void SILPerformanceInliner::collectAppliesToInline( SILFunction *Caller, SmallVectorImpl<FullApplySite> &Applies, DominanceAnalysis *DA, SILLoopAnalysis *LA) { DominanceInfo *DT = DA->get(Caller); SILLoopInfo *LI = LA->get(Caller); ConstantTracker constTracker(Caller); DominanceOrder domOrder(&Caller->front(), DT, Caller->size()); // Go through all instructions and find candidates for inlining. // We do this in dominance order for the constTracker. SmallVector<FullApplySite, 8> InitialCandidates; while (SILBasicBlock *block = domOrder.getNext()) { constTracker.beginBlock(); unsigned loopDepth = LI->getLoopDepth(block); for (auto I = block->begin(), E = block->end(); I != E; ++I) { constTracker.trackInst(&*I); if (!FullApplySite::isa(&*I)) continue; FullApplySite AI = FullApplySite(&*I); DEBUG(llvm::dbgs() << " Check:" << *I); auto *Callee = getEligibleFunction(AI); if (Callee) { if (isProfitableToInline(AI, loopDepth, DA, LA, constTracker)) InitialCandidates.push_back(AI); } } domOrder.pushChildrenIf(block, [&] (SILBasicBlock *child) { if (ColdBlockInfo::isSlowPath(block, child)) { // Handle cold blocks separately. visitColdBlocks(InitialCandidates, child, DT); return false; } return true; }); } // Calculate how many times a callee is called from this caller. llvm::DenseMap<SILFunction *, unsigned> CalleeCount; for (auto AI : InitialCandidates) { SILFunction *Callee = AI.getCalleeFunction(); assert(Callee && "apply_inst does not have a direct callee anymore"); CalleeCount[Callee]++; } // Now copy each candidate callee that has a small enough number of // call sites into the final set of call sites. for (auto AI : InitialCandidates) { SILFunction *Callee = AI.getCalleeFunction(); assert(Callee && "apply_inst does not have a direct callee anymore"); const unsigned CallsToCalleeThreshold = 1024; if (CalleeCount[Callee] <= CallsToCalleeThreshold) Applies.push_back(AI); } }
/// Return true if inlining this call site is profitable. bool SILPerformanceInliner::isProfitableToInline(FullApplySite AI, unsigned loopDepthOfAI, DominanceAnalysis *DA, SILLoopAnalysis *LA, ConstantTracker &callerTracker, unsigned &NumCallerBlocks) { SILFunction *Callee = AI.getCalleeFunction(); if (Callee->getInlineStrategy() == AlwaysInline) return true; ConstantTracker constTracker(Callee, &callerTracker, AI); DominanceInfo *DT = DA->get(Callee); SILLoopInfo *LI = LA->get(Callee); DominanceOrder domOrder(&Callee->front(), DT, Callee->size()); // Calculate the inlining cost of the callee. unsigned CalleeCost = 0; unsigned Benefit = InlineCostThreshold > 0 ? InlineCostThreshold : RemovedCallBenefit; Benefit += loopDepthOfAI * LoopBenefitFactor; int testThreshold = TestThreshold; while (SILBasicBlock *block = domOrder.getNext()) { constTracker.beginBlock(); unsigned loopDepth = LI->getLoopDepth(block); for (SILInstruction &I : *block) { constTracker.trackInst(&I); auto ICost = instructionInlineCost(I); if (testThreshold >= 0) { // We are in test-mode: use a simplified cost model. CalleeCost += testCost(&I); } else { // Use the regular cost model. CalleeCost += unsigned(ICost); } if (ApplyInst *AI = dyn_cast<ApplyInst>(&I)) { // Check if the callee is passed as an argument. If so, increase the // threshold, because inlining will (probably) eliminate the closure. SILInstruction *def = constTracker.getDefInCaller(AI->getCallee()); if (def && (isa<FunctionRefInst>(def) || isa<PartialApplyInst>(def))) { DEBUG(llvm::dbgs() << " Boost: apply const function at" << *AI); Benefit += ConstCalleeBenefit + loopDepth * LoopBenefitFactor; testThreshold *= 2; } } } // Don't count costs in blocks which are dead after inlining. SILBasicBlock *takenBlock = getTakenBlock(block->getTerminator(), constTracker); if (takenBlock) { Benefit += ConstTerminatorBenefit + TestOpt; DEBUG(llvm::dbgs() << " Take bb" << takenBlock->getDebugID() << " of" << *block->getTerminator()); domOrder.pushChildrenIf(block, [=] (SILBasicBlock *child) { return child->getSinglePredecessor() != block || child == takenBlock; }); } else { domOrder.pushChildren(block); } } unsigned Threshold = Benefit; // The default. if (testThreshold >= 0) { // We are in testing mode. Threshold = testThreshold; } else if (AI.getFunction()->isThunk()) { // Only inline trivial functions into thunks (which will not