//------------------------------------------------------------------------------ // Returns the attitude (DCM) state from inertial-to-body at the specified // input time. //------------------------------------------------------------------------------ Rmatrix33 CCSDSAEMEulerAngleSegment::GetState(Real atEpoch) { #ifdef DEBUG_AEM_EULER_GET_STATE MessageInterface::ShowMessage("====== Entering EulerSegment::GetState with epoch = %lf, dataStore size = %d\n", atEpoch, (Integer) dataStore.size()); #endif // DetermineState will look for an exact match; if so, // return the state at that time; if not, then return the last // state (if interpolation degree = 0) or else, interpolate // to the requested time Rvector eulerAngles(3); eulerAngles = DetermineState(atEpoch); #ifdef DEBUG_AEM_EULER_GET_STATE MessageInterface::ShowMessage(" eulerAngles (deg) from DetermineState are: %12.10f %12.10f %12.10f\n", eulerAngles[0] * GmatMathConstants::DEG_PER_RAD, eulerAngles[1] * GmatMathConstants::DEG_PER_RAD, eulerAngles[2] * GmatMathConstants::DEG_PER_RAD); MessageInterface::ShowMessage(" and euler sequence is: %d %d %d\n", euler1, euler2, euler3); #endif // Conversion method has to have an Rvector3 Rvector3 theEulerAngles(eulerAngles(0), eulerAngles(1), eulerAngles(2)); Rmatrix33 theDCM = AttitudeConversionUtility::ToCosineMatrix( theEulerAngles, euler1, euler2, euler3); #ifdef DEBUG_AEM_EULER_GET_STATE MessageInterface::ShowMessage("About to Exit EulerSegment::GetState, DCM = %s\n", theDCM.ToString().c_str()); #endif if (inertialToBody) return theDCM; else return theDCM.Transpose(); }
//------------------------------------------------------------------------------ // void ConvertDeltaVToInertial(Real *dv, Real *dvInertial, Real epoch) //------------------------------------------------------------------------------ void Burn::ConvertDeltaVToInertial(Real *dv, Real *dvInertial, Real epoch) { #ifdef DEBUG_BURN_CONVERT MessageInterface::ShowMessage ("Burn::ConvertDeltaVToInertial(), usingLocalCoordSys=%d, coordSystemName='%s', " "coordSystem=<%p>'%s'\n", usingLocalCoordSys, coordSystemName.c_str(), coordSystem, coordSystem ? coordSystem->GetName().c_str() : "NULL"); #endif if (usingLocalCoordSys && localCoordSystem == NULL) { throw BurnException ("Unable to convert burn elements to Inertial, the local Coordinate " "System has not been created"); } else if (!usingLocalCoordSys && coordSystem == NULL) { throw BurnException ("Unable to convert burn elements to Inertial, the Coordinate " "System has not been set"); } Real inDeltaV[6], outDeltaV[6]; for (Integer i=0; i<3; i++) inDeltaV[i] = dv[i]; for (Integer i=3; i<6; i++) inDeltaV[i] = 0.0; // if not using local CS, use ref CoordinateSystem if (!usingLocalCoordSys) { // Now rotate to MJ2000Eq axes, we don't want to translate so // set coincident to true coordSystem->ToBaseSystem(epoch, inDeltaV, outDeltaV, true); // @todo - need ToMJ2000Eq here? #ifdef DEBUG_BURN_CONVERT_ROTMAT Rmatrix33 rotMat = coordSystem->GetLastRotationMatrix(); MessageInterface::ShowMessage ("rotMat=\n%s\n", rotMat.ToString(16, 20).c_str()); #endif dvInertial[0] = outDeltaV[0]; dvInertial[1] = outDeltaV[1]; dvInertial[2] = outDeltaV[2]; } else { // if MJ2000Eq axes rotation matrix is