static duk_ret_t RigidBody_IsActive(duk_context* ctx)
{
    RigidBody* thisObj = GetThisWeakObject<RigidBody>(ctx);
    bool ret = thisObj->IsActive();
    duk_push_boolean(ctx, ret);
    return 1;
}
Exemple #2
0
void CollisionShape::DrawDebugGeometry(DebugRenderer* debug, bool depthTest)
{
    if (debug && physicsWorld_ && shape_ && node_ && IsEnabledEffective())
    {
        physicsWorld_->SetDebugRenderer(debug);
        physicsWorld_->SetDebugDepthTest(depthTest);
        
        // Use the rigid body's world transform if possible, as it may be different from the rendering transform
        Matrix3x4 worldTransform;
        RigidBody* body = GetComponent<RigidBody>();
        bool bodyActive = false;
        if (body)
        {
            worldTransform = Matrix3x4(body->GetPosition(), body->GetRotation(), node_->GetWorldScale());
            bodyActive = body->IsActive();
        }
        else
            worldTransform = node_->GetWorldTransform();
        
        Vector3 position = position_;
        // For terrains, undo the height centering performed automatically by Bullet
        if (shapeType_ == SHAPE_TERRAIN && geometry_)
        {
            HeightfieldData* heightfield = static_cast<HeightfieldData*>(geometry_.Get());
            position.y_ += (heightfield->minHeight_ + heightfield->maxHeight_) * 0.5f;
        }
        
        Vector3 worldPosition(worldTransform * position);
        Quaternion worldRotation(worldTransform.Rotation() * rotation_);
        
        btDiscreteDynamicsWorld* world = physicsWorld_->GetWorld();
        world->debugDrawObject(btTransform(ToBtQuaternion(worldRotation), ToBtVector3(worldPosition)), shape_, bodyActive ?
            WHITE : GREEN);
        
        physicsWorld_->SetDebugRenderer(0);
    }
}
Exemple #3
0
bool	SimulationIsland::Simulate(IDebugDraw* debugDrawer,int numSolverIterations,TypedConstraint** constraintsBaseAddress,BroadphasePair*	overlappingPairBaseAddress, Dispatcher* dispatcher,BroadphaseInterface* broadphase,class ConstraintSolver*	solver,float timeStep)
{


#ifdef USE_QUICKPROF

	Profiler::beginBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF

	{
		//		std::vector<CcdPhysicsController*>::iterator i;



		int k;
		for (k=0;k<GetNumControllers();k++)
		{
			CcdPhysicsController* ctrl = m_controllers[k];
			//		SimdTransform predictedTrans;
			RigidBody* body = ctrl->GetRigidBody();
			//todo: only do this when necessary, it's used for contact points
			body->m_cachedInvertedWorldTransform = body->m_worldTransform.inverse();

			if (body->IsActive())
			{
				if (!body->IsStatic())
				{
					body->applyForces( timeStep);
					body->integrateVelocities( timeStep);
					body->predictIntegratedTransform(timeStep,body->m_interpolationWorldTransform);
				}
			}

		}
	}

#ifdef USE_QUICKPROF
	Profiler::endBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF
	
	//BroadphaseInterface*	scene = GetBroadphase();


	//
	// collision detection (?)
	//


	#ifdef USE_QUICKPROF
	Profiler::beginBlock("DispatchAllCollisionPairs");
	#endif //USE_QUICKPROF


//	int numsubstep = m_numIterations;


	DispatcherInfo dispatchInfo;
	dispatchInfo.m_timeStep = timeStep;
	dispatchInfo.m_stepCount = 0;
	dispatchInfo.m_enableSatConvex = false;//m_enableSatCollisionDetection;
	dispatchInfo.m_debugDraw = debugDrawer;
	
	std::vector<BroadphasePair>	overlappingPairs;
	overlappingPairs.resize(this->m_overlappingPairIndices.size());

	//gather overlapping pair info
	int i;
	for (i=0;i<m_overlappingPairIndices.size();i++)
	{
		overlappingPairs[i] = overlappingPairBaseAddress[m_overlappingPairIndices[i]];
	}

