Exemple #1
0
void OMPGenerator::extractValuesFromStruct(SetVector<Value *> OldValues,
                                           Value *Struct,
                                           ValueToValueMapTy &Map) {
  for (unsigned i = 0; i < OldValues.size(); i++) {
    Value *Address = Builder.CreateStructGEP(Struct, i);
    Value *NewValue = Builder.CreateLoad(Address);
    Map.insert(std::make_pair(OldValues[i], NewValue));
  }
}
Exemple #2
0
void ParallelLoopGenerator::extractValuesFromStruct(
    SetVector<Value *> OldValues, Type *Ty, Value *Struct,
    ValueToValueMapTy &Map) {
  for (unsigned i = 0; i < OldValues.size(); i++) {
    Value *Address = Builder.CreateStructGEP(Ty, Struct, i);
    Value *NewValue = Builder.CreateLoad(Address);
    Map[OldValues[i]] = NewValue;
  }
}
Exemple #3
0
void ParallelLoopGenerator::extractValuesFromStruct(
    SetVector<Value *> OldValues, Type *Ty, Value *Struct, ValueMapT &Map) {
  for (unsigned i = 0; i < OldValues.size(); i++) {
    Value *Address = Builder.CreateStructGEP(Ty, Struct, i);
    Value *NewValue = Builder.CreateLoad(Address);
    NewValue->setName("polly.subfunc.arg." + OldValues[i]->getName());
    Map[OldValues[i]] = NewValue;
  }
}
BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) {
  SetVector<const CodeGenRegister*> Set;

  // First add Regs with all sub-registers.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    CodeGenRegister *Reg = getReg(Regs[i]);
    if (Set.insert(Reg))
      // Reg is new, add all sub-registers.
      // The pre-ordering is not important here.
      Reg->addSubRegsPreOrder(Set, *this);
  }

  // Second, find all super-registers that are completely covered by the set.
  for (unsigned i = 0; i != Set.size(); ++i) {
    const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs();
    for (unsigned j = 0, e = SR.size(); j != e; ++j) {
      const CodeGenRegister *Super = SR[j];
      if (!Super->CoveredBySubRegs || Set.count(Super))
        continue;
      // This new super-register is covered by its sub-registers.
      bool AllSubsInSet = true;
      const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs();
      for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(),
             E = SRM.end(); I != E; ++I)
        if (!Set.count(I->second)) {
          AllSubsInSet = false;
          break;
        }
      // All sub-registers in Set, add Super as well.
      // We will visit Super later to recheck its super-registers.
      if (AllSubsInSet)
        Set.insert(Super);
    }
  }

  // Convert to BitVector.
  BitVector BV(Registers.size() + 1);
  for (unsigned i = 0, e = Set.size(); i != e; ++i)
    BV.set(Set[i]->EnumValue);
  return BV;
}
Exemple #5
0
SetVector<Value*> qdp_jit_vec::get_all_linked_stores_from_store( Value* V )
{
  bool all=false;
  SetVector<Value*> stores;
  stores.insert(V);
  while(!all) {
    SetVector<Value*> new_stores;
    new_stores = get_stores( get_loads( stores ) );
    all = (new_stores.size() == stores.size());
    stores = new_stores;
  }
  return stores;
}
Exemple #6
0
TEST(SetVector, EraseTest) {
  SetVector<int> S;
  S.insert(0);
  S.insert(1);
  S.insert(2);

  auto I = S.erase(std::next(S.begin()));

