Exemple #1
0
void Group::GenerateShellAndMesh(void) {
    bool prevBooleanFailed = booleanFailed;
    booleanFailed = false;

    Group *srcg = this;

    thisShell.Clear();
    thisMesh.Clear();
    runningShell.Clear();
    runningMesh.Clear();

    // Don't attempt a lathe or extrusion unless the source section is good:
    // planar and not self-intersecting.
    bool haveSrc = true;
    if(type == EXTRUDE || type == LATHE) {
        Group *src = SK.GetGroup(opA);
        if(src->polyError.how != POLY_GOOD) {
            haveSrc = false;
        }
    }

    if(type == TRANSLATE || type == ROTATE) {
        // A step and repeat gets merged against the group's prevous group,
        // not our own previous group.
        srcg = SK.GetGroup(opA);

        GenerateForStepAndRepeat<SShell>(&(srcg->thisShell), &thisShell);
        GenerateForStepAndRepeat<SMesh> (&(srcg->thisMesh),  &thisMesh);
    } else if(type == EXTRUDE && haveSrc) {
        Group *src = SK.GetGroup(opA);
        Vector translate = Vector::From(h.param(0), h.param(1), h.param(2));

        Vector tbot, ttop;
        if(subtype == ONE_SIDED) {
            tbot = Vector::From(0, 0, 0); ttop = translate.ScaledBy(2);
        } else {
            tbot = translate.ScaledBy(-1); ttop = translate.ScaledBy(1);
        }

        SBezierLoopSetSet *sblss = &(src->bezierLoops);
        SBezierLoopSet *sbls;
        for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
            int is = thisShell.surface.n;
            // Extrude this outer contour (plus its inner contours, if present)
            thisShell.MakeFromExtrusionOf(sbls, tbot, ttop, color);

            // And for any plane faces, annotate the model with the entity for
            // that face, so that the user can select them with the mouse.
            Vector onOrig = sbls->point;
            int i;
            for(i = is; i < thisShell.surface.n; i++) {
                SSurface *ss = &(thisShell.surface.elem[i]);
                hEntity face = Entity::NO_ENTITY;

                Vector p = ss->PointAt(0, 0),
                       n = ss->NormalAt(0, 0).WithMagnitude(1);
                double d = n.Dot(p);

                if(i == is || i == (is + 1)) {
                    // These are the top and bottom of the shell.
                    if(fabs((onOrig.Plus(ttop)).Dot(n) - d) < LENGTH_EPS) {
                        face = Remap(Entity::NO_ENTITY, REMAP_TOP);
                        ss->face = face.v;
                    }
                    if(fabs((onOrig.Plus(tbot)).Dot(n) - d) < LENGTH_EPS) {
                        face = Remap(Entity::NO_ENTITY, REMAP_BOTTOM);
                        ss->face = face.v;
                    }
                    continue;
                }

                // So these are the sides
                if(ss->degm != 1 || ss->degn != 1) continue;

                Entity *e;
                for(e = SK.entity.First(); e; e = SK.entity.NextAfter(e)) {
                    if(e->group.v != opA.v) continue;
                    if(e->type != Entity::LINE_SEGMENT) continue;

                    Vector a = SK.GetEntity(e->point[0])->PointGetNum(),
                           b = SK.GetEntity(e->point[1])->PointGetNum();
                    a = a.Plus(ttop);
                    b = b.Plus(ttop);
                    // Could get taken backwards, so check all cases.
                    if((a.Equals(ss->ctrl[0][0]) && b.Equals(ss->ctrl[1][0])) ||
                       (b.Equals(ss->ctrl[0][0]) && a.Equals(ss->ctrl[1][0])) ||
                       (a.Equals(ss->ctrl[0][1]) && b.Equals(ss->ctrl[1][1])) ||
                       (b.Equals(ss->ctrl[0][1]) && a.Equals(ss->ctrl[1][1])))
                    {
                        face = Remap(e->h, REMAP_LINE_TO_FACE);
                        ss->face = face.v;
                        break;
                    }
                }
            }
        }
    } else if(type == LATHE && haveSrc) {
        Group *src = SK.GetGroup(opA);

        Vector pt   = SK.GetEntity(predef.origin)->PointGetNum(),
               axis = SK.GetEntity(predef.entityB)->VectorGetNum();
        axis = axis.WithMagnitude(1);