	
	//pairCache->RefreshOverlappingPairs();
	if (overlappingPairs.size())
	{
		dispatcher->DispatchAllCollisionPairs(&overlappingPairs[0],overlappingPairs.size(),dispatchInfo);///numsubstep,g);
	}

	//scatter overlapping pair info, mainly the created algorithms/contact caches
	
	for (i=0;i<m_overlappingPairIndices.size();i++)
	{
		overlappingPairBaseAddress[m_overlappingPairIndices[i]] = overlappingPairs[i];
	}


	#ifdef USE_QUICKPROF
	Profiler::endBlock("DispatchAllCollisionPairs");
	#endif //USE_QUICKPROF




	int numRigidBodies = m_controllers.size();




	//contacts
	#ifdef USE_QUICKPROF
	Profiler::beginBlock("SolveConstraint");
	#endif //USE_QUICKPROF


	//solve the regular constraints (point 2 point, hinge, etc)

	for (int g=0;g<numSolverIterations;g++)
	{
		//
		// constraint solving
		//

		int i;
		int numConstraints = m_constraintIndices.size();

		//point to point constraints
		for (i=0;i< numConstraints ; i++ )
		{
			TypedConstraint* constraint = constraintsBaseAddress[m_constraintIndices[i]];
			constraint->BuildJacobian();
			constraint->SolveConstraint( timeStep );

		}


	}

	#ifdef USE_QUICKPROF
	Profiler::endBlock("SolveConstraint");
	#endif //USE_QUICKPROF

	/*

	//solve the vehicles

	#ifdef NEW_BULLET_VEHICLE_SUPPORT
	//vehicles
	int numVehicles = m_wrapperVehicles.size();
	for (int i=0;i<numVehicles;i++)
	{
	WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
	RaycastVehicle* vehicle = wrapperVehicle->GetVehicle();
	vehicle->UpdateVehicle( timeStep);
	}
	#endif //NEW_BULLET_VEHICLE_SUPPORT
*/

	/*
	
	Profiler::beginBlock("CallbackTriggers");
	#endif //USE_QUICKPROF

	CallbackTriggers();

	#ifdef USE_QUICKPROF
	Profiler::endBlock("CallbackTriggers");

	}
	*/

	//OverlappingPairCache*	scene = GetCollisionWorld()->GetPairCache();
	
	ContactSolverInfo	solverInfo;

	solverInfo.m_friction = 0.9f;
	solverInfo.m_numIterations = numSolverIterations;
	solverInfo.m_timeStep = timeStep;
	solverInfo.m_restitution = 0.f;//m_restitution;


	if (m_manifolds.size())
	{
		solver->SolveGroup( &m_manifolds[0],m_manifolds.size(),solverInfo,0);
	}


#ifdef USE_QUICKPROF
	Profiler::beginBlock("proceedToTransform");
#endif //USE_QUICKPROF
	{



		{


			UpdateAabbs(debugDrawer,broadphase,timeStep);


			float toi = 1.f;

			//experimental continuous collision detection

			/*		if (m_ccdMode == 3)
			{
				DispatcherInfo dispatchInfo;
				dispatchInfo.m_timeStep = timeStep;
				dispatchInfo.m_stepCount = 0;
				dispatchInfo.m_dispatchFunc = DispatcherInfo::DISPATCH_CONTINUOUS;

				//			GetCollisionWorld()->GetDispatcher()->DispatchAllCollisionPairs(scene,dispatchInfo);
				toi = dispatchInfo.m_timeOfImpact;

			}
			*/



			//
			// integrating solution
			//

			{

				std::vector<CcdPhysicsController*>::iterator i;

				for (i=m_controllers.begin();
					!(i==m_controllers.end()); i++)
				{

					CcdPhysicsController* ctrl = *i;

					SimdTransform predictedTrans;
					RigidBody* body = ctrl->GetRigidBody();

					if (body->IsActive())
					{

						if (!body->IsStatic())
						{
							body->predictIntegratedTransform(timeStep*	toi, predictedTrans);
							body->proceedToTransform( predictedTrans);
						}