  // Test that the returned iterator is the expected one-after-erase
  // and the size/contents is the expected sequence {0, 2}.
  EXPECT_EQ(std::next(S.begin()), I);
  EXPECT_EQ(2u, S.size());
  EXPECT_EQ(0, *S.begin());
  EXPECT_EQ(2, *std::next(S.begin()));
}
Exemple #7
0
// If a linkonce global is present in the MustPreserveSymbols, we need to make
// sure we honor this. To force the compiler to not drop it, we add it to the
// "llvm.compiler.used" global.
void LTOCodeGenerator::preserveDiscardableGVs(
    Module &TheModule,
    llvm::function_ref<bool(const GlobalValue &)> mustPreserveGV) {
  SetVector<Constant *> UsedValuesSet;
  if (GlobalVariable *LLVMUsed =
          TheModule.getGlobalVariable("llvm.compiler.used")) {
    ConstantArray *Inits = cast<ConstantArray>(LLVMUsed->getInitializer());
    for (auto &V : Inits->operands())
      UsedValuesSet.insert(cast<Constant>(&V));
    LLVMUsed->eraseFromParent();
  }
  llvm::Type *i8PTy = llvm::Type::getInt8PtrTy(TheModule.getContext());
  auto mayPreserveGlobal = [&](GlobalValue &GV) {
    if (!GV.isDiscardableIfUnused() || GV.isDeclaration())
      return;
    if (!mustPreserveGV(GV))
      return;
    if (GV.hasAvailableExternallyLinkage()) {
      emitWarning(
          (Twine("Linker asked to preserve available_externally global: '") +
           GV.getName() + "'").str());
      return;
    }
    if (GV.hasInternalLinkage()) {
      emitWarning((Twine("Linker asked to preserve internal global: '") +
                   GV.getName() + "'").str());
      return;
    }
    UsedValuesSet.insert(ConstantExpr::getBitCast(&GV, i8PTy));
  };
  for (auto &GV : TheModule)
    mayPreserveGlobal(GV);
  for (auto &GV : TheModule.globals())
    mayPreserveGlobal(GV);
  for (auto &GV : TheModule.aliases())
    mayPreserveGlobal(GV);

  if (UsedValuesSet.empty())
    return;

  llvm::ArrayType *ATy = llvm::ArrayType::get(i8PTy, UsedValuesSet.size());
  auto *LLVMUsed = new llvm::GlobalVariable(
      TheModule, ATy, false, llvm::GlobalValue::AppendingLinkage,
      llvm::ConstantArray::get(ATy, UsedValuesSet.getArrayRef()),
      "llvm.compiler.used");
  LLVMUsed->setSection("llvm.metadata");
}
Exemple #8
0
bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB,
                                       ArrayRef<SlotIndex> Defs,
                                       const SlotIndexes &Indexes) {
  const MachineFunction &MF = *MBB->getParent();
  BitVector DefBlocks(MF.getNumBlockIDs());
  for (SlotIndex I : Defs)
    DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber());

  SetVector<unsigned> PredQueue;
  PredQueue.insert(MBB->getNumber());
  for (unsigned i = 0; i != PredQueue.size(); ++i) {
    unsigned BN = PredQueue[i];
    if (DefBlocks[BN])
      return true;
    const MachineBasicBlock *B = MF.getBlockNumbered(BN);
    for (const MachineBasicBlock *P : B->predecessors())
      PredQueue.insert(P->getNumber());
  }
  return false;
}
//
// runMCDesc - Print out MC register descriptions.
//
void
RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target,
                               CodeGenRegBank &RegBank) {
  emitSourceFileHeader("MC Register Information", OS);

  OS << "\n#ifdef GET_REGINFO_MC_DESC\n";
  OS << "#undef GET_REGINFO_MC_DESC\n";

  const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters();

  // The lists of sub-registers, super-registers, and overlaps all go in the
  // same array. That allows us to share suffixes.
  typedef std::vector<const CodeGenRegister*> RegVec;

  // Differentially encoded lists.
  SequenceToOffsetTable<DiffVec> DiffSeqs;
  SmallVector<DiffVec, 4> SubRegLists(Regs.size());
  SmallVector<DiffVec, 4> SuperRegLists(Regs.size());
  SmallVector<DiffVec, 4> OverlapLists(Regs.size());
  SmallVector<DiffVec, 4> RegUnitLists(Regs.size());
  SmallVector<unsigned, 4> RegUnitInitScale(Regs.size());

  // Keep track of sub-register names as well. These are not differentially
  // encoded.
  typedef SmallVector<const CodeGenSubRegIndex*, 4> SubRegIdxVec;
  SequenceToOffsetTable<SubRegIdxVec> SubRegIdxSeqs;
  SmallVector<SubRegIdxVec, 4> SubRegIdxLists(Regs.size());

  SequenceToOffsetTable<std::string> RegStrings;

  // Precompute register lists for the SequenceToOffsetTable.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister *Reg = Regs[i];

    RegStrings.add(Reg->getName());

