Exemple #1
0
/**
 * Rebin the input quadrilateral to the output grid
 * @param inputQ The input polygon
 * @param inputWS The input workspace containing the input intensity values
 * @param i The index in the vertical axis direction that inputQ references
 * @param j The index in the horizontal axis direction that inputQ references
 * @param outputWS A pointer to the output workspace that accumulates the data
 * @param verticalAxis A vector containing the output vertical axis bin boundaries
 */
void Rebin2D::rebinToFractionalOutput(const Geometry::Quadrilateral & inputQ,
                                      MatrixWorkspace_const_sptr inputWS,
                                      const size_t i, const size_t j,
                                      RebinnedOutput_sptr outputWS,
                                      const std::vector<double> & verticalAxis)
{
    const MantidVec & X = outputWS->readX(0);
    size_t qstart(0), qend(verticalAxis.size()-1), en_start(0), en_end(X.size() - 1);
    if( !getIntersectionRegion(outputWS, verticalAxis, inputQ, qstart, qend, en_start, en_end)) return;

    for( size_t qi = qstart; qi < qend; ++qi )
    {
        const double vlo = verticalAxis[qi];
        const double vhi = verticalAxis[qi+1];
        for( size_t ei = en_start; ei < en_end; ++ei )
        {
            const V2D ll(X[ei], vlo);
            const V2D lr(X[ei+1], vlo);
            const V2D ur(X[ei+1], vhi);
            const V2D ul(X[ei], vhi);
            const Quadrilateral outputQ(ll, lr, ur, ul);

            double yValue = inputWS->readY(i)[j];
            if (boost::math::isnan(yValue))
            {
                continue;
            }
            try
            {
                ConvexPolygon overlap = intersectionByLaszlo(outputQ, inputQ);
                const double weight = overlap.area()/inputQ.area();
                yValue *=  weight;
                double eValue = inputWS->readE(i)[j] * weight;
                const double overlapWidth = overlap.largestX() - overlap.smallestX();
                // Don't do the overlap removal if already RebinnedOutput.
                // This wreaks havoc on the data.
                if(inputWS->isDistribution() && inputWS->id() != "RebinnedOutput")
                {
                    yValue *= overlapWidth;
                    eValue *= overlapWidth;
                }
                eValue *= eValue;
                PARALLEL_CRITICAL(overlap)
                {
                    outputWS->dataY(qi)[ei] += yValue;
                    outputWS->dataE(qi)[ei] += eValue;
                    outputWS->dataF(qi)[ei] += weight;
                }
            }
            catch(Geometry::NoIntersectionException &)
            {}
        }
    }
}
/**
 * This function handles the logic for summing RebinnedOutput workspaces.
 * @param outputWorkspace the workspace to hold the summed input
 * @param progress the progress indicator
 * @param numSpectra
 * @param numMasked
 * @param numZeros
 */
void SumSpectra::doRebinnedOutput(MatrixWorkspace_sptr outputWorkspace,
                                  Progress &progress, size_t &numSpectra,
                                  size_t &numMasked, size_t &numZeros) {
  // Get a copy of the input workspace
  MatrixWorkspace_sptr temp = getProperty("InputWorkspace");

  // First, we need to clean the input workspace for nan's and inf's in order
  // to treat the data correctly later. This will create a new private
  // workspace that will be retrieved as mutable.
  IAlgorithm_sptr alg = this->createChildAlgorithm("ReplaceSpecialValues");
  alg->setProperty<MatrixWorkspace_sptr>("InputWorkspace", temp);
  std::string outName = "_" + temp->getName() + "_clean";
  alg->setProperty("OutputWorkspace", outName);
  alg->setProperty("NaNValue", 0.0);
  alg->setProperty("NaNError", 0.0);
  alg->setProperty("InfinityValue", 0.0);
  alg->setProperty("InfinityError", 0.0);
  alg->executeAsChildAlg();
  MatrixWorkspace_sptr localworkspace = alg->getProperty("OutputWorkspace");

  // Transform to real workspace types
  RebinnedOutput_sptr inWS =
      boost::dynamic_pointer_cast<RebinnedOutput>(localworkspace);
  RebinnedOutput_sptr outWS =
      boost::dynamic_pointer_cast<RebinnedOutput>(outputWorkspace);

  // Get references to the output workspaces's data vectors
  ISpectrum *outSpec = outputWorkspace->getSpectrum(0);
  MantidVec &YSum = outSpec->dataY();
  MantidVec &YError = outSpec->dataE();
  MantidVec &FracSum = outWS->dataF(0);
  MantidVec Weight;
  std::vector<size_t> nZeros;
  if (m_calculateWeightedSum) {
    Weight.assign(YSum.size(), 0);
    nZeros.assign(YSum.size(), 0);
  }
  numSpectra = 0;
  numMasked = 0;
  numZeros = 0;

  // Loop over spectra
  std::set<int>::iterator it;
  // for (int i = m_minSpec; i <= m_maxSpec; ++i)
  for (it = m_indices.begin(); it != m_indices.end(); ++it) {
    int i = *it;
    // Don't go outside the range.
    if ((i >= m_numberOfSpectra) || (i < 0)) {
      g_log.error() << "Invalid index " << i
                    << " was specified. Sum was aborted.\n";
      break;
    }

    try {
      // Get the detector object for this spectrum
      Geometry::IDetector_const_sptr det = localworkspace->getDetector(i);
      // Skip monitors, if the property is set to do so
      if (!m_keepMonitors && det->isMonitor())
        continue;
      // Skip masked detectors
      if (det->isMasked()) {
        numMasked++;
        continue;
      }
    } catch (...) {
      // if the detector not found just carry on
    }
    numSpectra++;