					}
				}

			}





			//
			// disable sleeping physics objects
			//

			std::vector<CcdPhysicsController*> m_sleepingControllers;

			std::vector<CcdPhysicsController*>::iterator i;

			for (i=m_controllers.begin();
				!(i==m_controllers.end()); i++)
			{
				CcdPhysicsController* ctrl = (*i);
				RigidBody* body = ctrl->GetRigidBody();

				ctrl->UpdateDeactivation(timeStep);


				if (ctrl->wantsSleeping())
				{
					if (body->GetActivationState() == ACTIVE_TAG)
						body->SetActivationState( WANTS_DEACTIVATION );
				} else
				{
					if (body->GetActivationState() != DISABLE_DEACTIVATION)
						body->SetActivationState( ACTIVE_TAG );
				}

				if (true)
				{
					if (body->GetActivationState() == ISLAND_SLEEPING)
					{
						m_sleepingControllers.push_back(ctrl);
					}
				} else
				{
					if (ctrl->wantsSleeping())
					{
						m_sleepingControllers.push_back(ctrl);
					}
				}
			}




		}


#ifdef USE_QUICKPROF
		Profiler::endBlock("proceedToTransform");

		Profiler::beginBlock("SyncMotionStates");
#endif //USE_QUICKPROF

		SyncMotionStates(timeStep);

#ifdef USE_QUICKPROF
		Profiler::endBlock("SyncMotionStates");

#endif //USE_QUICKPROF


#ifdef NEW_BULLET_VEHICLE_SUPPORT
		//sync wheels for vehicles
		int numVehicles = m_wrapperVehicles.size();
		for (int i=0;i<numVehicles;i++)
		{
			WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];

			wrapperVehicle->SyncWheels();
		}
#endif //NEW_BULLET_VEHICLE_SUPPORT

		return true;
	}
}
void PhysicsWorld::SendCollisionEvents()
{
    ATOMIC_PROFILE(SendCollisionEvents);

    currentCollisions_.Clear();
    physicsCollisionData_.Clear();
    nodeCollisionData_.Clear();

    int numManifolds = collisionDispatcher_->getNumManifolds();

    if (numManifolds)
    {
        physicsCollisionData_[PhysicsCollision::P_WORLD] = this;

        for (int i = 0; i < numManifolds; ++i)
        {
            btPersistentManifold* contactManifold = collisionDispatcher_->getManifoldByIndexInternal(i);
            // First check that there are actual contacts, as the manifold exists also when objects are close but not touching
            if (!contactManifold->getNumContacts())
                continue;

            const btCollisionObject* objectA = contactManifold->getBody0();
            const btCollisionObject* objectB = contactManifold->getBody1();

            RigidBody* bodyA = static_cast<RigidBody*>(objectA->getUserPointer());
            RigidBody* bodyB = static_cast<RigidBody*>(objectB->getUserPointer());
            // If it's not a rigidbody, maybe a ghost object
            if (!bodyA || !bodyB)
                continue;

            // Skip collision event signaling if both objects are static, or if collision event mode does not match
            if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
                continue;
            if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
                continue;
            if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
                !bodyA->IsActive() && !bodyB->IsActive())
                continue;

            WeakPtr<RigidBody> bodyWeakA(bodyA);
            WeakPtr<RigidBody> bodyWeakB(bodyB);

            // First only store the collision pair as weak pointers and the manifold pointer, so user code can safely destroy
            // objects during collision event handling
            Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> > bodyPair;
            if (bodyA < bodyB)
            {
                bodyPair = MakePair(bodyWeakA, bodyWeakB);
                currentCollisions_[bodyPair].manifold_ = contactManifold;
            }
            else
            {
                bodyPair = MakePair(bodyWeakB, bodyWeakA);
                currentCollisions_[bodyPair].flippedManifold_ = contactManifold;
            }
        }

        for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator i = currentCollisions_.Begin();
             i != currentCollisions_.End(); ++i)
        {
            RigidBody* bodyA = i->first_.first_;
            RigidBody* bodyB = i->first_.second_;
            if (!bodyA || !bodyB)
                continue;

