void G1PageBasedVirtualSpace::initialize_with_page_size(ReservedSpace rs, size_t used_size, size_t page_size) { guarantee(rs.is_reserved(), "Given reserved space must have been reserved already."); vmassert(_low_boundary == NULL, "VirtualSpace already initialized"); vmassert(page_size > 0, "Page size must be non-zero."); guarantee(is_ptr_aligned(rs.base(), page_size), "Reserved space base " PTR_FORMAT " is not aligned to requested page size " SIZE_FORMAT, p2i(rs.base()), page_size); guarantee(is_size_aligned(used_size, os::vm_page_size()), "Given used reserved space size needs to be OS page size aligned (%d bytes) but is " SIZE_FORMAT, os::vm_page_size(), used_size); guarantee(used_size <= rs.size(), "Used size of reserved space " SIZE_FORMAT " bytes is smaller than reservation at " SIZE_FORMAT " bytes", used_size, rs.size()); guarantee(is_size_aligned(rs.size(), page_size), "Expected that the virtual space is size aligned, but " SIZE_FORMAT " is not aligned to page size " SIZE_FORMAT, rs.size(), page_size); _low_boundary = rs.base(); _high_boundary = _low_boundary + used_size; _special = rs.special(); _executable = rs.executable(); _page_size = page_size; vmassert(_committed.size() == 0, "virtual space initialized more than once"); BitMap::idx_t size_in_pages = rs.size() / page_size; _committed.initialize(size_in_pages); if (_special) { _dirty.initialize(size_in_pages); } _tail_size = used_size % _page_size; }
G1RegionsSmallerThanCommitSizeMapper(ReservedSpace rs, size_t os_commit_granularity, size_t alloc_granularity, size_t commit_factor, MemoryType type) : G1RegionToSpaceMapper(rs, os_commit_granularity, alloc_granularity, type), _regions_per_page((os_commit_granularity * commit_factor) / alloc_granularity), _refcounts() { guarantee((os_commit_granularity * commit_factor) >= alloc_granularity, "allocation granularity smaller than commit granularity"); _refcounts.initialize((HeapWord*)rs.base(), (HeapWord*)(rs.base() + rs.size()), os_commit_granularity); _commit_map.resize(rs.size() * commit_factor / alloc_granularity, /* in_resource_area */ false); }
G1RegionsSmallerThanCommitSizeMapper(ReservedSpace rs, size_t actual_size, size_t page_size, size_t alloc_granularity, size_t commit_factor, MemoryType type) : G1RegionToSpaceMapper(rs, actual_size, page_size, alloc_granularity, commit_factor, type), _regions_per_page((page_size * commit_factor) / alloc_granularity), _refcounts() { guarantee((page_size * commit_factor) >= alloc_granularity, "allocation granularity smaller than commit granularity"); _refcounts.initialize((HeapWord*)rs.base(), (HeapWord*)(rs.base() + align_size_up(rs.size(), page_size)), page_size); }
CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level, GenRemSet* remset) : Generation(rs, initial_byte_size, level), _rs(remset) { HeapWord* start = (HeapWord*)rs.base(); size_t reserved_byte_size = rs.size(); assert((uintptr_t(start) & 3) == 0, "bad alignment"); assert((reserved_byte_size & 3) == 0, "bad alignment"); MemRegion reserved_mr(start, heap_word_size(reserved_byte_size)); _bts = new BlockOffsetSharedArray(reserved_mr, heap_word_size(initial_byte_size)); MemRegion committed_mr(start, heap_word_size(initial_byte_size)); _rs->resize_covered_region(committed_mr); if (_bts == NULL) vm_exit_during_initialization("Could not allocate a BlockOffsetArray"); // Verify that the start and end of this generation is the start of a card. // If this wasn't true, a single card could span more than on generation, // which would cause problems when we commit/uncommit memory, and when we // clear and dirty cards. guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned"); if (reserved_mr.end() != Universe::heap()->reserved_region().end()) { // Don't check at the very end of the heap as we'll assert that we're probing off // the end if we try. guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned"); } }
CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size, CardTableRS* remset) : Generation(rs, initial_byte_size), _rs(remset), _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(), _used_at_prologue() { HeapWord* start = (HeapWord*)rs.base(); size_t reserved_byte_size = rs.size(); assert((uintptr_t(start) & 3) == 0, "bad alignment"); assert((reserved_byte_size & 3) == 0, "bad alignment"); MemRegion reserved_mr(start, heap_word_size(reserved_byte_size)); _bts = new BlockOffsetSharedArray(reserved_mr, heap_word_size(initial_byte_size)); MemRegion committed_mr(start, heap_word_size(initial_byte_size)); _rs->resize_covered_region(committed_mr); if (_bts == NULL) { vm_exit_during_initialization("Could not allocate a BlockOffsetArray"); } // Verify that the start and end of this generation is the start of a card. // If this wasn't true, a single card could span more than on generation, // which would cause problems when we commit/uncommit memory, and when we // clear and dirty cards. guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned"); if (reserved_mr.end() != GenCollectedHeap::heap()->reserved_region().end()) { // Don't check at the very end of the heap as we'll assert that we're probing off // the end if we try. guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned"); } _min_heap_delta_bytes = MinHeapDeltaBytes; _capacity_at_prologue = initial_byte_size; _used_at_prologue = 0; }