    // Compute the ordered sub-register list.
    SetVector<const CodeGenRegister*> SR;
    Reg->addSubRegsPreOrder(SR, RegBank);
    diffEncode(SubRegLists[i], Reg->EnumValue, SR.begin(), SR.end());
    DiffSeqs.add(SubRegLists[i]);

    // Compute the corresponding sub-register indexes.
    SubRegIdxVec &SRIs = SubRegIdxLists[i];
    for (unsigned j = 0, je = SR.size(); j != je; ++j)
      SRIs.push_back(Reg->getSubRegIndex(SR[j]));
    SubRegIdxSeqs.add(SRIs);

    // Super-registers are already computed.
    const RegVec &SuperRegList = Reg->getSuperRegs();
    diffEncode(SuperRegLists[i], Reg->EnumValue,
               SuperRegList.begin(), SuperRegList.end());
    DiffSeqs.add(SuperRegLists[i]);

    // The list of overlaps doesn't need to have any particular order, and Reg
    // itself must be omitted.
    DiffVec &OverlapList = OverlapLists[i];
    CodeGenRegister::Set OSet;
    Reg->computeOverlaps(OSet, RegBank);
    OSet.erase(Reg);
    diffEncode(OverlapList, Reg->EnumValue, OSet.begin(), OSet.end());
    DiffSeqs.add(OverlapList);

    // Differentially encode the register unit list, seeded by register number.
    // First compute a scale factor that allows more diff-lists to be reused:
    //
    //   D0 -> (S0, S1)
    //   D1 -> (S2, S3)
    //
    // A scale factor of 2 allows D0 and D1 to share a diff-list. The initial
    // value for the differential decoder is the register number multiplied by
    // the scale.
    //
    // Check the neighboring registers for arithmetic progressions.
    unsigned ScaleA = ~0u, ScaleB = ~0u;
    ArrayRef<unsigned> RUs = Reg->getNativeRegUnits();
    if (i > 0 && Regs[i-1]->getNativeRegUnits().size() == RUs.size())
      ScaleB = RUs.front() - Regs[i-1]->getNativeRegUnits().front();
    if (i+1 != Regs.size() &&
        Regs[i+1]->getNativeRegUnits().size() == RUs.size())
      ScaleA = Regs[i+1]->getNativeRegUnits().front() - RUs.front();
    unsigned Scale = std::min(ScaleB, ScaleA);
    // Default the scale to 0 if it can't be encoded in 4 bits.
    if (Scale >= 16)
      Scale = 0;
    RegUnitInitScale[i] = Scale;
    DiffSeqs.add(diffEncode(RegUnitLists[i], Scale * Reg->EnumValue, RUs));
  }

  // Compute the final layout of the sequence table.
  DiffSeqs.layout();
  SubRegIdxSeqs.layout();

  OS << "namespace llvm {\n\n";

  const std::string &TargetName = Target.getName();

  // Emit the shared table of differential lists.
  OS << "extern const uint16_t " << TargetName << "RegDiffLists[] = {\n";
  DiffSeqs.emit(OS, printDiff16);
  OS << "};\n\n";

  // Emit the table of sub-register indexes.
  OS << "extern const uint16_t " << TargetName << "SubRegIdxLists[] = {\n";
  SubRegIdxSeqs.emit(OS, printSubRegIndex);
  OS << "};\n\n";

  // Emit the string table.
  RegStrings.layout();
  OS << "extern const char " << TargetName << "RegStrings[] = {\n";
  RegStrings.emit(OS, printChar);
  OS << "};\n\n";

  OS << "extern const MCRegisterDesc " << TargetName
     << "RegDesc[] = { // Descriptors\n";
  OS << "  { " << RegStrings.get("") << ", 0, 0, 0, 0, 0 },\n";

  // Emit the register descriptors now.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister *Reg = Regs[i];
    OS << "  { " << RegStrings.get(Reg->getName()) << ", "
       << DiffSeqs.get(OverlapLists[i]) << ", "
       << DiffSeqs.get(SubRegLists[i]) << ", "
       << DiffSeqs.get(SuperRegLists[i]) << ", "
       << SubRegIdxSeqs.get(SubRegIdxLists[i]) << ", "
       << (DiffSeqs.get(RegUnitLists[i])*16 + RegUnitInitScale[i]) << " },\n";
  }
  OS << "};\n\n";      // End of register descriptors...