            Node* nodeA = bodyA->GetNode();
            Node* nodeB = bodyB->GetNode();
            WeakPtr<Node> nodeWeakA(nodeA);
            WeakPtr<Node> nodeWeakB(nodeB);

            bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();
            bool newCollision = !previousCollisions_.Contains(i->first_);

            physicsCollisionData_[PhysicsCollision::P_NODEA] = nodeA;
            physicsCollisionData_[PhysicsCollision::P_NODEB] = nodeB;
            physicsCollisionData_[PhysicsCollision::P_BODYA] = bodyA;
            physicsCollisionData_[PhysicsCollision::P_BODYB] = bodyB;
            physicsCollisionData_[PhysicsCollision::P_TRIGGER] = trigger;

            contacts_.Clear();

            // "Pointers not flipped"-manifold, send unmodified normals
            btPersistentManifold* contactManifold = i->second_.manifold_;
            if (contactManifold)
            {
                for (int j = 0; j < contactManifold->getNumContacts(); ++j)
                {
                    btManifoldPoint& point = contactManifold->getContactPoint(j);
                    contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
                    contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
                    contacts_.WriteFloat(point.m_distance1);
                    contacts_.WriteFloat(point.m_appliedImpulse);
                }
            }
            // "Pointers flipped"-manifold, flip normals also
            contactManifold = i->second_.flippedManifold_;
            if (contactManifold)
            {
                for (int j = 0; j < contactManifold->getNumContacts(); ++j)
                {
                    btManifoldPoint& point = contactManifold->getContactPoint(j);
                    contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
                    contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
                    contacts_.WriteFloat(point.m_distance1);
                    contacts_.WriteFloat(point.m_appliedImpulse);
                }
            }

            physicsCollisionData_[PhysicsCollision::P_CONTACTS] = contacts_.GetBuffer();

            // Send separate collision start event if collision is new
            if (newCollision)
            {
                SendEvent(E_PHYSICSCOLLISIONSTART, physicsCollisionData_);
                // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
                if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
                    continue;
            }

            // Then send the ongoing collision event
            SendEvent(E_PHYSICSCOLLISION, physicsCollisionData_);
            if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
                continue;

            nodeCollisionData_[NodeCollision::P_BODY] = bodyA;
            nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeB;
            nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyB;
            nodeCollisionData_[NodeCollision::P_TRIGGER] = trigger;
            nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();

            if (newCollision)
            {
                nodeA->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
                if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
                    continue;
            }

            nodeA->SendEvent(E_NODECOLLISION, nodeCollisionData_);
            if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
                continue;

            // Flip perspective to body B
            contacts_.Clear();
            contactManifold = i->second_.manifold_;
            if (contactManifold)
            {
                for (int j = 0; j < contactManifold->getNumContacts(); ++j)
                {
                    btManifoldPoint& point = contactManifold->getContactPoint(j);
                    contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
                    contacts_.WriteVector3(-ToVector3(point.m_normalWorldOnB));
                    contacts_.WriteFloat(point.m_distance1);
                    contacts_.WriteFloat(point.m_appliedImpulse);
                }
            }
            contactManifold = i->second_.flippedManifold_;
            if (contactManifold)
            {
                for (int j = 0; j < contactManifold->getNumContacts(); ++j)
                {
                    btManifoldPoint& point = contactManifold->getContactPoint(j);
                    contacts_.WriteVector3(ToVector3(point.m_positionWorldOnB));
                    contacts_.WriteVector3(ToVector3(point.m_normalWorldOnB));
                    contacts_.WriteFloat(point.m_distance1);
                    contacts_.WriteFloat(point.m_appliedImpulse);
                }
            }

            nodeCollisionData_[NodeCollision::P_BODY] = bodyB;
            nodeCollisionData_[NodeCollision::P_OTHERNODE] = nodeA;
            nodeCollisionData_[NodeCollision::P_OTHERBODY] = bodyA;
            nodeCollisionData_[NodeCollision::P_CONTACTS] = contacts_.GetBuffer();

            if (newCollision)
            {
                nodeB->SendEvent(E_NODECOLLISIONSTART, nodeCollisionData_);
                if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
                    continue;
            }

            nodeB->SendEvent(E_NODECOLLISION, nodeCollisionData_);
        }
    }

    // Send collision end events as applicable
    {
        physicsCollisionData_[PhysicsCollisionEnd::P_WORLD] = this;

        for (HashMap<Pair<WeakPtr<RigidBody>, WeakPtr<RigidBody> >, ManifoldPair>::Iterator
                 i = previousCollisions_.Begin(); i != previousCollisions_.End(); ++i)
        {
            if (!currentCollisions_.Contains(i->first_))
            {
                RigidBody* bodyA = i->first_.first_;
                RigidBody* bodyB = i->first_.second_;
                if (!bodyA || !bodyB)
                    continue;

                bool trigger = bodyA->IsTrigger() || bodyB->IsTrigger();