        SBezierLoopSetSet *sblss = &(src->bezierLoops);
        SBezierLoopSet *sbls;
        for(sbls = sblss->l.First(); sbls; sbls = sblss->l.NextAfter(sbls)) {
            thisShell.MakeFromRevolutionOf(sbls, pt, axis, color, this);
        }
    } else if(type == LINKED) {
        // The imported shell or mesh are copied over, with the appropriate
        // transformation applied. We also must remap the face entities.
        Vector offset = {
            SK.GetParam(h.param(0))->val,
            SK.GetParam(h.param(1))->val,
            SK.GetParam(h.param(2))->val };
        Quaternion q = {
            SK.GetParam(h.param(3))->val,
            SK.GetParam(h.param(4))->val,
            SK.GetParam(h.param(5))->val,
            SK.GetParam(h.param(6))->val };

        thisMesh.MakeFromTransformationOf(&impMesh, offset, q, scale);
        thisMesh.RemapFaces(this, 0);

        thisShell.MakeFromTransformationOf(&impShell, offset, q, scale);
        thisShell.RemapFaces(this, 0);
    }

    if(srcg->meshCombine != COMBINE_AS_ASSEMBLE) {
        thisShell.MergeCoincidentSurfaces();
    }

    // So now we've got the mesh or shell for this group. Combine it with
    // the previous group's mesh or shell with the requested Boolean, and
    // we're done.

    Group *prevg = srcg->RunningMeshGroup();

    if(prevg->runningMesh.IsEmpty() && thisMesh.IsEmpty() && !forceToMesh) {
        SShell *prevs = &(prevg->runningShell);
        GenerateForBoolean<SShell>(prevs, &thisShell, &runningShell,
            srcg->meshCombine);

        if(srcg->meshCombine != COMBINE_AS_ASSEMBLE) {
            runningShell.MergeCoincidentSurfaces();
        }

        // If the Boolean failed, then we should note that in the text screen
        // for this group.
        booleanFailed = runningShell.booleanFailed;
        if(booleanFailed != prevBooleanFailed) {
            SS.ScheduleShowTW();
        }
    } else {
        SMesh prevm, thism;
        prevm = {};
        thism = {};

        prevm.MakeFromCopyOf(&(prevg->runningMesh));
        prevg->runningShell.TriangulateInto(&prevm);

        thism.MakeFromCopyOf(&thisMesh);
        thisShell.TriangulateInto(&thism);

        SMesh outm = {};
        GenerateForBoolean<SMesh>(&prevm, &thism, &outm, srcg->meshCombine);

        // And make sure that the output mesh is vertex-to-vertex.
        SKdNode *root = SKdNode::From(&outm);
        root->SnapToMesh(&outm);
        root->MakeMeshInto(&runningMesh);

        outm.Clear();
        thism.Clear();
        prevm.Clear();
    }

    displayDirty = true;
}
void SolveSpaceUI::MenuAnalyze(int id) {
    SS.GW.GroupSelection();
#define gs (SS.GW.gs)

    switch(id) {
        case GraphicsWindow::MNU_STEP_DIM:
            if(gs.constraints == 1 && gs.n == 0) {
                Constraint *c = SK.GetConstraint(gs.constraint[0]);
                if(c->HasLabel() && !c->reference) {
                    SS.TW.shown.dimFinish = c->valA;
                    SS.TW.shown.dimSteps = 10;
                    SS.TW.shown.dimIsDistance =
                        (c->type != Constraint::ANGLE) &&
                        (c->type != Constraint::LENGTH_RATIO) &&
                        (c->type != Constraint::LENGTH_DIFFERENCE);
                    SS.TW.shown.constraint = c->h;
                    SS.TW.shown.screen = TextWindow::SCREEN_STEP_DIMENSION;

                    // The step params are specified in the text window,
                    // so force that to be shown.
                    SS.GW.ForceTextWindowShown();

                    SS.ScheduleShowTW();
                    SS.GW.ClearSelection();
                } else {
                    Error("Constraint must have a label, and must not be "
                          "a reference dimension.");
                }
            } else {
                Error("Bad selection for step dimension; select a constraint.");
            }
            break;

        case GraphicsWindow::MNU_NAKED_EDGES: {
            SS.nakedEdges.Clear();

            Group *g = SK.GetGroup(SS.GW.activeGroup);
            SMesh *m = &(g->displayMesh);
            SKdNode *root = SKdNode::From(m);
            bool inters, leaks;
            root->MakeCertainEdgesInto(&(SS.nakedEdges),
                SKdNode::NAKED_OR_SELF_INTER_EDGES, true, &inters, &leaks);