  // Emit the table of register unit roots. Each regunit has one or two root
  // registers.
  OS << "extern const uint16_t " << TargetName << "RegUnitRoots[][2] = {\n";
  for (unsigned i = 0, e = RegBank.getNumNativeRegUnits(); i != e; ++i) {
    ArrayRef<const CodeGenRegister*> Roots = RegBank.getRegUnit(i).getRoots();
    assert(!Roots.empty() && "All regunits must have a root register.");
    assert(Roots.size() <= 2 && "More than two roots not supported yet.");
    OS << "  { " << getQualifiedName(Roots.front()->TheDef);
    for (unsigned r = 1; r != Roots.size(); ++r)
      OS << ", " << getQualifiedName(Roots[r]->TheDef);
    OS << " },\n";
  }
  OS << "};\n\n";

  ArrayRef<CodeGenRegisterClass*> RegisterClasses = RegBank.getRegClasses();

  // Loop over all of the register classes... emitting each one.
  OS << "namespace {     // Register classes...\n";

  // Emit the register enum value arrays for each RegisterClass
  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = *RegisterClasses[rc];
    ArrayRef<Record*> Order = RC.getOrder();

    // Give the register class a legal C name if it's anonymous.
    std::string Name = RC.getName();

    // Emit the register list now.
    OS << "  // " << Name << " Register Class...\n"
       << "  const uint16_t " << Name
       << "[] = {\n    ";
    for (unsigned i = 0, e = Order.size(); i != e; ++i) {
      Record *Reg = Order[i];
      OS << getQualifiedName(Reg) << ", ";
    }
    OS << "\n  };\n\n";

    OS << "  // " << Name << " Bit set.\n"
       << "  const uint8_t " << Name
       << "Bits[] = {\n    ";
    BitVectorEmitter BVE;
    for (unsigned i = 0, e = Order.size(); i != e; ++i) {
      Record *Reg = Order[i];
      BVE.add(Target.getRegBank().getReg(Reg)->EnumValue);
    }
    BVE.print(OS);
    OS << "\n  };\n\n";

  }
  OS << "}\n\n";

  OS << "extern const MCRegisterClass " << TargetName
     << "MCRegisterClasses[] = {\n";

  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = *RegisterClasses[rc];

    // Asserts to make sure values will fit in table assuming types from
    // MCRegisterInfo.h
    assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large.");
    assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large.");
    assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large.");

    OS << "  { " << '\"' << RC.getName() << "\", "
       << RC.getName() << ", " << RC.getName() << "Bits, "
       << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), "
       << RC.getQualifiedName() + "RegClassID" << ", "
       << RC.SpillSize/8 << ", "
       << RC.SpillAlignment/8 << ", "
       << RC.CopyCost << ", "
       << RC.Allocatable << " },\n";
  }

  OS << "};\n\n";

  ArrayRef<CodeGenSubRegIndex*> SubRegIndices = RegBank.getSubRegIndices();

  EmitRegMappingTables(OS, Regs, false);

  // Emit Reg encoding table
  OS << "extern const uint16_t " << TargetName;
  OS << "RegEncodingTable[] = {\n";
  // Add entry for NoRegister
  OS << "  0,\n";
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    BitsInit *BI = Reg->getValueAsBitsInit("HWEncoding");
    uint64_t Value = 0;
    for (unsigned b = 0, be = BI->getNumBits(); b != be; ++b) {
      if (BitInit *B = dynamic_cast<BitInit*>(BI->getBit(b)))
      Value |= (uint64_t)B->getValue() << b;
    }
    OS << "  " << Value << ",\n";
  }
  OS << "};\n";       // End of HW encoding table

  // MCRegisterInfo initialization routine.
  OS << "static inline void Init" << TargetName
     << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, "
     << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n"
     << "  RI->InitMCRegisterInfo(" << TargetName << "RegDesc, "
     << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, "
     << RegisterClasses.size() << ", "
     << TargetName << "RegUnitRoots, "
     << RegBank.getNumNativeRegUnits() << ", "
     << TargetName << "RegDiffLists, "
     << TargetName << "RegStrings, "
     << TargetName << "SubRegIdxLists, "
     << SubRegIndices.size() << ",\n"
     << "  " << TargetName << "RegEncodingTable);\n\n";