                // Skip collision event signaling if both objects are static, or if collision event mode does not match
                if (bodyA->GetMass() == 0.0f && bodyB->GetMass() == 0.0f)
                    continue;
                if (bodyA->GetCollisionEventMode() == COLLISION_NEVER || bodyB->GetCollisionEventMode() == COLLISION_NEVER)
                    continue;
                if (bodyA->GetCollisionEventMode() == COLLISION_ACTIVE && bodyB->GetCollisionEventMode() == COLLISION_ACTIVE &&
                    !bodyA->IsActive() && !bodyB->IsActive())
                    continue;

                Node* nodeA = bodyA->GetNode();
                Node* nodeB = bodyB->GetNode();
                WeakPtr<Node> nodeWeakA(nodeA);
                WeakPtr<Node> nodeWeakB(nodeB);

                physicsCollisionData_[PhysicsCollisionEnd::P_BODYA] = bodyA;
                physicsCollisionData_[PhysicsCollisionEnd::P_BODYB] = bodyB;
                physicsCollisionData_[PhysicsCollisionEnd::P_NODEA] = nodeA;
                physicsCollisionData_[PhysicsCollisionEnd::P_NODEB] = nodeB;
                physicsCollisionData_[PhysicsCollisionEnd::P_TRIGGER] = trigger;

                SendEvent(E_PHYSICSCOLLISIONEND, physicsCollisionData_);
                // Skip rest of processing if either of the nodes or bodies is removed as a response to the event
                if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
                    continue;

                nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyA;
                nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeB;
                nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyB;
                nodeCollisionData_[NodeCollisionEnd::P_TRIGGER] = trigger;

                nodeA->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
                if (!nodeWeakA || !nodeWeakB || !i->first_.first_ || !i->first_.second_)
                    continue;

                nodeCollisionData_[NodeCollisionEnd::P_BODY] = bodyB;
                nodeCollisionData_[NodeCollisionEnd::P_OTHERNODE] = nodeA;
                nodeCollisionData_[NodeCollisionEnd::P_OTHERBODY] = bodyA;

                nodeB->SendEvent(E_NODECOLLISIONEND, nodeCollisionData_);
            }
        }
    }

    previousCollisions_ = currentCollisions_;
}
Exemple #5
0
/// Perform an integration step of duration 'timeStep'.
bool	CcdPhysicsEnvironment::proceedDeltaTimeOneStep(float timeStep)
{


	//printf("CcdPhysicsEnvironment::proceedDeltaTime\n");

	if (SimdFuzzyZero(timeStep))
		return true;

	if (m_debugDrawer)
	{
		gDisableDeactivation = (m_debugDrawer->GetDebugMode() & IDebugDraw::DBG_NoDeactivation);
	}


#ifdef USE_QUICKPROF
	Profiler::beginBlock("SyncMotionStates");
#endif //USE_QUICKPROF


	//this is needed because scaling is not known in advance, and scaling has to propagate to the shape
	if (!m_scalingPropagated)
	{
		SyncMotionStates(timeStep);
		m_scalingPropagated = true;
	}


#ifdef USE_QUICKPROF
	Profiler::endBlock("SyncMotionStates");

	Profiler::beginBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF

	{
		//		std::vector<CcdPhysicsController*>::iterator i;



		int k;
		for (k=0;k<GetNumControllers();k++)
		{
			CcdPhysicsController* ctrl = m_controllers[k];
			//		SimdTransform predictedTrans;
			RigidBody* body = ctrl->GetRigidBody();
			
			body->m_cachedInvertedWorldTransform = body->m_worldTransform.inverse();

			if (body->IsActive())
			{
				if (!body->IsStatic())
				{
					body->applyForces( timeStep);
					body->integrateVelocities( timeStep);
					body->predictIntegratedTransform(timeStep,body->m_interpolationWorldTransform);
				}
			}

