//_________________________________________________ void TestJeffreysGaussSigma(){ // this one is VERY sensitive // if the Gaussian is narrow ~ range(x)/nbins(x) then the peak isn't resolved // and you get really bizzare shapes // if the Gaussian is too wide range(x) ~ sigma then PDF gets renormalized // and the PDF falls off too fast at high sigma RooWorkspace w("w"); w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,1,5])"); w.factory("n[100,.1,2000]"); w.factory("ExtendPdf::p(g,n)"); // w.var("sigma")->setConstant(); w.var("mu")->setConstant(); w.var("n")->setConstant(); w.var("x")->setBins(301); RooDataHist* asimov = w.pdf("p")->generateBinned(*w.var("x"),ExpectedData()); RooFitResult* res = w.pdf("p")->fitTo(*asimov,Save(),SumW2Error(kTRUE)); asimov->Print(); res->Print(); TMatrixDSym cov = res->covarianceMatrix(); cout << "variance = " << (cov.Determinant()) << endl; cout << "stdev = " << sqrt(cov.Determinant()) << endl; cov.Invert(); cout << "jeffreys = " << sqrt(cov.Determinant()) << endl; // w.defineSet("poi","mu,sigma"); //w.defineSet("poi","mu,sigma,n"); w.defineSet("poi","sigma"); w.defineSet("obs","x"); RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs")); // pi.specialIntegratorConfig(kTRUE)->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D") ; pi.specialIntegratorConfig(kTRUE)->getConfigSection("RooIntegrator1D").setRealValue("maxSteps",3); const RooArgSet* temp = w.set("poi"); pi.getParameters(*temp)->Print(); // return; // return; RooGenericPdf* test = new RooGenericPdf("test","test","sqrt(2.)/sigma",*w.set("poi")); TCanvas* c1 = new TCanvas; RooPlot* plot = w.var("sigma")->frame(); pi.plotOn(plot); test->plotOn(plot,LineColor(kRed),LineStyle(kDotted)); plot->Draw(); }
void JeffreysPriorDemo(){ RooWorkspace w("w"); w.factory("Uniform::u(x[0,1])"); w.factory("mu[100,1,200]"); w.factory("ExtendPdf::p(u,mu)"); // w.factory("Poisson::pois(n[0,inf],mu)"); RooDataHist* asimov = w.pdf("p")->generateBinned(*w.var("x"),ExpectedData()); // RooDataHist* asimov2 = w.pdf("pois")->generateBinned(*w.var("n"),ExpectedData()); RooFitResult* res = w.pdf("p")->fitTo(*asimov,Save(),SumW2Error(kTRUE)); asimov->Print(); res->Print(); TMatrixDSym cov = res->covarianceMatrix(); cout << "variance = " << (cov.Determinant()) << endl; cout << "stdev = " << sqrt(cov.Determinant()) << endl; cov.Invert(); cout << "jeffreys = " << sqrt(cov.Determinant()) << endl; w.defineSet("poi","mu"); w.defineSet("obs","x"); // w.defineSet("obs2","n"); RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs")); // pi.specialIntegratorConfig(kTRUE)->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D") ; // pi.specialIntegratorConfig(kTRUE)->getConfigSection("RooIntegrator1D").setRealValue("maxSteps",10); // JeffreysPrior pi2("jeffreys2","jeffreys",*w.pdf("pois"),*w.set("poi"),*w.set("obs2")); // return; RooGenericPdf* test = new RooGenericPdf("test","test","1./sqrt(mu)",*w.set("poi")); TCanvas* c1 = new TCanvas; RooPlot* plot = w.var("mu")->frame(); // pi.plotOn(plot, Normalization(1,RooAbsReal::Raw),Precision(.1)); pi.plotOn(plot); // pi2.plotOn(plot,LineColor(kGreen),LineStyle(kDotted)); test->plotOn(plot,LineColor(kRed)); plot->Draw(); }