increase the // code size). Threshold = TrivialFunctionThreshold; } else { // The default case. // We reduce the benefit if the caller is too large. For this we use a // cubic function on the number of caller blocks. This starts to prevent // inlining at about 800 - 1000 caller blocks. unsigned blockMinus = (NumCallerBlocks * NumCallerBlocks) / BlockLimitDenominator * NumCallerBlocks / BlockLimitDenominator; if (Threshold > blockMinus + TrivialFunctionThreshold) Threshold -= blockMinus; else Threshold = TrivialFunctionThreshold; } if (CalleeCost > Threshold) { DEBUG(llvm::dbgs() << " NO: Function too big to inline, " "cost: " << CalleeCost << ", threshold: " << Threshold << "\n"); return false; } DEBUG(llvm::dbgs() << " YES: ready to inline, " "cost: " << CalleeCost << ", threshold: " << Threshold << "\n"); NumCallerBlocks += Callee->size(); return true; }
bool SILPerformanceInliner::isProfitableToInline(FullApplySite AI, Weight CallerWeight, ConstantTracker &callerTracker, int &NumCallerBlocks, bool IsGeneric) { SILFunction *Callee = AI.getReferencedFunction(); SILLoopInfo *LI = LA->get(Callee); ShortestPathAnalysis *SPA = getSPA(Callee, LI); assert(SPA->isValid()); ConstantTracker constTracker(Callee, &callerTracker, AI); DominanceInfo *DT = DA->get(Callee); SILBasicBlock *CalleeEntry = &Callee->front(); DominanceOrder domOrder(CalleeEntry, DT, Callee->size()); // Calculate the inlining cost of the callee. int CalleeCost = 0; int Benefit = 0; // Start with a base benefit. int BaseBenefit = RemovedCallBenefit; const SILOptions &Opts = Callee->getModule().getOptions(); // For some reason -Ounchecked can accept a higher base benefit without // increasing the code size too much. if (Opts.Optimization == SILOptions::SILOptMode::OptimizeUnchecked) BaseBenefit *= 2; CallerWeight.updateBenefit(Benefit, BaseBenefit); // Go through all blocks of the function, accumulate the cost and find // benefits. while (SILBasicBlock *block = domOrder.getNext()) { constTracker.beginBlock(); Weight BlockW = SPA->getWeight(block, CallerWeight); for (SILInstruction &I : *block) { constTracker.trackInst(&I); CalleeCost += (int)instructionInlineCost(I); if (FullApplySite AI = FullApplySite::isa(&I)) { // Check if the callee is passed as an argument. If so, increase the // threshold, because inlining will (probably) eliminate the closure. SILInstruction *def = constTracker.getDefInCaller(AI.getCallee()); if (def && (isa<FunctionRefInst>(def) || isa<PartialApplyInst>(def))) BlockW.updateBenefit(Benefit, RemovedClosureBenefit); } else if (auto *LI = dyn_cast<LoadInst>(&I)) { // Check if it's a load from a stack location in the caller. Such a load // might be optimized away if inlined. if (constTracker.isStackAddrInCaller(LI->getOperand())) BlockW.updateBenefit(Benefit, RemovedLoadBenefit); } else if (auto *SI = dyn_cast<StoreInst>(&I)) { // Check if it's a store to a stack location in the caller. Such a load // might be optimized away if inlined. if (constTracker.isStackAddrInCaller(SI->getDest())) BlockW.updateBenefit(Benefit, RemovedStoreBenefit); } else if (isa<StrongReleaseInst>(&I) || isa<ReleaseValueInst>(&I)) { SILValue Op = stripCasts(I.getOperand(0)); if (SILArgument *Arg = dyn_cast<SILArgument>(Op)) { if (Arg->isFunctionArg() && Arg->getArgumentConvention() == SILArgumentConvention::Direct_Guaranteed) { BlockW.updateBenefit(Benefit, RefCountBenefit); } } } else if (auto *BI = dyn_cast<BuiltinInst>(&I)) { if (BI->getBuiltinInfo().ID == BuiltinValueKind::OnFastPath) BlockW.updateBenefit(Benefit, FastPathBuiltinBenefit); } } // Don't count costs in blocks which are dead after inlining. SILBasicBlock *takenBlock = constTracker.getTakenBlock(block->getTerminator()); if (takenBlock) { BlockW.updateBenefit(Benefit, RemovedTerminatorBenefit); domOrder.pushChildrenIf(block, [=] (SILBasicBlock *child) { return child->getSinglePredecessor() != block || child == takenBlock; }); } else { domOrder.pushChildren(block); } } if (AI.getFunction()->isThunk()) { // Only inline trivial functions into thunks (which will not increase the // code size). if (CalleeCost > TrivialFunctionThreshold) return false; DEBUG( dumpCaller(AI.getFunction()); llvm::dbgs() << " decision {" << CalleeCost << " into thunk} " << Callee->getName() << '\n'; ); return true; }