		}
	}

#ifdef USE_QUICKPROF
	Profiler::endBlock("predictIntegratedTransform");
#endif //USE_QUICKPROF

	OverlappingPairCache*	scene = m_collisionWorld->GetPairCache();


	//
	// collision detection (?)
	//


#ifdef USE_QUICKPROF
	Profiler::beginBlock("DispatchAllCollisionPairs");
#endif //USE_QUICKPROF


	int numsubstep = m_numIterations;


	DispatcherInfo dispatchInfo;
	dispatchInfo.m_timeStep = timeStep;
	dispatchInfo.m_stepCount = 0;
	dispatchInfo.m_enableSatConvex = m_enableSatCollisionDetection;
	dispatchInfo.m_debugDraw = this->m_debugDrawer;

	scene->RefreshOverlappingPairs();
	GetCollisionWorld()->GetDispatcher()->DispatchAllCollisionPairs(&scene->GetOverlappingPair(0),scene->GetNumOverlappingPairs(),dispatchInfo);


#ifdef USE_QUICKPROF
	Profiler::endBlock("DispatchAllCollisionPairs");
#endif //USE_QUICKPROF


	int numRigidBodies = m_controllers.size();

	
	m_islandManager->UpdateActivationState(GetCollisionWorld(),GetCollisionWorld()->GetDispatcher());

	{
		int i;
		int numConstraints = m_constraints.size();
		for (i=0;i< numConstraints ; i++ )
		{
			TypedConstraint* constraint = m_constraints[i];

			const RigidBody* colObj0 = &constraint->GetRigidBodyA();
			const RigidBody* colObj1 = &constraint->GetRigidBodyB();
			
			if (((colObj0) && ((colObj0)->mergesSimulationIslands())) &&
						((colObj1) && ((colObj1)->mergesSimulationIslands())))
			{
				if (colObj0->IsActive() || colObj1->IsActive())
				{

					m_islandManager->GetUnionFind().unite((colObj0)->m_islandTag1,
						(colObj1)->m_islandTag1);
				}
			}
		}
	}

	m_islandManager->StoreIslandActivationState(GetCollisionWorld());


	//contacts
#ifdef USE_QUICKPROF
	Profiler::beginBlock("SolveConstraint");
#endif //USE_QUICKPROF


	//solve the regular constraints (point 2 point, hinge, etc)

	for (int g=0;g<numsubstep;g++)
	{
		//
		// constraint solving
		//


		int i;
		int numConstraints = m_constraints.size();

		//point to point constraints
		for (i=0;i< numConstraints ; i++ )
		{
			TypedConstraint* constraint = m_constraints[i];

			constraint->BuildJacobian();
			constraint->SolveConstraint( timeStep );

		}


	}

#ifdef USE_QUICKPROF
	Profiler::endBlock("SolveConstraint");
#endif //USE_QUICKPROF

	//solve the vehicles

#ifdef NEW_BULLET_VEHICLE_SUPPORT
	//vehicles
	int numVehicles = m_wrapperVehicles.size();
	for (int i=0;i<numVehicles;i++)
	{
		WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];
		RaycastVehicle* vehicle = wrapperVehicle->GetVehicle();
		vehicle->UpdateVehicle( timeStep);
	}
#endif //NEW_BULLET_VEHICLE_SUPPORT


	struct InplaceSolverIslandCallback : public SimulationIslandManager::IslandCallback
	{

		ContactSolverInfo& m_solverInfo;
		ConstraintSolver*	m_solver;
		IDebugDraw*	m_debugDrawer;

		InplaceSolverIslandCallback(
			ContactSolverInfo& solverInfo,
			ConstraintSolver*	solver,
			IDebugDraw*	debugDrawer)
			:m_solverInfo(solverInfo),
			m_solver(solver),
			m_debugDrawer(debugDrawer)
		{

		}

		virtual	void	ProcessIsland(PersistentManifold**	manifolds,int numManifolds)
		{
			m_solver->SolveGroup( manifolds, numManifolds,m_solverInfo,m_debugDrawer);
		}

	};


	m_solverInfo.m_friction = 0.9f;
	m_solverInfo.m_numIterations = m_numIterations;
	m_solverInfo.m_timeStep = timeStep;
	m_solverInfo.m_restitution = 0.f;//m_restitution;