//_________________________________________________ void TestJeffreysGaussMean(){ RooWorkspace w("w"); w.factory("Gaussian::g(x[0,-20,20],mu[0,-5,5],sigma[1,0,10])"); w.factory("n[10,.1,200]"); w.factory("ExtendPdf::p(g,n)"); w.var("sigma")->setConstant(); w.var("n")->setConstant(); RooDataHist* asimov = w.pdf("p")->generateBinned(*w.var("x"),ExpectedData()); RooFitResult* res = w.pdf("p")->fitTo(*asimov,Save(),SumW2Error(kTRUE)); asimov->Print(); res->Print(); TMatrixDSym cov = res->covarianceMatrix(); cout << "variance = " << (cov.Determinant()) << endl; cout << "stdev = " << sqrt(cov.Determinant()) << endl; cov.Invert(); cout << "jeffreys = " << sqrt(cov.Determinant()) << endl; // w.defineSet("poi","mu,sigma"); w.defineSet("poi","mu"); w.defineSet("obs","x"); RooJeffreysPrior pi("jeffreys","jeffreys",*w.pdf("p"),*w.set("poi"),*w.set("obs")); // pi.specialIntegratorConfig(kTRUE)->method1D().setLabel("RooAdaptiveGaussKronrodIntegrator1D") ; // pi.specialIntegratorConfig(kTRUE)->getConfigSection("RooIntegrator1D").setRealValue("maxSteps",3); const RooArgSet* temp = w.set("poi"); pi.getParameters(*temp)->Print(); // return; RooGenericPdf* test = new RooGenericPdf("test","test","1",*w.set("poi")); TCanvas* c1 = new TCanvas; RooPlot* plot = w.var("mu")->frame(); pi.plotOn(plot); test->plotOn(plot,LineColor(kRed),LineStyle(kDotted)); plot->Draw(); }
void BackgroundPrediction(std::string pname,int rebin_factor,int model_number = 0,int imass=750, bool plotBands = false) { rebin = rebin_factor; std::string fname = std::string("../fitFilesMETPT34/") + pname + std::string("/histos_bkg.root"); stringstream iimass ; iimass << imass; std::string dirName = "info_"+iimass.str()+"_"+pname; gStyle->SetOptStat(000000000); gStyle->SetPadGridX(0); gStyle->SetPadGridY(0); setTDRStyle(); gStyle->SetPadGridX(0); gStyle->SetPadGridY(0); gStyle->SetOptStat(0000); writeExtraText = true; // if extra text extraText = "Preliminary"; // default extra text is "Preliminary" lumi_13TeV = "2.7 fb^{-1}"; // default is "19.7 fb^{-1}" lumi_7TeV = "4.9 fb^{-1}"; // default is "5.1 fb^{-1}" double ratio_tau=-1; TFile *f=new TFile(fname.c_str()); TH1F *h_mX_CR_tau=(TH1F*)f->Get("distribs_18_10_1")->Clone("CR_tau"); TH1F *h_mX_SR=(TH1F*)f->Get("distribs_18_10_0")->Clone("The_SR"); double maxdata = h_mX_SR->GetMaximum(); double nEventsSR = h_mX_SR->Integral(600,4000); ratio_tau=(h_mX_SR->GetSumOfWeights()/(h_mX_CR_tau->GetSumOfWeights())); //double nEventsSR = h_mX_SR->Integral(600,4000); std::cout<<"ratio tau "<<ratio_tau<<std::endl; TH1F *h_SR_Prediction; TH1F *h_SR_Prediction2; if(blind) { h_SR_Prediction2 = (TH1F*)h_mX_CR_tau->Clone("h_SR_Prediction2"); h_mX_CR_tau->Rebin(rebin); h_mX_CR_tau->SetLineColor(kBlack); h_SR_Prediction=(TH1F*)h_mX_CR_tau->Clone("h_SR_Prediction"); } else { h_SR_Prediction2=(TH1F*)h_mX_SR->Clone("h_SR_Prediction2"); h_mX_SR->Rebin(rebin); h_mX_SR->SetLineColor(kBlack); h_SR_Prediction=(TH1F*)h_mX_SR->Clone("h_SR_Prediction"); } h_SR_Prediction->SetMarkerSize(0.7); h_SR_Prediction->GetYaxis()->SetTitleOffset(1.2); h_SR_Prediction->Sumw2(); /*TFile *f_sig = new TFile((dirName+"/w_signal_"+iimass.str()+".root").c_str()); RooWorkspace* xf_sig = (RooWorkspace*)f_sig->Get("Vg"); RooAbsPdf *xf_sig_pdf = (RooAbsPdf *)xf_sig->pdf((std::string("signal_fixed_")+pname).c_str()); RooWorkspace w_sig("w"); w_sig.import(*xf_sig_pdf,RooFit::RenameVariable((std::string("signal_fixed_")+pname).c_str(),(std::string("signal_fixed_")+pname+std::string("low")).c_str()),RooFit::RenameAllVariablesExcept("low","x")); xf_sig_pdf = w_sig.pdf((std::string("signal_fixed_")+pname+std::string("low")).c_str()); RooArgSet* biasVars = xf_sig_pdf->getVariables(); TIterator *it = biasVars->createIterator(); RooRealVar* var = (RooRealVar*)it->Next(); while (var) { var->setConstant(kTRUE); var = (RooRealVar*)it->Next(); } */ RooRealVar x("x", "m_{X} (GeV)", SR_lo, SR_hi); RooRealVar nBackground((std::string("bg_")+pname+std::string("_norm")).c_str(),"nbkg",h_mX_SR->GetSumOfWeights()); RooRealVar nBackground2((std::string("alt_bg_")+pname+std::string("_norm")).c_str(),"nbkg",h_mX_SR->GetSumOfWeights()); std::string blah = pname; //pname=""; //Antibtag=tag to constrain b-tag to the anti-btag shape /* RooRealVar bg_p0((std::string("bg_p0_")+pname).c_str(), "bg_p0", 4.2, 0, 200.); RooRealVar bg_p1((std::string("bg_p1_")+pname).c_str(), "bg_p1", 4.5, 0, 300.); RooRealVar bg_p2((std::string("bg_p2_")+pname).c_str(), "bg_p2", 0.000047, 0, 10.1); RooGenericPdf bg_pure = RooGenericPdf((std::string("bg_pure_")+blah).c_str(),"(pow(1-@0/13000,@1)/pow(@0/13000,@2+@3*log(@0/13000)))",RooArgList(x,bg_p0,bg_p1,bg_p2)); */ RooRealVar bg_p0((std::string("bg_p0_")+pname).c_str(), "bg_p0", 0., -1000, 200.); RooRealVar bg_p1((std::string("bg_p1_")+pname).c_str(), "bg_p1", -13, -1000, 1000.); RooRealVar bg_p2((std::string("bg_p2_")+pname).c_str(), "bg_p2", -1.4, -1000, 1000.); bg_p0.setConstant(kTRUE); //RooGenericPdf bg_pure = RooGenericPdf((std::string("bg_pure_")+blah).c_str(),"(pow(@0/13000,@1+@2*log(@0/13000)))",RooArgList(x,bg_p1,bg_p2)); RooGenericPdf bg = RooGenericPdf((std::string("bg_")+blah).c_str(),"(pow(@0/13000,@1+@2*log(@0/13000)))",RooArgList(x,bg_p1,bg_p2)); /*TF1* biasFunc = new TF1("biasFunc","(0.63*x/1000-1.45)",1350,3600); TF1* biasFunc2 = new TF1("biasFunc2","TMath::Min(2.,2.3*x/1000-3.8)",1350,3600); double bias_term_s = 0; if ((imass > 2450 && blah == "antibtag") || (imass > 1640 && blah == "btag")) { if (blah == "antibtag") { bias_term_s = 2.7*biasFunc->Eval(imass); } else { bias_term_s = 2.7*biasFunc2->Eval(imass); } bias_term_s/=nEventsSR; } RooRealVar bias_term((std::string("bias_term_")+blah).c_str(), "bias_term", 