always identity matrix if (isMJ2000EqAxes) { dvInertial[0] = dv[0]; dvInertial[1] = dv[1]; dvInertial[2] = dv[2]; } else if (isSpacecraftBodyAxes) { Rvector3 inDeltaV(dv[0], dv[1], dv[2]); Rvector3 outDeltaV; // Get attitude matrix from Spacecraft and transpose since // attitude matrix from spacecraft gives rotation matrix from // inertial to body Rmatrix33 inertialToBody = spacecraft->GetAttitude(epoch); Rmatrix33 rotMat = inertialToBody.Transpose(); #ifdef DEBUG_BURN_CONVERT_ROTMAT MessageInterface::ShowMessage ("for local Spacecraft body ----- rotMat=\n%s\n", rotMat.ToString(16, 20).c_str()); #endif outDeltaV = inDeltaV * rotMat; for (Integer i=0; i<3; i++) dvInertial[i] = outDeltaV[i]; } else { // // Now rotate to MJ2000Eq axes // localCoordSystem->ToMJ2000Eq(epoch, inDeltaV, outDeltaV, true); // Now rotate to base system axes localCoordSystem->ToBaseSystem(epoch, inDeltaV, outDeltaV, true); // @todo - need ToMJ2000Eq here? dvInertial[0] = outDeltaV[0]; dvInertial[1] = outDeltaV[1]; dvInertial[2] = outDeltaV[2]; } } #ifdef DEBUG_BURN_CONVERT MessageInterface::ShowMessage ("Burn::ConvertDeltaVToInertial() returning\n" " dv = %f %f %f\n dvInertial = %f %f %f\n", dv[0], dv[1], dv[2], dvInertial[0], dvInertial[1], dvInertial[2]); #endif }
//------------------------------------------------------------------------------ bool GravityField::GetDerivatives(Real * state, Real dt, Integer dvorder, const Integer id) { #ifdef DEBUG_FIRST_CALL if (firstCallFired == false) { MessageInterface::ShowMessage( "GravityField(%s) inputs:\n" " state = [%.10lf %.10lf %.10lf %.16lf %.16lf %.16lf]\n" " dt = %.10lf\n dvorder = %d\n", instanceName.c_str(), state[0], state[1], state[2], state[3], state[4], state[5], dt, dvorder); } #endif // We may want to do this down the road: // if (fabs(state[0]) + fabs(state[1]) + fabs(state[2]) < minimumDistance) // throw ODEModelException("A harmonic gravity field is being computed " // "inside of the " + bodyName + ", which is not allowed"); if ((dvorder > 2) || (dvorder < 1)) return false; #ifdef DEBUG_GRAVITY_FIELD MessageInterface::ShowMessage("%s %d %s %le %s %le %le %le %le %le %le\n", "Entered GravityField::GetDerivatives with order", dvorder, "dt = ", dt, "and state\n", state[0], state[1], state[2], state[3], state[4], state[5]); MessageInterface::ShowMessage("cartesianCount = %d, stmCount = %d, aMatrixCount = %d\n", cartesianCount, stmCount, aMatrixCount); MessageInterface::ShowMessage("fillCartesian = %s, fillSTM = %s, fillAMatrix = %s\n", (fillCartesian? "true" : "false"), (fillSTM? "true" : "false"), (fillAMatrix? "true" : "false")); MessageInterface::ShowMessage("cartesianStart = %d, stmStart = %d, aMatrixStart = %d\n", cartesianStart, stmStart, aMatrixStart); #endif /// @todo Optimize this code -- May be possible to make GravityField calculations more efficient if ((cartesianCount < 1) && (stmCount < 1) && (aMatrixCount < 1)) throw ODEModelException( "GravityField requires at least one spacecraft."); // todo: Move into header; this flag is used to decide if the velocity terms // are copied into the position derivatives for first order integrators, so // when the GravityField is set to work at non-central bodies, the detection // will need to happen in