  EmitRegMapping(OS, Regs, false);

  OS << "}\n\n";

  OS << "} // End llvm namespace \n";
  OS << "#endif // GET_REGINFO_MC_DESC\n\n";
}
NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
      NodeAddr<RefNode*> RefA, bool FullChain, const RegisterSet &DefRRs) {
  SetVector<NodeId> DefQ;
  SetVector<NodeId> Owners;

  // The initial queue should not have reaching defs for shadows. The
  // whole point of a shadow is that it will have a reaching def that
  // is not aliased to the reaching defs of the related shadows.
  NodeId Start = RefA.Id;
  auto SNA = DFG.addr<RefNode*>(Start);
  if (NodeId RD = SNA.Addr->getReachingDef())
    DefQ.insert(RD);

  // Collect all the reaching defs, going up until a phi node is encountered,
  // or there are no more reaching defs. From this set, the actual set of
  // reaching defs will be selected.
  // The traversal upwards must go on until a covering def is encountered.
  // It is possible that a collection of non-covering (individually) defs
  // will be sufficient, but keep going until a covering one is found.
  for (unsigned i = 0; i < DefQ.size(); ++i) {
    auto TA = DFG.addr<DefNode*>(DefQ[i]);
    if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
      continue;
    // Stop at the covering/overwriting def of the initial register reference.
    RegisterRef RR = TA.Addr->getRegRef();
    if (RAI.covers(RR, RefRR)) {
      uint16_t Flags = TA.Addr->getFlags();
      if (!(Flags & NodeAttrs::Preserving))
        continue;
    }
    // Get the next level of reaching defs. This will include multiple
    // reaching defs for shadows.
    for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
      if (auto RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
        DefQ.insert(RD);
  }

  // Remove all non-phi defs that are not aliased to RefRR, and collect
  // the owners of the remaining defs.
  SetVector<NodeId> Defs;
  for (auto N : DefQ) {
    auto TA = DFG.addr<DefNode*>(N);
    bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
    if (!IsPhi && !RAI.alias(RefRR, TA.Addr->getRegRef()))
      continue;
    Defs.insert(TA.Id);
    Owners.insert(TA.Addr->getOwner(DFG).Id);
  }

  // Return the MachineBasicBlock containing a given instruction.
  auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
    if (IA.Addr->getKind() == NodeAttrs::Stmt)
      return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
    assert(IA.Addr->getKind() == NodeAttrs::Phi);
    NodeAddr<PhiNode*> PA = IA;
    NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
    return BA.Addr->getCode();
  };
  // Less(A,B) iff instruction A is further down in the dominator tree than B.
  auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
    if (A == B)
      return false;
    auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
    MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
    if (BA != BB)
      return MDT.dominates(BB, BA);
    // They are in the same block.
    bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
    bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
    if (StmtA) {
      if (!StmtB)   // OB is a phi and phis dominate statements.
        return true;
      auto CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
      auto CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
      // The order must be linear, so tie-break such equalities.
      if (CA == CB)
        return A < B;
      return MDT.dominates(CB, CA);
    } else {
      // OA is a phi.
      if (StmtB)
        return false;
      // Both are phis. There is no ordering between phis (in terms of
      // the data-flow), so tie-break this via node id comparison.
      return A < B;
    }
  };

  std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
  std::sort(Tmp.begin(), Tmp.end(), Less);

  // The vector is a list of instructions, so that defs coming from
  // the same instruction don't need to be artificially ordered.
  // Then, when computing the initial segment, and iterating over an
  // instruction, pick the defs that contribute to the covering (i.e. is
  // not covered by previously added defs). Check the defs individually,
  // i.e. first check each def if is covered or not (without adding them
  // to the tracking set), and then add all the selected ones.

  // The reason for this is this example:
  // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
  // *d3<C>              If A \incl BuC, and B \incl AuC, then *d2 would be
  //                     covered if we added A first, and A would be covered
  //                     if we added B first.