0., -bias_term_s, bias_term_s); //bias_term.setConstant(kTRUE); RooAddPdf bg((std::string("bg_")+blah).c_str(), "bg_all", RooArgList(*xf_sig_pdf, bg_pure), bias_term); */ string name_output = "CR_RooFit_Exp"; std::cout<<"Nevents "<<nEventsSR<<std::endl; RooDataHist pred("pred", "Prediction from SB", RooArgList(x), h_SR_Prediction); RooFitResult *r_bg=bg.fitTo(pred, RooFit::Minimizer("Minuit2"), RooFit::Range(SR_lo, SR_hi), RooFit::SumW2Error(kTRUE), RooFit::Save()); //RooFitResult *r_bg=bg.fitTo(pred, RooFit::Range(SR_lo, SR_hi), RooFit::Save()); //RooFitResult *r_bg=bg.fitTo(pred, RooFit::Range(SR_lo, SR_hi), RooFit::Save(),RooFit::SumW2Error(kTRUE)); std::cout<<" --------------------- Building Envelope --------------------- "<<std::endl; //std::cout<< "bg_p0_"<< pname << " param "<<bg_p0.getVal() << " "<<bg_p0.getError()<<std::endl; std::cout<< "bg_p1_"<< pname << " param "<<bg_p1.getVal() << " "<<100*bg_p1.getError()<<std::endl; std::cout<< "bg_p2_"<< pname << " param "<<bg_p2.getVal() << " "<<100*bg_p2.getError()<<std::endl; //std::cout<< "bias_term_"<< blah << " param 0 "<<bias_term_s<<std::endl; RooPlot *aC_plot=x.frame(); pred.plotOn(aC_plot, RooFit::MarkerColor(kPink+2)); if (!plotBands) { bg.plotOn(aC_plot, RooFit::VisualizeError(*r_bg, 2), RooFit::FillColor(kYellow)); bg.plotOn(aC_plot, RooFit::VisualizeError(*r_bg, 1), RooFit::FillColor(kGreen)); } bg.plotOn(aC_plot, RooFit::LineColor(kBlue)); //pred.plotOn(aC_plot, RooFit::LineColor(kBlack), RooFit::MarkerColor(kBlack)); TGraph* error_curve[5]; //correct error bands TGraphAsymmErrors* dataGr = new TGraphAsymmErrors(h_SR_Prediction->GetNbinsX()); //data w/o 0 entries for (int i=2; i!=5; ++i) { error_curve[i] = new TGraph(); } error_curve[2] = (TGraph*)aC_plot->getObject(1)->Clone("errs"); int nPoints = error_curve[2]->GetN(); error_curve[0] = new TGraph(2*nPoints); error_curve[1] = new TGraph(2*nPoints); error_curve[0]->SetFillStyle(1001); error_curve[1]->SetFillStyle(1001); error_curve[0]->SetFillColor(kGreen); error_curve[1]->SetFillColor(kYellow); error_curve[0]->SetLineColor(kGreen); error_curve[1]->SetLineColor(kYellow); if (plotBands) { RooDataHist pred2("pred2", "Prediction from SB", RooArgList(x), h_SR_Prediction2); error_curve[3]->SetFillStyle(1001); error_curve[4]->SetFillStyle(1001); error_curve[3]->SetFillColor(kGreen); error_curve[4]->SetFillColor(kYellow); error_curve[3]->SetLineColor(kGreen); error_curve[4]->SetLineColor(kYellow); error_curve[2]->SetLineColor(kBlue); error_curve[2]->SetLineWidth(3); double binSize = rebin; for (int i=0; i!