G1RegionToSpaceMapper::G1RegionToSpaceMapper(ReservedSpace rs, size_t used_size, size_t page_size, size_t region_granularity, MemoryType type) : _storage(rs, used_size, page_size), _region_granularity(region_granularity), _listener(NULL), _commit_map() { guarantee(is_power_of_2(page_size), "must be"); guarantee(is_power_of_2(region_granularity), "must be"); MemTracker::record_virtual_memory_type((address)rs.base(), type); }
bool VirtualSpace::initialize_with_granularity(ReservedSpace rs, size_t committed_size, size_t max_commit_granularity) { if(!rs.is_reserved()) return false; // allocation failed. assert(_low_boundary == NULL, "VirtualSpace already initialized"); assert(max_commit_granularity > 0, "Granularity must be non-zero."); _low_boundary = rs.base(); _high_boundary = low_boundary() + rs.size(); _low = low_boundary(); _high = low(); _special = rs.special(); _executable = rs.executable(); // When a VirtualSpace begins life at a large size, make all future expansion // and shrinking occur aligned to a granularity of large pages. This avoids // fragmentation of physical addresses that inhibits the use of large pages // by the OS virtual memory system. Empirically, we see that with a 4MB // page size, the only spaces that get handled this way are codecache and // the heap itself, both of which provide a substantial performance // boost in many benchmarks when covered by large pages. // // No attempt is made to force large page alignment at the very top and // bottom of the space if they are not aligned so already. _lower_alignment = os::vm_page_size(); _middle_alignment = max_commit_granularity; _upper_alignment = os::vm_page_size(); // End of each region _lower_high_boundary = (char*) round_to((intptr_t) low_boundary(), middle_alignment()); _middle_high_boundary = (char*) round_down((intptr_t) high_boundary(), middle_alignment()); _upper_high_boundary = high_boundary(); // High address of each region _lower_high = low_boundary(); _middle_high = lower_high_boundary(); _upper_high = middle_high_boundary(); // commit to initial size if (committed_size > 0) { if (!expand_by(committed_size)) { return false; } } return true; }
bool G1PageBasedVirtualSpace::initialize_with_granularity(ReservedSpace rs, size_t page_size) { if (!rs.is_reserved()) { return false; // Allocation failed. } assert(_low_boundary == NULL, "VirtualSpace already initialized"); assert(page_size > 0, "Granularity must be non-zero."); _low_boundary = rs.base(); _high_boundary = _low_boundary + rs.size(); _special = rs.special(); _executable = rs.executable(); _page_size = page_size; assert(_committed.size() == 0, "virtual space initialized more than once"); uintx size_in_bits = rs.size() / page_size; _committed.resize(size_in_bits, /* in_resource_area */ false); return true; }
CompactingPermGenGen::CompactingPermGenGen(ReservedSpace rs, ReservedSpace shared_rs, size_t initial_byte_size, int level, GenRemSet* remset, ContiguousSpace* space, PermanentGenerationSpec* spec_) : OneContigSpaceCardGeneration(rs, initial_byte_size, MinPermHeapExpansion, level, remset, space) { set_spec(spec_); if (!UseSharedSpaces && !DumpSharedSpaces) { spec()->disable_sharing(); } // Break virtual space into address ranges for all spaces. if (spec()->enable_shared_spaces()) { shared_end = (HeapWord*)(shared_rs.base() + shared_rs.size()); misccode_end = shared_end; misccode_bottom = misccode_end - heap_word_size(spec()->misc_code_size()); miscdata_end = misccode_bottom; miscdata_bottom = miscdata_end - heap_word_size(spec()->misc_data_size()); readwrite_end = miscdata_bottom; readwrite_bottom = readwrite_end - heap_word_size(spec()->read_write_size()); readonly_end = readwrite_bottom; readonly_bottom = readonly_end - heap_word_size(spec()->read_only_size()); shared_bottom = readonly_bottom; unshared_end = shared_bottom; assert((char*)shared_bottom == shared_rs.base(), "shared space mismatch"); } else { shared_end = (HeapWord*)(rs.base() + rs.size()); misccode_end = shared_end; misccode_bottom = shared_end; miscdata_end = shared_end; miscdata_bottom = shared_end; readwrite_end = shared_end; readwrite_bottom = shared_end; readonly_end = shared_end; readonly_bottom = shared_end; shared_bottom = shared_end; unshared_end = shared_bottom; } unshared_bottom = (HeapWord*) rs.base(); // Verify shared and unshared spaces adjacent. assert((char*)shared_bottom == rs.base()+rs.size(), "shared space mismatch"); assert(unshared_end > unshared_bottom, "shared space mismatch"); // Split reserved memory into pieces. ReservedSpace ro_rs = shared_rs.first_part(spec()->read_only_size(), UseSharedSpaces); ReservedSpace tmp_rs1 = shared_rs.last_part(spec()->read_only_size()); ReservedSpace rw_rs = tmp_rs1.first_part(spec()->read_write_size(), UseSharedSpaces); ReservedSpace tmp_rs2 = tmp_rs1.last_part(spec()->read_write_size()); ReservedSpace md_rs = tmp_rs2.first_part(spec()->misc_data_size(), UseSharedSpaces); ReservedSpace mc_rs = tmp_rs2.last_part(spec()->misc_data_size()); _shared_space_size = spec()->read_only_size() + spec()->read_write_size() + spec()->misc_data_size() + spec()->misc_code_size(); // Allocate the unshared (default) space. _the_space = new ContigPermSpace(_bts, MemRegion(unshared_bottom, heap_word_size(initial_byte_size))); if (_the_space == NULL) vm_exit_during_initialization("Could not allocate an unshared" " CompactingPermGen Space"); // Allocate shared spaces if (spec()->enable_shared_spaces()) { // If mapping a shared file, the space is not committed, don't // mangle. NOT_PRODUCT(bool old_ZapUnusedHeapArea = ZapUnusedHeapArea;)
inline void PSVirtualSpace::set_reserved(ReservedSpace rs) { set_reserved(rs.base(), rs.base() + rs.size(), rs.special()); }