initialization. Real satState[6]; Integer nOffset; now = epoch + dt/GmatTimeConstants::SECS_PER_DAY; #ifdef DEBUG_GRAV_COORD_SYSTEM MessageInterface::ShowMessage( "------ body = %s\n------ inputCS = %s\n------ targetCS = %s" "\n------ fixedCS = %s\n", body->GetName().c_str(), (inputCS == NULL? "NULL" : inputCS->GetName().c_str()), (targetCS == NULL? "NULL" : targetCS->GetName().c_str()), (fixedCS == NULL? "NULL" : fixedCS->GetName().c_str())); #endif #ifdef DEBUG_FIRST_CALL if (firstCallFired == false) { CelestialBody *targetBody = (CelestialBody*) targetCS->GetOrigin(); CelestialBody *fixedBody = (CelestialBody*) fixedCS->GetOrigin(); MessageInterface::ShowMessage( " Epoch = %.12lf\n targetBody = %s\n fixedBody = %s\n", now.Get(), targetBody->GetName().c_str(), fixedBody->GetName().c_str()); MessageInterface::ShowMessage( "------ body = %s\n------ inputCS = %s\n------ targetCS = %s\n" "------ fixedCS = %s\n", body->GetName().c_str(), inputCS->GetName().c_str(), targetCS->GetName().c_str(), fixedCS->GetName().c_str()); } #endif if (fillCartesian || fillAMatrix || fillSTM) { // See assumption 1, above if ((cartesianCount < stmCount) || (cartesianCount < aMatrixCount)) { throw ODEModelException("GetDerivatives: cartesianCount < stmCount or aMatrixCount\n"); } Real originacc[3] = { 0.0,0.0,0.0 }; // JPD code Rmatrix33 origingrad (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0); Rmatrix33 emptyGradient(0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0); Rmatrix33 gradnew (0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0); if (body != forceOrigin) { Real originstate[6] = { 0.0,0.0,0.0,0.0,0.0,0.0 }; Calculate(dt,originstate,originacc,origingrad); #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("---------> origingrad = %s\n", origingrad.ToString().c_str()); #endif } for (Integer n = 0; n < cartesianCount; ++n) { nOffset = cartesianStart + n * stateSize; for (Integer i = 0; i < 6; ++i) satState[i] = state[i+nOffset]; Real accnew[3]; // JPD code gradnew = emptyGradient; Calculate(dt,satState,accnew,gradnew); if (body != forceOrigin) { for (Integer i=0; i<=2; ++i) accnew[i] -= originacc[i]; gradnew -= origingrad; #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("---------> body not equal to forceOrigin\n"); #endif } #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("---------> gradnew (%d) = %s\n", n, gradnew.ToString().c_str()); #endif // Fill Derivatives switch (dvorder) { case 1: deriv[0+nOffset] = satState[3]; deriv[1+nOffset] = satState[4]; deriv[2+nOffset] = satState[5]; deriv[3+nOffset] = accnew[0]; deriv[4+nOffset] = accnew[1]; deriv[5+nOffset] = accnew[2]; break; case 2: deriv[0+nOffset] = accnew[0]; deriv[1+nOffset] = accnew[1]; deriv[2+nOffset] = accnew[2]; deriv[3+nOffset] = 0.0; deriv[4+nOffset] = 0.0; deriv[5+nOffset] = 0.0; break; } #ifdef DEBUG_DERIVATIVES for (Integer ii = 0 + nOffset; ii < 6+nOffset; ii++) MessageInterface::ShowMessage("------ deriv[%d] = %12.10f\n", ii, deriv[ii]); #endif if (fillSTM) { Real aTilde[36]; Integer element; // @todo Add the use of the GetAssociateIndex() method here to get index into state array // (See assumption 1, above) if (n <= stmCount) { Integer i6 = stmStart + n * 36; // Calculate A-tilde aTilde[ 0] = aTilde[ 