=nPoints; ++i) { double x0,y0, x1,y1; error_curve[2]->GetPoint(i,x0,y0); RooAbsReal* nlim = new RooRealVar("nlim","y0",y0,-100000,100000); //double lowedge = x0 - (SR_hi - SR_lo)/double(2*nPoints); //double upedge = x0 + (SR_hi - SR_lo)/double(2*nPoints); double lowedge = x0 - binSize/2.; double upedge = x0 + binSize/2.; x.setRange("errRange",lowedge,upedge); RooExtendPdf* epdf = new RooExtendPdf("epdf","extpdf",bg, *nlim,"errRange"); // Construct unbinned likelihood RooAbsReal* nll = epdf->createNLL(pred2,NumCPU(2)); // Minimize likelihood w.r.t all parameters before making plots RooMinimizer* minim = new RooMinimizer(*nll); minim->setMinimizerType("Minuit2"); minim->setStrategy(2); minim->setPrintLevel(-1); minim->migrad(); minim->hesse(); RooFitResult* result = minim->lastMinuitFit(); double errm = nlim->getPropagatedError(*result); //std::cout<<x0<<" "<<lowedge<<" "<<upedge<<" "<<y0<<" "<<nlim->getVal()<<" "<<errm<<std::endl; error_curve[0]->SetPoint(i,x0,(y0-errm)); error_curve[0]->SetPoint(2*nPoints-i-1,x0,y0+errm); error_curve[1]->SetPoint(i,x0,(y0-2*errm)); error_curve[1]->SetPoint(2*nPoints-i-1,x0,(y0+2*errm)); error_curve[3]->SetPoint(i,x0,-errm/sqrt(y0)); error_curve[3]->SetPoint(2*nPoints-i-1,x0,errm/sqrt(y0)); error_curve[4]->SetPoint(i,x0,-2*errm/sqrt(y0)); error_curve[4]->SetPoint(2*nPoints-i-1,x0,2*errm/sqrt(y0)); } int npois = 0; dataGr->SetMarkerSize(1.0); dataGr->SetMarkerStyle (20); const double alpha = 1 - 0.6827; for (int i=0; i!=h_SR_Prediction->GetNbinsX(); ++i){ if (h_SR_Prediction->GetBinContent(i+1) > 0) { int N = h_SR_Prediction->GetBinContent(i+1); double L = (N==0) ? 0 : (ROOT::Math::gamma_quantile(alpha/2,N,1.)); double U = ROOT::Math::gamma_quantile_c(alpha/2,N+1,1) ; dataGr->SetPoint(npois,h_SR_Prediction->GetBinCenter(i+1),h_SR_Prediction->GetBinContent(i+1)); dataGr->SetPointEYlow(npois, N-L); dataGr->SetPointEYhigh(npois, U-N); npois++; } } } double xG[2] = {-10,4000}; double yG[2] = {0.0,0.0}; TGraph* unityG = new TGraph(2, xG, yG); unityG->SetLineColor(kBlue); unityG->SetLineWidth(1); double xPad = 0.3; TCanvas *c_rooFit=new TCanvas("c_rooFit", "c_rooFit", 800*(1.-xPad), 600); c_rooFit->SetFillStyle(4000); c_rooFit->SetFrameFillColor(0); TPad *p_1=new TPad("p_1", "p_1", 0, xPad, 1, 1); p_1->SetFillStyle(4000); p_1->SetFrameFillColor(0); p_1->SetBottomMargin(0.02); TPad* p_2 = new TPad("p_2", "p_2",0,0,1,xPad); p_2->SetBottomMargin((1.-xPad)/xPad*0.13); p_2->SetTopMargin(0.03); p_2->SetFillColor(0); p_2->SetBorderMode(0); p_2->SetBorderSize(2); p_2->SetFrameBorderMode(0); p_2->SetFrameBorderMode(0); p_1->Draw(); p_2->Draw(); p_1->cd(); int nbins = (int) (SR_hi- SR_lo)/rebin; x.setBins(nbins); std::cout << "chi2(data) " << aC_plot->chiSquare()<<std::endl; //std::cout << "p-value: data under hypothesis H0: " << TMath::Prob(chi2_data->getVal(), nbins - 1) << std::endl; aC_plot->GetXaxis()->SetRangeUser(SR_lo, SR_hi); aC_plot->GetXaxis()->SetLabelOffset(0.02); aC_plot->GetYaxis()->SetRangeUser(0.1, 1000.); h_SR_Prediction->GetXaxis()->SetRangeUser(SR_lo, SR_hi); string rebin_ = itoa(rebin); aC_plot->GetXaxis()->SetTitle("M_{Z#gamma} [GeV] "); aC_plot->GetYaxis()->SetTitle(("Events / "+rebin_+" GeV ").c_str()); aC_plot->SetMarkerSize(0.7); aC_plot->GetYaxis()->SetTitleOffset(1.2); aC_plot->Draw(); if (plotBands) { error_curve[1]->Draw("Fsame"); error_curve[0]->Draw("Fsame"); error_curve[2]->Draw("Lsame"); dataGr->Draw("p e1 same"); } aC_plot->SetTitle(""); TPaveText *pave = new TPaveText(0.85,0.4,0.67,0.5,"NDC"); pave->SetBorderSize(0); pave->SetTextSize(0.05); pave->SetTextFont(42); pave->SetLineColor(1); pave->SetLineStyle(1); pave->SetLineWidth(2); pave->SetFillColor(0); pave->SetFillStyle(0); char name[1000]; sprintf(name,"#chi^{2}/n = %.2f",aC_plot->chiSquare()); pave->AddText(name); //pave->Draw(); TLegend *leg = new TLegend(0.88,0.65,0.55,0.90,NULL,"brNDC"); leg->SetBorderSize(0); leg->SetTextSize(0.05); leg->SetTextFont(42); leg->SetLineColor(1); leg->SetLineStyle(1); leg->SetLineWidth(2); leg->SetFillColor(0); leg->SetFillStyle(0); h_SR_Prediction->SetMarkerColor(kBlack); h_SR_Prediction->SetLineColor(kBlack); h_SR_Prediction->SetMarkerStyle(20); h_SR_Prediction->SetMarkerSize(1.0); //h_mMMMMa_3Tag_SR->GetXaxis()->SetTitleSize(0.09); if (blind) leg->AddEntry(h_SR_Prediction, "Data: sideband", "ep"); else { if (blah == "antibtag" ) leg->AddEntry(h_SR_Prediction, "Data: anti-b-tag SR", "ep"); else leg->AddEntry(h_SR_Prediction, "Data: b-tag SR", "ep"); } leg->AddEntry(error_curve[2], "Fit model", "l"); leg->AddEntry(error_curve[0], "Fit #pm1#sigma", "f"); leg->AddEntry(error_curve[1], "Fit #pm2#sigma", "f"); leg->Draw(); aC_plot->Draw("axis same"); CMS_lumi( p_1, iPeriod, iPos ); p_2->cd(); RooHist* hpull; hpull = aC_plot->pullHist(); RooPlot* frameP = x.frame() ; frameP->SetTitle(""); frameP->GetXaxis()->SetRangeUser(SR_lo, SR_hi); frameP->addPlotable(hpull,"P"); frameP->GetYaxis()->SetRangeUser(-7,7); frameP->GetYaxis()->SetNdivisions(505); frameP->GetYaxis()->SetTitle("#frac{(data-fit)}{#sigma_{stat}}"); frameP->GetYaxis()->SetTitleSize((1.-xPad)/xPad*0.06); frameP->GetYaxis()->SetTitleOffset(1.0/((1.-xPad)/xPad)); frameP->GetXaxis()->SetTitleSize((1.-xPad)/xPad*0.06); //frameP->GetXaxis()->SetTitleOffset(1.0); frameP->GetXaxis()->SetLabelSize((1.-xPad)/xPad*0.05); frameP->GetYaxis()->SetLabelSize((1.-xPad)/xPad*0.05); frameP->Draw(); if (plotBands) { error_curve[4]->Draw("Fsame"); error_curve[3]->Draw("Fsame"); unityG->Draw("same"); hpull->Draw("psame"); frameP->Draw("axis same"); } c_rooFit->SaveAs((dirName+"/"+name_output+".pdf").c_str()); const int nModels = 9; TString models[nModels] = { "env_pdf_0_13TeV_dijet2", //0 "env_pdf_0_13TeV_exp1", //1 "env_pdf_0_13TeV_expow1", //2 "env_pdf_0_13TeV_expow2", //3 => skip "env_pdf_0_13TeV_pow1", //4 "env_pdf_0_13TeV_lau1", //5 "env_pdf_0_13TeV_atlas1", //6 "env_pdf_0_13TeV_atlas2", //7 => skip "env_pdf_0_13TeV_vvdijet1" //8 }; int nPars[nModels] = { 2, 1, 2, 3, 1, 1, 2, 3, 2 }; TString