            InvalidateGraphics();

            const char *intersMsg = inters ?
                "The mesh is self-intersecting (NOT okay, invalid)." :
                "The mesh is not self-intersecting (okay, valid).";
            const char *leaksMsg = leaks ?
                "The mesh has naked edges (NOT okay, invalid)." :
                "The mesh is watertight (okay, valid).";

            std::string cntMsg = ssprintf("\n\nThe model contains %d triangles, from "
                            "%d surfaces.", g->displayMesh.l.n, g->runningShell.surface.n);

            if(SS.nakedEdges.l.n == 0) {
                Message("%s\n\n%s\n\nZero problematic edges, good.%s",
                    intersMsg, leaksMsg, cntMsg.c_str());
            } else {
                Error("%s\n\n%s\n\n%d problematic edges, bad.%s",
                    intersMsg, leaksMsg, SS.nakedEdges.l.n, cntMsg.c_str());
            }
            break;
        }

        case GraphicsWindow::MNU_INTERFERENCE: {
            SS.nakedEdges.Clear();

            SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);
            SKdNode *root = SKdNode::From(m);
            bool inters, leaks;
            root->MakeCertainEdgesInto(&(SS.nakedEdges),
                SKdNode::SELF_INTER_EDGES, false, &inters, &leaks);

            InvalidateGraphics();

            if(inters) {
                Error("%d edges interfere with other triangles, bad.",
                    SS.nakedEdges.l.n);
            } else {
                Message("The assembly does not interfere, good.");
            }
            break;
        }

        case GraphicsWindow::MNU_VOLUME: {
            SMesh *m = &(SK.GetGroup(SS.GW.activeGroup)->displayMesh);

            double vol = 0;
            int i;
            for(i = 0; i < m->l.n; i++) {
                STriangle tr = m->l.elem[i];

                // Translate to place vertex A at (x, y, 0)
                Vector trans = Vector::From(tr.a.x, tr.a.y, 0);
                tr.a = (tr.a).Minus(trans);
                tr.b = (tr.b).Minus(trans);
                tr.c = (tr.c).Minus(trans);

                // Rotate to place vertex B on the y-axis. Depending on
                // whether the triangle is CW or CCW, C is either to the
                // right or to the left of the y-axis. This handles the
                // sign of our normal.
                Vector u = Vector::From(-tr.b.y, tr.b.x, 0);
                u = u.WithMagnitude(1);
                Vector v = Vector::From(tr.b.x, tr.b.y, 0);
                v = v.WithMagnitude(1);
                Vector n = Vector::From(0, 0, 1);

                tr.a = (tr.a).DotInToCsys(u, v, n);
                tr.b = (tr.b).DotInToCsys(u, v, n);
                tr.c = (tr.c).DotInToCsys(u, v, n);

                n = tr.Normal().WithMagnitude(1);

                // Triangles on edge don't contribute
                if(fabs(n.z) < LENGTH_EPS) continue;

                // The plane has equation p dot n = a dot n
                double d = (tr.a).Dot(n);
                // nx*x + ny*y + nz*z = d
                // nz*z = d - nx*x - ny*y
                double A = -n.x/n.z, B = -n.y/n.z, C = d/n.z;

                double mac = tr.c.y/tr.c.x, mbc = (tr.c.y - tr.b.y)/tr.c.x;
                double xc = tr.c.x, yb = tr.b.y;

                // I asked Maple for
                //    int(int(A*x + B*y +C, y=mac*x..(mbc*x + yb)), x=0..xc);
                double integral =
                    (1.0/3)*(
                        A*(mbc-mac)+
                        (1.0/2)*B*(mbc*mbc-mac*mac)
                    )*(xc*xc*xc)+
                    (1.0/2)*(A*yb+B*yb*mbc+C*(mbc-mac))*xc*xc+
                    C*yb*xc+
                    (1.0/2)*B*yb*yb*xc;

                vol += integral;
            }

            std::string msg = ssprintf("The volume of the solid model is:\n\n""    %.3f %s^3",
                vol / pow(SS.MmPerUnit(), 3),
                SS.UnitName());

            if(SS.viewUnits == SolveSpaceUI::UNIT_MM) {
                msg += ssprintf("\n    %.2f mL", vol/(10*10*10));
            }
            msg += "\n\nCurved surfaces have been approximated as triangles.\n"
                   "This introduces error, typically of around 1%.";
            Message("%s", msg.c_str());
            break;
        }