1] = aTilde[ 2] = aTilde[ 3] = aTilde[ 4] = aTilde[ 5] = aTilde[ 6] = aTilde[ 7] = aTilde[ 8] = aTilde[ 9] = aTilde[10] = aTilde[11] = aTilde[12] = aTilde[13] = aTilde[14] = aTilde[15] = aTilde[16] = aTilde[17] = aTilde[21] = aTilde[22] = aTilde[23] = aTilde[27] = aTilde[28] = aTilde[29] = aTilde[33] = aTilde[34] = aTilde[35] = 0.0; // fill in the lower left quadrant with the calculated gradient values aTilde[18] = gradnew(0,0); aTilde[19] = gradnew(0,1); aTilde[20] = gradnew(0,2); aTilde[24] = gradnew(1,0); aTilde[25] = gradnew(1,1); aTilde[26] = gradnew(1,2); aTilde[30] = gradnew(2,0); aTilde[31] = gradnew(2,1); aTilde[32] = gradnew(2,2); for (Integer j = 0; j < 6; j++) { for (Integer k = 0; k < 6; k++) { element = j * 6 + k; #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("------ deriv[%d] = %12.10f\n", (i6+element), aTilde[element]); #endif deriv[i6+element] = aTilde[element]; } } } } if (fillAMatrix) { Real aTilde[36]; Integer element; // @todo Add the use of the GetAssociateIndex() method here to get index into state array // (See assumption 1, above) if (n <= aMatrixCount) { Integer i6 = aMatrixStart + n * 36; // Calculate A-tilde aTilde[ 0] = aTilde[ 1] = aTilde[ 2] = aTilde[ 3] = aTilde[ 4] = aTilde[ 5] = aTilde[ 6] = aTilde[ 7] = aTilde[ 8] = aTilde[ 9] = aTilde[10] = aTilde[11] = aTilde[12] = aTilde[13] = aTilde[14] = aTilde[15] = aTilde[16] = aTilde[17] = aTilde[21] = aTilde[22] = aTilde[23] = aTilde[27] = aTilde[28] = aTilde[29] = aTilde[33] = aTilde[34] = aTilde[35] = 0.0; // fill in the lower left quadrant with the calculated gradient values aTilde[18] = gradnew(0,0); aTilde[19] = gradnew(0,1); aTilde[20] = gradnew(0,2); aTilde[24] = gradnew(1,0); aTilde[25] = gradnew(1,1); aTilde[26] = gradnew(1,2); aTilde[30] = gradnew(2,0); aTilde[31] = gradnew(2,1); aTilde[32] = gradnew(2,2); for (Integer j = 0; j < 6; j++) { for (Integer k = 0; k < 6; k++) { element = j * 6 + k; #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("------ deriv[%d] = %12.10f\n", (i6+element), aTilde[element]); #endif deriv[i6+element] = aTilde[element]; } } } } } // end for } #ifdef DEBUG_FIRST_CALL if (firstCallFired == false) { if (body->GetName() == "Mars") { MessageInterface::ShowMessage( " GravityField[%s <> %s] --> mu = %lf, origin = %s, [%.10lf %.10lf " "%.10lf %.16lf %.16lf %.16lf]\n", instanceName.c_str(), body->GetName().c_str(), mu, targetCS->GetOriginName().c_str(), deriv[0], deriv[1], deriv[2], deriv[3], deriv[4], deriv[5]); firstCallFired = true; } } #endif return true; }
//------------------------------------------------------------------------------ void GravityField::Calculate (Real dt, Real state[6], Real acc[3], Rmatrix33& grad) { #ifdef DEBUG_CALCULATE MessageInterface::ShowMessage( "Entering Calculate with dt = %12.10f, state = %12.10f %12.10f %12.10f %12.10f %12.10f %12.10f\n", dt, state[0], state[1], state[2], state[3], state[4], state[5]); MessageInterface::ShowMessage(" acc = %12.10f %12.10f %12.10f\n", acc[0], acc[1], acc[2]); #endif Real jday = epoch + GmatTimeConstants::JD_JAN_5_1941 + dt/GmatTimeConstants::SECS_PER_DAY; // convert to body fixed coordinate system Real now = epoch + dt/GmatTimeConstants::SECS_PER_DAY; Real tmpState[6]; // CoordinateConverter