  NodeList RDefs;
  RegisterSet RRs = DefRRs;

  auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
    return TA.Addr->getKind() == NodeAttrs::Def &&
           Defs.count(TA.Id);
  };
  for (auto T : Tmp) {
    if (!FullChain && RAI.covers(RRs, RefRR))
      break;
    auto TA = DFG.addr<InstrNode*>(T);
    bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
    NodeList Ds;
    for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
      auto QR = DA.Addr->getRegRef();
      // Add phi defs even if they are covered by subsequent defs. This is
      // for cases where the reached use is not covered by any of the defs
      // encountered so far: the phi def is needed to expose the liveness
      // of that use to the entry of the block.
      // Example:
      //   phi d1<R3>(,d2,), ...  Phi def d1 is covered by d2.
      //   d2<R3>(d1,,u3), ...
      //   ..., u3<D1>(d2)        This use needs to be live on entry.
      if (FullChain || IsPhi || !RAI.covers(RRs, QR))
        Ds.push_back(DA);
    }
    RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
    for (NodeAddr<DefNode*> DA : Ds) {
      // When collecting a full chain of definitions, do not consider phi
      // defs to actually define a register.
      uint16_t Flags = DA.Addr->getFlags();
      if (!FullChain || !(Flags & NodeAttrs::PhiRef))
        if (!(Flags & NodeAttrs::Preserving))
          RRs.insert(DA.Addr->getRegRef());
    }
  }

  return RDefs;
}
void Liveness::computePhiInfo() {
  RealUseMap.clear();

  NodeList Phis;
  NodeAddr<FuncNode*> FA = DFG.getFunc();
  auto Blocks = FA.Addr->members(DFG);
  for (NodeAddr<BlockNode*> BA : Blocks) {
    auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    Phis.insert(Phis.end(), Ps.begin(), Ps.end());
  }

  // phi use -> (map: reaching phi -> set of registers defined in between)
  std::map<NodeId,std::map<NodeId,RegisterSet>> PhiUp;
  std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.

  // Go over all phis.
  for (NodeAddr<PhiNode*> PhiA : Phis) {
    // Go over all defs and collect the reached uses that are non-phi uses
    // (i.e. the "real uses").
    auto &RealUses = RealUseMap[PhiA.Id];
    auto PhiRefs = PhiA.Addr->members(DFG);

    // Have a work queue of defs whose reached uses need to be found.
    // For each def, add to the queue all reached (non-phi) defs.
    SetVector<NodeId> DefQ;
    NodeSet PhiDefs;
    for (auto R : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Def>(R))
        continue;
      DefQ.insert(R.Id);
      PhiDefs.insert(R.Id);
    }
    for (unsigned i = 0; i < DefQ.size(); ++i) {
      NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
      NodeId UN = DA.Addr->getReachedUse();
      while (UN != 0) {
        NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
        if (!(A.Addr->getFlags() & NodeAttrs::PhiRef))
          RealUses[getRestrictedRegRef(A)].insert(A.Id);
        UN = A.Addr->getSibling();
      }
      NodeId DN = DA.Addr->getReachedDef();
      while (DN != 0) {
        NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
        for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
          uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
          // Must traverse the reached-def chain. Consider:
          //   def(D0) -> def(R0) -> def(R0) -> use(D0)
          // The reachable use of D0 passes through a def of R0.
          if (!(Flags & NodeAttrs::PhiRef))
            DefQ.insert(T.Id);
        }
        DN = A.Addr->getSibling();
      }
    }
    // Filter out these uses that appear to be reachable, but really
    // are not. For example:
    //
    // R1:0 =          d1
    //      = R1:0     u2     Reached by d1.
    //   R0 =          d3
    //      = R1:0     u4     Still reached by d1: indirectly through
    //                        the def d3.
    //   R1 =          d5
    //      = R1:0     u6     Not reached by d1 (covered collectively
    //                        by d3 and d5), but following reached
    //                        defs and uses from d1 will lead here.
    auto HasDef = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool {
      return PhiDefs.count(DA.Id);
    };
    for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
      // For each reached register UI->first, there is a set UI->second, of
      // uses of it. For each such use, check if it is reached by this phi,
      // i.e. check if the set of its reaching uses intersects the set of
      // this phi's defs.
      auto &Uses = UI->second;
      for (auto I = Uses.begin(), E = Uses.end(); I != E; ) {
        auto UA = DFG.addr<UseNode*>(*I);
        NodeList RDs = getAllReachingDefs(UI->first, UA);
        if (std::any_of(RDs.begin(), RDs.end(), HasDef))
          ++I;
        else
          I = Uses.erase(I);
      }
      if (Uses.empty())
        UI = RealUses.erase(UI);
      else
        ++UI;
    }