	InplaceSolverIslandCallback	solverCallback(
		m_solverInfo,
		m_solver,
		m_debugDrawer);

#ifdef USE_QUICKPROF
	Profiler::beginBlock("BuildAndProcessIslands");
#endif //USE_QUICKPROF

	/// solve all the contact points and contact friction
	m_islandManager->BuildAndProcessIslands(GetCollisionWorld()->GetDispatcher(),m_collisionWorld->GetCollisionObjectArray(),&solverCallback);

#ifdef USE_QUICKPROF
	Profiler::endBlock("BuildAndProcessIslands");

	Profiler::beginBlock("CallbackTriggers");
#endif //USE_QUICKPROF

	CallbackTriggers();

#ifdef USE_QUICKPROF
	Profiler::endBlock("CallbackTriggers");


	Profiler::beginBlock("proceedToTransform");

#endif //USE_QUICKPROF
	{



		{

			
			
			UpdateAabbs(timeStep);


			float toi = 1.f;



			if (m_ccdMode == 3)
			{
				DispatcherInfo dispatchInfo;
				dispatchInfo.m_timeStep = timeStep;
				dispatchInfo.m_stepCount = 0;
				dispatchInfo.m_dispatchFunc = DispatcherInfo::DISPATCH_CONTINUOUS;

				//pairCache->RefreshOverlappingPairs();//??
				GetCollisionWorld()->GetDispatcher()->DispatchAllCollisionPairs(&scene->GetOverlappingPair(0),scene->GetNumOverlappingPairs(),dispatchInfo);
				
				toi = dispatchInfo.m_timeOfImpact;

			}

			

			//
			// integrating solution
			//

			{
				
				std::vector<CcdPhysicsController*>::iterator i;

				for (i=m_controllers.begin();
					!(i==m_controllers.end()); i++)
				{

					CcdPhysicsController* ctrl = *i;

					SimdTransform predictedTrans;
					RigidBody* body = ctrl->GetRigidBody();
					
					if (body->IsActive())
					{

						if (!body->IsStatic())
						{
							body->predictIntegratedTransform(timeStep*	toi, predictedTrans);
							body->proceedToTransform( predictedTrans);
						}

					}
				}

			}





			//
			// disable sleeping physics objects
			//

			std::vector<CcdPhysicsController*> m_sleepingControllers;

			std::vector<CcdPhysicsController*>::iterator i;

			for (i=m_controllers.begin();
				!(i==m_controllers.end()); i++)
			{
				CcdPhysicsController* ctrl = (*i);
				RigidBody* body = ctrl->GetRigidBody();

				ctrl->UpdateDeactivation(timeStep);


				if (ctrl->wantsSleeping())
				{
					if (body->GetActivationState() == ACTIVE_TAG)
						body->SetActivationState( WANTS_DEACTIVATION );
				} else
				{
					if (body->GetActivationState() != DISABLE_DEACTIVATION)
						body->SetActivationState( ACTIVE_TAG );
				}

				if (useIslands)
				{
					if (body->GetActivationState() == ISLAND_SLEEPING)
					{
						m_sleepingControllers.push_back(ctrl);
					}
				} else
				{
					if (ctrl->wantsSleeping())
					{
						m_sleepingControllers.push_back(ctrl);
					}
				}
			}




		}


#ifdef USE_QUICKPROF
		Profiler::endBlock("proceedToTransform");

		Profiler::beginBlock("SyncMotionStates");
#endif //USE_QUICKPROF

		SyncMotionStates(timeStep);

#ifdef USE_QUICKPROF
		Profiler::endBlock("SyncMotionStates");

		Profiler::endProfilingCycle();
#endif //USE_QUICKPROF


#ifdef NEW_BULLET_VEHICLE_SUPPORT
		//sync wheels for vehicles
		int numVehicles = m_wrapperVehicles.size();
		for (int i=0;i<numVehicles;i++)
		{
			WrapperVehicle* wrapperVehicle = m_wrapperVehicles[i];

			wrapperVehicle->SyncWheels();
		}
#endif //NEW_BULLET_VEHICLE_SUPPORT
	}

	return true;
}