    // Retrieve the spectrum into a vector
    const MantidVec &YValues = localworkspace->readY(i);
    const MantidVec &YErrors = localworkspace->readE(i);
    const MantidVec &FracArea = inWS->readF(i);

    if (m_calculateWeightedSum) {
      for (int k = 0; k < this->m_yLength; ++k) {
        if (YErrors[k] != 0) {
          double errsq = YErrors[k] * YErrors[k] * FracArea[k] * FracArea[k];
          YError[k] += errsq;
          Weight[k] += 1. / errsq;
          YSum[k] += YValues[k] * FracArea[k] / errsq;
          FracSum[k] += FracArea[k];
        } else {
          nZeros[k]++;
          FracSum[k] += FracArea[k];
        }
      }
    } else {
      for (int k = 0; k < this->m_yLength; ++k) {
        YSum[k] += YValues[k] * FracArea[k];
        YError[k] += YErrors[k] * YErrors[k] * FracArea[k] * FracArea[k];
        FracSum[k] += FracArea[k];
      }
    }

    // Map all the detectors onto the spectrum of the output
    outSpec->addDetectorIDs(localworkspace->getSpectrum(i)->getDetectorIDs());

    progress.report();
  }

  if (m_calculateWeightedSum) {
    numZeros = 0;
    for (size_t i = 0; i < Weight.size(); i++) {
      if (nZeros[i] == 0)
        YSum[i] *= double(numSpectra) / Weight[i];
      else
        numZeros += nZeros[i];
    }
  }

  // Create the correct representation
  outWS->finalize();
}
Exemple #3
0
/**
 * This function handles the logic for summing RebinnedOutput workspaces.
 * @param outputWorkspace the workspace to hold the summed input
 * @param progress the progress indicator
 * @param numSpectra
 * @param numMasked
 * @param numZeros
 */
void SumSpectra::doRebinnedOutput(MatrixWorkspace_sptr outputWorkspace,
                                  Progress &progress, size_t &numSpectra,
                                  size_t &numMasked, size_t &numZeros) {
  // Get a copy of the input workspace
  MatrixWorkspace_sptr in_ws = getProperty("InputWorkspace");

  // First, we need to clean the input workspace for nan's and inf's in order
  // to treat the data correctly later. This will create a new private
  // workspace that will be retrieved as mutable.
  auto localworkspace = replaceSpecialValues(in_ws);

  // Transform to real workspace types
  RebinnedOutput_sptr inWS =
      boost::dynamic_pointer_cast<RebinnedOutput>(localworkspace);
  RebinnedOutput_sptr outWS =
      boost::dynamic_pointer_cast<RebinnedOutput>(outputWorkspace);

  // Get references to the output workspaces's data vectors
  auto &outSpec = outputWorkspace->getSpectrum(0);
  auto &YSum = outSpec.mutableY();
  auto &YError = outSpec.mutableE();
  auto &FracSum = outWS->dataF(0);
  std::vector<double> Weight;
  std::vector<size_t> nZeros;
  if (m_calculateWeightedSum) {
    Weight.assign(YSum.size(), 0);
    nZeros.assign(YSum.size(), 0);
  }
  numSpectra = 0;
  numMasked = 0;
  numZeros = 0;

  const auto &spectrumInfo = localworkspace->spectrumInfo();
  // Loop over spectra
  for (const auto i : m_indices) {
    // Don't go outside the range.
    if ((i >= m_numberOfSpectra) || (i < 0)) {
      g_log.error() << "Invalid index " << i
                    << " was specified. Sum was aborted.\n";
      break;
    }

    if (spectrumInfo.hasDetectors(i)) {
      // Skip monitors, if the property is set to do so
      if (!m_keepMonitors && spectrumInfo.isMonitor(i))
        continue;
      // Skip masked detectors
      if (spectrumInfo.isMasked(i)) {
        numMasked++;
        continue;
      }
    }
    numSpectra++;

    // Retrieve the spectrum into a vector
    const auto &YValues = localworkspace->y(i);
    const auto &YErrors = localworkspace->e(i);
    const auto &FracArea = inWS->readF(i);

    if (m_calculateWeightedSum) {
      for (int k = 0; k < this->m_yLength; ++k) {
        if (YErrors[k] != 0) {
          double errsq = YErrors[k] * YErrors[k] * FracArea[k] * FracArea[k];
          YError[k] += errsq;
          Weight[k] += 1. / errsq;
          YSum[k] += YValues[k] * FracArea[k] / errsq;
          FracSum[k] += FracArea[k];
        } else {
          nZeros[k]++;
          FracSum[k] += FracArea[k];
        }
      }
    } else {
      for (int k = 0; k < this->m_yLength; ++k) {
        YSum[k] += YValues[k] * FracArea[k];
        YError[k] += YErrors[k] * YErrors[k] * FracArea[k] * FracArea[k];
        FracSum[k] += FracArea[k];
      }
    }

    // Map all the detectors onto the spectrum of the output
    outSpec.addDetectorIDs(localworkspace->getSpectrum(i).getDetectorIDs());

    progress.report();
  }

  if (m_calculateWeightedSum) {
    numZeros = 0;
    for (size_t i = 0; i < Weight.size(); i++) {
      if (numSpectra > nZeros[i])
        YSum[i] *= double(numSpectra - nZeros[i]) / Weight[i];
      if (nZeros[i] != 0)
        numZeros += nZeros[i];
    }
  }

  // Create the correct representation
  outWS->finalize();
}