    // If this phi reaches some "real" uses, add it to the queue for upward
    // propagation.
    if (!RealUses.empty())
      PhiUQ.push_back(PhiA.Id);

    // Go over all phi uses and check if the reaching def is another phi.
    // Collect the phis that are among the reaching defs of these uses.
    // While traversing the list of reaching defs for each phi use, collect
    // the set of registers defined between this phi (Phi) and the owner phi
    // of the reaching def.
    for (auto I : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Use>(I))
        continue;
      NodeAddr<UseNode*> UA = I;
      auto &UpMap = PhiUp[UA.Id];
      RegisterSet DefRRs;
      for (NodeAddr<DefNode*> DA : getAllReachingDefs(UA)) {
        if (DA.Addr->getFlags() & NodeAttrs::PhiRef)
          UpMap[DA.Addr->getOwner(DFG).Id] = DefRRs;
        else
          DefRRs.insert(DA.Addr->getRegRef());
      }
    }
  }

  if (Trace) {
    dbgs() << "Phi-up-to-phi map:\n";
    for (auto I : PhiUp) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
      for (auto R : I.second)
        dbgs() << ' ' << Print<NodeId>(R.first, DFG)
               << Print<RegisterSet>(R.second, DFG);
      dbgs() << " }\n";
    }
  }

  // Propagate the reached registers up in the phi chain.
  //
  // The following type of situation needs careful handling:
  //
  //   phi d1<R1:0>  (1)
  //        |
  //   ... d2<R1>
  //        |
  //   phi u3<R1:0>  (2)
  //        |
  //   ... u4<R1>
  //
  // The phi node (2) defines a register pair R1:0, and reaches a "real"
  // use u4 of just R1. The same phi node is also known to reach (upwards)
  // the phi node (1). However, the use u4 is not reached by phi (1),
  // because of the intervening definition d2 of R1. The data flow between
  // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
  //
  // When propagating uses up the phi chains, get the all reaching defs
  // for a given phi use, and traverse the list until the propagated ref
  // is covered, or until or until reaching the final phi. Only assume
  // that the reference reaches the phi in the latter case.

  for (unsigned i = 0; i < PhiUQ.size(); ++i) {
    auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
    auto &RealUses = RealUseMap[PA.Id];
    for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
      NodeAddr<UseNode*> UA = U;
      auto &UpPhis = PhiUp[UA.Id];
      for (auto UP : UpPhis) {
        bool Changed = false;
        auto &MidDefs = UP.second;
        // Collect the set UpReached of uses that are reached by the current
        // phi PA, and are not covered by any intervening def between PA and
        // the upward phi UP.
        RegisterSet UpReached;
        for (auto T : RealUses) {
          if (!isRestricted(PA, UA, T.first))
            continue;
          if (!RAI.covers(MidDefs, T.first))
            UpReached.insert(T.first);
        }
        if (UpReached.empty())
          continue;
        // Update the set PRUs of real uses reached by the upward phi UP with
        // the actual set of uses (UpReached) that the UP phi reaches.
        auto &PRUs = RealUseMap[UP.first];
        for (auto R : UpReached) {
          unsigned Z = PRUs[R].size();
          PRUs[R].insert(RealUses[R].begin(), RealUses[R].end());
          Changed |= (PRUs[R].size() != Z);
        }
        if (Changed)
          PhiUQ.push_back(UP.first);
      }
    }
  }

  if (Trace) {
    dbgs() << "Real use map:\n";
    for (auto I : RealUseMap) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG);
      NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
      NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
      if (!Ds.empty()) {
        RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef();
        dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
      } else {
        dbgs() << "<noreg>";
      }
      dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
    }
  }
}
//
// runMCDesc - Print out MC register descriptions.
//
void
RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target,
                               CodeGenRegBank &RegBank) {
  EmitSourceFileHeader("MC Register Information", OS);

  OS << "\n#ifdef GET_REGINFO_MC_DESC\n";
  OS << "#undef GET_REGINFO_MC_DESC\n";

  std::map<const CodeGenRegister*, CodeGenRegister::Set> Overlaps;
  RegBank.computeOverlaps(Overlaps);