        case GraphicsWindow::MNU_AREA: {
            Group *g = SK.GetGroup(SS.GW.activeGroup);
            if(g->polyError.how != Group::POLY_GOOD) {
                Error("This group does not contain a correctly-formed "
                      "2d closed area. It is open, not coplanar, or self-"
                      "intersecting.");
                break;
            }
            SEdgeList sel = {};
            g->polyLoops.MakeEdgesInto(&sel);
            SPolygon sp = {};
            sel.AssemblePolygon(&sp, NULL, true);
            sp.normal = sp.ComputeNormal();
            sp.FixContourDirections();
            double area = sp.SignedArea();
            double scale = SS.MmPerUnit();
            Message("The area of the region sketched in this group is:\n\n"
                    "    %.3f %s^2\n\n"
                    "Curves have been approximated as piecewise linear.\n"
                    "This introduces error, typically of around 1%%.",
                area / (scale*scale),
                SS.UnitName());
            sel.Clear();
            sp.Clear();
            break;
        }

        case GraphicsWindow::MNU_SHOW_DOF:
            // This works like a normal solve, except that it calculates
            // which variables are free/bound at the same time.
            SS.GenerateAll(SolveSpaceUI::GENERATE_ALL, true);
            break;

        case GraphicsWindow::MNU_TRACE_PT:
            if(gs.points == 1 && gs.n == 1) {
                SS.traced.point = gs.point[0];
                SS.GW.ClearSelection();
            } else {
                Error("Bad selection for trace; select a single point.");
            }
            break;

        case GraphicsWindow::MNU_STOP_TRACING: {
            std::string exportFile;
            if(GetSaveFile(&exportFile, "", CsvFileFilter)) {
                FILE *f = ssfopen(exportFile, "wb");
                if(f) {
                    int i;
                    SContour *sc = &(SS.traced.path);
                    for(i = 0; i < sc->l.n; i++) {
                        Vector p = sc->l.elem[i].p;
                        double s = SS.exportScale;
                        fprintf(f, "%.10f, %.10f, %.10f\r\n",
                            p.x/s, p.y/s, p.z/s);
                    }
                    fclose(f);
                } else {
                    Error("Couldn't write to '%s'", exportFile.c_str());
                }
            }
            // Clear the trace, and stop tracing
            SS.traced.point = Entity::NO_ENTITY;
            SS.traced.path.l.Clear();
            InvalidateGraphics();
            break;
        }

        default: oops();
    }
}
void SolveSpace::ExportLinesAndMesh(SEdgeList *sel, SBezierList *sbl, SMesh *sm,
                                    Vector u, Vector v, Vector n,
                                        Vector origin, double cameraTan,
                                    VectorFileWriter *out)
{
    double s = 1.0 / SS.exportScale;

    // Project into the export plane; so when we're done, z doesn't matter,
    // and x and y are what goes in the DXF.
    SEdge *e;
    for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
        // project into the specified csys, and apply export scale
        (e->a) = e->a.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
        (e->b) = e->b.InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
    }

    SBezier *b;
    if(sbl) {
        for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
            *b = b->InPerspective(u, v, n, origin, cameraTan);
            int i;
            for(i = 0; i <= b->deg; i++) {
                b->ctrl[i] = (b->ctrl[i]).ScaledBy(s);
            }
        }
    }

    // If cutter radius compensation is requested, then perform it now
    if(fabs(SS.exportOffset) > LENGTH_EPS) {
        // assemble those edges into a polygon, and clear the edge list
        SPolygon sp;
        ZERO(&sp);
        sel->AssemblePolygon(&sp, NULL);
        sel->Clear();

        SPolygon compd;
        ZERO(&compd);
        sp.normal = Vector::From(0, 0, -1);
        sp.FixContourDirections();
        sp.OffsetInto(&compd, SS.exportOffset*s);
        sp.Clear();

        compd.MakeEdgesInto(sel);
        compd.Clear();
    }

    // Now the triangle mesh; project, then build a BSP to perform
    // occlusion testing and generated the shaded surfaces.
    SMesh smp;
    ZERO(&smp);
    if(sm) {
        Vector l0 = (SS.lightDir[0]).WithMagnitude(1),
               l1 = (SS.lightDir[1]).WithMagnitude(1);
        STriangle *tr;
        for(tr = sm->l.First(); tr; tr = sm->l.NextAfter(tr)) {
            STriangle tt = *tr;
            tt.a = (tt.a).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
            tt.b = (tt.b).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);
            tt.c = (tt.c).InPerspective(u, v, n, origin, cameraTan).ScaledBy(s);