parNames[nModels][3] = { "env_pdf_0_13TeV_dijet2_log1","env_pdf_0_13TeV_dijet2_log2","", "env_pdf_0_13TeV_exp1_p1","","", "env_pdf_0_13TeV_expow1_exp1","env_pdf_0_13TeV_expow1_pow1","", "env_pdf_0_13TeV_expow2_exp1","env_pdf_0_13TeV_expow2_pow1","env_pdf_0_13TeV_expow2_exp2", "env_pdf_0_13TeV_pow1_p1","","", "env_pdf_0_13TeV_lau1_l1","","", "env_pdf_0_13TeV_atlas1_coeff1","env_pdf_0_13TeV_atlas1_log1","", "env_pdf_0_13TeV_atlas2_coeff1","env_pdf_0_13TeV_atlas2_log1","env_pdf_0_13TeV_atlas2_log2", "env_pdf_0_13TeV_vvdijet1_coeff1","env_pdf_0_13TeV_vvdijet1_log1","" } if(bias){ //alternative model gSystem->Load("libHiggsAnalysisCombinedLimit"); gSystem->Load("libdiphotonsUtils"); TFile *f = new TFile("antibtag_multipdf.root"); RooWorkspace* xf = (RooWorkspace*)f->Get("wtemplates"); RooWorkspace *w_alt=new RooWorkspace("Vg"); for(int i=model_number; i<=model_number; i++){ RooMultiPdf *alternative = (RooMultiPdf *)xf->pdf("model_bkg_AntiBtag"); std::cout<<"Number of pdfs "<<alternative->getNumPdfs()<<std::endl; for (int j=0; j!=alternative->getNumPdfs(); ++j){ std::cout<<alternative->getPdf(j)->GetName()<<std::endl; } RooAbsPdf *alt_bg = alternative->getPdf(alternative->getCurrentIndex()+i);//->clone(); w_alt->import(*alt_bg, RooFit::RenameVariable(alt_bg->GetName(),("alt_bg_"+blah).c_str())); w_alt->Print("V"); std::cerr<<w_alt->var("x")<<std::endl; RooRealVar * range_ = w_alt->var("x"); range_->setRange(SR_lo,SR_hi); char* asd = ("alt_bg_"+blah).c_str() ; w_alt->import(nBackground2); std::cout<<alt_bg->getVal() <<std::endl; w_alt->pdf(asd)->fitTo(pred, RooFit::Minimizer("Minuit2"), RooFit::Range(SR_lo, SR_hi), RooFit::SumW2Error(kTRUE), RooFit::Save()); RooArgSet* altVars = w_alt->pdf(asd)->getVariables(); TIterator *it2 = altVars->createIterator(); RooRealVar* varAlt = (RooRealVar*)it2->Next(); while (varAlt) { varAlt->setConstant(kTRUE); varAlt = (RooRealVar*)it2->Next(); } alt_bg->plotOn(aC_plot, RooFit::LineColor(i+1), RooFit::LineStyle(i+2)); p_1->cd(); aC_plot->GetYaxis()->SetRangeUser(0.01, maxdata*50.); aC_plot->Draw("same"); TH1F *h=new TH1F(); h->SetLineColor(1+i); h->SetLineStyle(i+2); leg->AddEntry(h, alt_bg->GetName(), "l"); w_alt->SaveAs((dirName+"/w_background_alternative.root").c_str()); } leg->Draw(); p_1->SetLogy(); c_rooFit->Update(); c_rooFit->SaveAs((dirName+"/"+name_output+blah+"_multipdf.pdf").c_str()); for (int i=0; i!=nPars[model_number]; ++i) { std::cout<<parNames[model_number][i]<<" param "<< w_alt->var(parNames[model_number][i])->getVal()<<" "<<w_alt->var(parNames[model_number][i])->getError()<<std::endl; } } else { p_1->SetLogy(); c_rooFit->Update(); c_rooFit->SaveAs((dirName+"/"+name_output+"_log.pdf").c_str()); } RooWorkspace *w=new RooWorkspace("Vg"); w->import(bg); w->import(nBackground); w->SaveAs((dirName+"/w_background_GaussExp.root").c_str()); TH1F *h_mX_SR_fakeData=(TH1F*)h_mX_SR->Clone("h_mX_SR_fakeData"); h_mX_SR_fakeData->Scale(nEventsSR/h_mX_SR_fakeData->GetSumOfWeights()); RooDataHist data_obs("data_obs", "Data", RooArgList(x), h_mX_SR_fakeData); std::cout<<" Background number of events = "<<nEventsSR<<std::endl; RooWorkspace *w_data=new RooWorkspace("Vg"); w_data->import(data_obs); w_data->SaveAs((dirName+"/w_data.root").c_str()); }