[2][0]; returned_stress(1, 1) = eigvals[1] - alpha*n[2][1]; returned_stress(2, 2) = str; returned_stress = eigvecs*returned_stress*(eigvecs.transpose()); return; }