cc; - move back to class, for performance cc.Convert(now, state, inputCS, tmpState, fixedCS); // which CSs to use here??? #ifdef DEBUG_CALCULATE MessageInterface::ShowMessage( "After Convert, jday = %12.10f, now = %12.10f, and tmpState = %12.10f %12.10f %12.10f %12.10f %12.10f %12.10f\n", jday, now, tmpState[0], tmpState[1], tmpState[2], tmpState[3], tmpState[4], tmpState[5]); #endif Rmatrix33 rotMatrix = cc.GetLastRotationMatrix(); #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("---->>>> rotMatrix = %s\n", rotMatrix.ToString().c_str()); #endif // calculate sun and moon pos Real sunpos[3] = {0.0,0.0,0.0}; Real moonpos[3] = {0.0,0.0,0.0}; Real sunMass = 0.0; Real moonMass = 0.0; // Acceleration Real rotacc[3]; Rmatrix33 rotgrad; bool useTides; // for now, "None" and "SolidAndPole" are the only valid EarthTideModel values if ((bodyName == GmatSolarSystemDefaults::EARTH_NAME) && (GmatStringUtil::ToUpper(earthTideModel) == "SOLIDANDPOLE")) { Real ep = epoch + dt / GmatTimeConstants::SECS_PER_DAY; // isn't this the same as now? CelestialBody* theSun = solarSystem->GetBody(SolarSystem::SUN_NAME); CelestialBody* theMoon = solarSystem->GetBody(SolarSystem::MOON_NAME); if (!theSun || !theMoon) throw ODEModelException("Solar system does not contain the Sun or Moon for Tide model."); Rvector6 sunstateinertial = theSun->GetState(ep); Rvector6 moonstateinertial = theMoon->GetState(ep); Rvector6 sunstate; Rvector6 moonstate; cc.Convert(now, sunstateinertial, inputCS, sunstate, fixedCS); cc.Convert(now, moonstateinertial, inputCS, moonstate, fixedCS); sunstate.GetR(sunpos); moonstate.GetR(moonpos); sunMass = theSun->GetMass(); moonMass = theMoon->GetMass(); useTides = true; } else useTides = false; #ifdef DEBUG_GRAVITY_EARTH_TIDE MessageInterface::ShowMessage("Calling gravityModel->CalculateFullField with useTides = %s\n", (useTides? "true" : "false")); #endif // Get xp and yp from the EOP file Real xp, yp, lod; Real utcmjd = TimeConverterUtil::Convert(now, TimeConverterUtil::A1MJD, TimeConverterUtil::UTCMJD, GmatTimeConstants::JD_JAN_5_1941); eop->GetPolarMotionAndLod(utcmjd, xp, yp, lod); bool computeMatrix = fillAMatrix || fillSTM; gravityModel->CalculateFullField(jday, tmpState, degree, order, useTides, sunpos, moonpos, sunMass, moonMass, xp, yp, computeMatrix, rotacc, rotgrad); #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("after CalculateFullField, rotgrad = %s\n", rotgrad.ToString().c_str()); #endif /* MessageInterface::ShowMessage ("HarmonicField::Calculate pos= %20.14f %20.14f %20.14f\n", tmpState[0],tmpState[1],tmpState[2]); MessageInterface::ShowMessage ("HarmonicField::Calculate grad= %20.14e %20.14e %20.14e\n", rotgrad(0,0),rotgrad(0,1),rotgrad(0,2)); MessageInterface::ShowMessage ("HarmonicField::Calculate grad= %20.14e %20.14e %20.14e\n", rotgrad(1,0),rotgrad(1,1),rotgrad(1,2)); MessageInterface::ShowMessage ("HarmonicField::Calculate grad= %20.14e %20.14e %20.14e\n", rotgrad(2,0),rotgrad(2,1),rotgrad(2,2)); */ // Convert back to target CS InverseRotate (rotMatrix,rotacc,acc); grad = rotMatrix.Transpose() * rotgrad * rotMatrix; #ifdef DEBUG_DERIVATIVES MessageInterface::ShowMessage("at end of Calculate, after rotation, grad = %s\n", grad.ToString().c_str()); #endif }