// This routine computes the spread of a closed convex polyhedron. // The vertices, faces, and center of mass (centroids weighted by area) // are given. Resulting from eigen-vectors are returned. // This algorithm was derived from the SIGGRAPH 96 paper on OBB's. void Compute_Spread( SWIFT_Array<SWIFT_Tri_Vertex>& vs, int* fs, int fn, bool have_com, SWIFT_Triple& com, SWIFT_Triple& min_dir, SWIFT_Triple& mid_dir, SWIFT_Triple& max_dir ) { int i; int mine, mide, maxe; SWIFT_Real area_x2; SWIFT_Real total_area; SWIFT_Real s[3]; SWIFT_Real C[3][3]; SWIFT_Real E[3][3]; SWIFT_Triple centroid; SWIFT_Triple areav; // Create the covariance matrix C[0][0] = C[0][1] = C[0][2] = C[1][1] = C[1][2] = C[2][2] = 0.0; total_area = 0.0; if( have_com ) { for( i = 0; i < fn*3; ) { const SWIFT_Triple& vx = vs[fs[i++]].Coords(); const SWIFT_Triple& vy = vs[fs[i++]].Coords(); const SWIFT_Triple& vz = vs[fs[i++]].Coords(); areav = (vx - vy) % (vx - vz); area_x2 = areav.Length(); total_area += area_x2; centroid = vx + vy + vz; C[0][0] += area_x2 * (centroid.X() * centroid.X() + vx.X() * vx.X() + vy.X() * vy.X() + vz.X() * vz.X()); C[0][1] += area_x2 * (centroid.X() * centroid.Y() + vx.X() * vx.Y() + vy.X() * vy.Y() + vz.X() * vz.Y()); C[0][2] += area_x2 * (centroid.X() * centroid.Z() + vx.X() * vx.Z() + vy.X() * vy.Z() + vz.X() * vz.Z()); C[1][1] += area_x2 * (centroid.Y() * centroid.Y() + vx.Y() * vx.Y() + vy.Y() * vy.Y() + vz.Y() * vz.Y()); C[1][2] += area_x2 * (centroid.Y() * centroid.Z() + vx.Y() * vx.Z() + vy.Y() * vy.Z() + vz.Y() * vz.Z()); C[2][2] += area_x2 * (centroid.Z() * centroid.Z() + vx.Z() * vx.Z() + vy.Z() * vy.Z() + vz.Z() * vz.Z()); } } else { com.Set_Value( 0.0, 0.0, 0.0 ); for( i = 0; i < fn*3; ) { const SWIFT_Triple& vx = vs[fs[i++]].Coords(); const SWIFT_Triple& vy = vs[fs[i++]].Coords(); const SWIFT_Triple& vz = vs[fs[i++]].Coords(); areav = (vx - vy) % (vx - vz); area_x2 = areav.Length(); total_area += area_x2; centroid = vx + vy + vz; com += area_x2 * (vx + vy + vz); C[0][0] += area_x2 * (centroid.X() * centroid.X() + vx.X() * vx.X() + vy.X() * vy.X() + vz.X() * vz.X()); C[0][1] += area_x2 * (centroid.X() * centroid.Y() + vx.X() * vx.Y() + vy.X() * vy.Y() + vz.X() * vz.Y()); C[0][2] += area_x2 * (centroid.X() * centroid.Z() + vx.X() * vx.Z() + vy.X() * vy.Z() + vz.X() * vz.Z()); C[1][1] += area_x2 * (centroid.Y() * centroid.Y() + vx.Y() * vx.Y() + vy.Y() * vy.Y() + vz.Y() * vz.Y()); C[1][2] += area_x2 * (centroid.Y() * centroid.Z() + vx.Y() * vx.Z() + vy.Y() * vy.Z() + vz.Y() * vz.Z()); C[2][2] += area_x2 * (centroid.Z() * centroid.Z() + vx.Z() * vx.Z() + vy.Z() * vy.Z() + vz.Z() * vz.Z()); } com /= 3.0 * total_area; } total_area *= 0.5; C[0][0] = C[0][0] / 24.0 - com.X() * com.X() * total_area; C[0][1] = C[0][1] / 24.0 - com.X() * com.Y() * total_area; C[1][0] = C[0][1]; C[0][2] = C[0][2] / 24.0 - com.X() * com.Z() * total_area; C[2][0] = C[0][2]; C[1][1] = C[1][1] / 24.0 - com.Y() * com.Y() * total_area; C[1][2] = C[1][2] / 24.0 - com.Y() * com.Z() * total_area; C[2][1] = C[1][2]; C[2][2] = C[2][2] / 24.0 - com.Z() * com.Z() * total_area; // Do eigen-analysis to find the major/minor axes of the object Meigen( E, s, C ); // Compare the eigen values and sort them if (s[0] > s[1]) { maxe = 0; mine = 1; } else { mine = 0; maxe = 1; } if (s[2] < s[mine]) { mide = mine; mine = 2; } else if (s[2] > s[maxe]) { mide = maxe; maxe = 2; } else { mide = 2; } min_dir = SWIFT_Triple( E[0][mine], E[1][mine], E[2][mine] ); mid_dir = SWIFT_Triple( E[0][mide], E[1][mide], E[2][mide] ); max_dir = SWIFT_Triple( E[0][maxe], E[1][maxe], E[2][maxe] ); // Ensure a rotation matrix if( (max_dir % mid_dir) * min_dir < 0.0 ) { max_dir.Negate(); } }
void Compute_Spread( SWIFT_Array<SWIFT_Tri_Vertex>& vs, int* fs, int fn, const SWIFT_Triple& com, SWIFT_Triple& min_dir, SWIFT_Real& min_spread, SWIFT_Triple& max_dir, SWIFT_Real& max_spread ) { int i; int mine, mide, maxe; SWIFT_Real area; SWIFT_Real total_area; SWIFT_Real s[3]; SWIFT_Real C[3][3]; SWIFT_Real E[3][3]; SWIFT_Triple centroid; SWIFT_Triple areav; // Create the covariance matrix C[0][0] = 0.0; C[0][1] = 0.0; C[0][2] = 0.0; C[1][0] = 0.0; C[1][1] = 0.0; C[1][2] = 0.0; C[2][0] = 0.0; C[2][1] = 0.0; C[2][2] = 0.0; total_area = 0.0; for( i = 0; i < fn*3; ) { const SWIFT_Triple& vx = vs[fs[i++]].Coords(); const SWIFT_Triple& vy = vs[fs[i++]].Coords(); const SWIFT_Triple& vz = vs[fs[i++]].Coords(); areav = (vx - vy) % (vx - vz); area = 0.5 * areav.Length(); total_area += area; centroid = vx + vy + vz; C[0][0] += area * (centroid.X() * centroid.X()+ vx.X() * vx.X()+ vy.X() * vy.X()+ vz.X() * vz.X()); C[0][1] += area * (centroid.X() * centroid.Y()+ vx.X() * vx.Y()+ vy.X() * vy.Y()+ vz.X() * vz.Y()); C[0][2] += area * (centroid.X() * centroid.Z()+ vx.X() * vx.Z()+ vy.X() * vy.Z()+ vz.X() * vz.Z()); C[1][1] += area * (centroid.Y() * centroid.Y()+ vx.Y() * vx.Y()+ vy.Y() * vy.Y()+ vz.Y() * vz.Y()); C[1][2] += area * (centroid.Y() * centroid.Z()+ vx.Y() * vx.Z()+ vy.Y() * vy.Z()+ vz.Y() * vz.Z()); C[2][2] += area * (centroid.Z() * centroid.Z()+ vx.Z() * vx.Z()+ vy.Z() * vy.Z()+ vz.Z() * vz.Z()); } C[0][0] = C[0][0] / 12.0 - com.X() * com.X() * total_area; C[0][1] = C[0][1] / 12.0 - com.X() * com.Y() * total_area; C[0][2] = C[0][2] / 12.0 - com.X() * com.Z() * total_area; C[1][1] = C[1][1] / 12.0 - com.Y() * com.Y() * total_area; C[1][2] = C[1][2] / 12.0 - com.Y() * com.Z() * total_area; C[2][2] = C[2][2] / 12.0 - com.Z() * com.Z() * total_area; C[1][0] = C[0][1]; C[2][0] = C[0][2]; C[2][1] = C[1][2]; // Do eigen-analysis to find the major/minor axes of the object Meigen( E, s, C ); // Compare the eigen values and sort them if (s[0] > s[1]) { maxe = 0; mine = 1; } else { mine = 0; maxe = 1; } if (s[2] < s[mine]) { mide = mine; mine = 2; } else if (s[2] > s[maxe]) { mide = maxe; maxe = 2; } else { mide = 2; } min_dir = SWIFT_Triple( E[0][mine], E[1][mine], E[2][mine] ); min_spread = s[mine]; max_dir = SWIFT_Triple( E[0][maxe], E[1][maxe], E[2][maxe] ); max_spread = s[maxe]; }