            // And calculate lighting for the triangle
            Vector n = tt.Normal().WithMagnitude(1);
            double lighting = SS.ambientIntensity +
                                  max(0, (SS.lightIntensity[0])*(n.Dot(l0))) +
                                  max(0, (SS.lightIntensity[1])*(n.Dot(l1)));
            double r = min(1, REDf  (tt.meta.color)*lighting),
                   g = min(1, GREENf(tt.meta.color)*lighting),
                   b = min(1, BLUEf (tt.meta.color)*lighting);
            tt.meta.color = RGBf(r, g, b);
            smp.AddTriangle(&tt);
        }
    }

    // Use the BSP routines to generate the split triangles in paint order.
    SBsp3 *bsp = SBsp3::FromMesh(&smp);
    SMesh sms;
    ZERO(&sms);
    bsp->GenerateInPaintOrder(&sms);
    // And cull the back-facing triangles
    STriangle *tr;
    sms.l.ClearTags();
    for(tr = sms.l.First(); tr; tr = sms.l.NextAfter(tr)) {
        Vector n = tr->Normal();
        if(n.z < 0) {
            tr->tag = 1;
        }
    }
    sms.l.RemoveTagged();

    // And now we perform hidden line removal if requested
    SEdgeList hlrd;
    ZERO(&hlrd);
    if(sm && !SS.GW.showHdnLines) {
        SKdNode *root = SKdNode::From(&smp);

        // Generate the edges where a curved surface turns from front-facing
        // to back-facing.
        if(SS.GW.showEdges) {
            root->MakeCertainEdgesInto(sel, SKdNode::TURNING_EDGES,
                        false, NULL, NULL);
        }

        root->ClearTags();
        int cnt = 1234;

        SEdge *se;
        for(se = sel->l.First(); se; se = sel->l.NextAfter(se)) {
            if(se->auxA == Style::CONSTRAINT) {
                // Constraints should not get hidden line removed; they're
                // always on top.
                hlrd.AddEdge(se->a, se->b, se->auxA);
                continue;
            }

            SEdgeList out;
            ZERO(&out);
            // Split the original edge against the mesh
            out.AddEdge(se->a, se->b, se->auxA);
            root->OcclusionTestLine(*se, &out, cnt);
            // the occlusion test splits unnecessarily; so fix those
            out.MergeCollinearSegments(se->a, se->b);
            cnt++;
            // And add the results to our output
            SEdge *sen;
            for(sen = out.l.First(); sen; sen = out.l.NextAfter(sen)) {
                hlrd.AddEdge(sen->a, sen->b, sen->auxA);
            }
            out.Clear();
        }

        sel = &hlrd;
    }

    // We kept the line segments and Beziers separate until now; but put them
    // all together, and also project everything into the xy plane, since not
    // all export targets ignore the z component of the points.
    for(e = sel->l.First(); e; e = sel->l.NextAfter(e)) {
        SBezier sb = SBezier::From(e->a, e->b);
        sb.auxA = e->auxA;
        sbl->l.Add(&sb);
    }
    for(b = sbl->l.First(); b; b = sbl->l.NextAfter(b)) {
        for(int i = 0; i <= b->deg; i++) {
            b->ctrl[i].z = 0;
        }
    }

    // If possible, then we will assemble these output curves into loops. They
    // will then get exported as closed paths.
    SBezierLoopSetSet sblss;
    ZERO(&sblss);
    SBezierList leftovers;
    ZERO(&leftovers);
    SSurface srf = SSurface::FromPlane(Vector::From(0, 0, 0),
                                       Vector::From(1, 0, 0),
                                       Vector::From(0, 1, 0));
    SPolygon spxyz;
    ZERO(&spxyz);
    bool allClosed;
    SEdge notClosedAt;
    sbl->l.ClearTags();
    sblss.FindOuterFacesFrom(sbl, &spxyz, &srf,
                             SS.ChordTolMm()*s,
                             &allClosed, &notClosedAt,
                             NULL, NULL,
                             &leftovers);
    for(b = leftovers.l.First(); b; b = leftovers.l.NextAfter(b)) {
        sblss.AddOpenPath(b);
    }

    // Now write the lines and triangles to the output file
    out->Output(&sblss, &sms);

    leftovers.Clear();
    spxyz.Clear();
    sblss.Clear();
    smp.Clear();
    sms.Clear();
    hlrd.Clear();
}