  OS << "namespace llvm {\n\n";

  const std::string &TargetName = Target.getName();

  OS << "\nnamespace {\n";

  const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters();

  // Emit an overlap list for all registers.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister *Reg = Regs[i];
    const CodeGenRegister::Set &O = Overlaps[Reg];
    // Move Reg to the front so TRI::getAliasSet can share the list.
    OS << "  const unsigned " << Reg->getName() << "_Overlaps[] = { "
       << getQualifiedName(Reg->TheDef) << ", ";
    for (CodeGenRegister::Set::const_iterator I = O.begin(), E = O.end();
         I != E; ++I)
      if (*I != Reg)
        OS << getQualifiedName((*I)->TheDef) << ", ";
    OS << "0 };\n";
  }

  // Emit the empty sub-registers list
  OS << "  const unsigned Empty_SubRegsSet[] = { 0 };\n";
  // Loop over all of the registers which have sub-registers, emitting the
  // sub-registers list to memory.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    if (Reg.getSubRegs().empty())
     continue;
    // getSubRegs() orders by SubRegIndex. We want a topological order.
    SetVector<CodeGenRegister*> SR;
    Reg.addSubRegsPreOrder(SR);
    OS << "  const unsigned " << Reg.getName() << "_SubRegsSet[] = { ";
    for (unsigned j = 0, je = SR.size(); j != je; ++j)
      OS << getQualifiedName(SR[j]->TheDef) << ", ";
    OS << "0 };\n";
  }

  // Emit the empty super-registers list
  OS << "  const unsigned Empty_SuperRegsSet[] = { 0 };\n";
  // Loop over all of the registers which have super-registers, emitting the
  // super-registers list to memory.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    const CodeGenRegister::SuperRegList &SR = Reg.getSuperRegs();
    if (SR.empty())
      continue;
    OS << "  const unsigned " << Reg.getName() << "_SuperRegsSet[] = { ";
    for (unsigned j = 0, je = SR.size(); j != je; ++j)
      OS << getQualifiedName(SR[j]->TheDef) << ", ";
    OS << "0 };\n";
  }
  OS << "}\n";       // End of anonymous namespace...

  OS << "\nextern const MCRegisterDesc " << TargetName
     << "RegDesc[] = { // Descriptors\n";
  OS << "  { \"NOREG\",\t0,\t0,\t0 },\n";

  // Now that register alias and sub-registers sets have been emitted, emit the
  // register descriptors now.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    OS << "  { \"";
    OS << Reg.getName() << "\",\t" << Reg.getName() << "_Overlaps,\t";
    if (!Reg.getSubRegs().empty())
      OS << Reg.getName() << "_SubRegsSet,\t";
    else
      OS << "Empty_SubRegsSet,\t";
    if (!Reg.getSuperRegs().empty())
      OS << Reg.getName() << "_SuperRegsSet";
    else
      OS << "Empty_SuperRegsSet";
    OS << " },\n";
  }
  OS << "};\n\n";      // End of register descriptors...

  ArrayRef<CodeGenRegisterClass*> RegisterClasses = RegBank.getRegClasses();

  // Loop over all of the register classes... emitting each one.
  OS << "namespace {     // Register classes...\n";

  // Emit the register enum value arrays for each RegisterClass
  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = *RegisterClasses[rc];
    ArrayRef<Record*> Order = RC.getOrder();

    // Give the register class a legal C name if it's anonymous.
    std::string Name = RC.getName();

    // Emit the register list now.
    OS << "  // " << Name << " Register Class...\n"
       << "  static const unsigned " << Name
       << "[] = {\n    ";
    for (unsigned i = 0, e = Order.size(); i != e; ++i) {
      Record *Reg = Order[i];
      OS << getQualifiedName(Reg) << ", ";
    }
    OS << "\n  };\n\n";

    OS << "  // " << Name << " Bit set.\n"
       << "  static const unsigned char " << Name
       << "Bits[] = {\n    ";
    BitVectorEmitter BVE;
    for (unsigned i = 0, e = Order.size(); i != e; ++i) {
      Record *Reg = Order[i];
      BVE.add(Target.getRegBank().getReg(Reg)->EnumValue);
    }
    BVE.print(OS);
    OS << "\n  };\n\n";

  }
  OS << "}\n\n";

  OS << "extern const MCRegisterClass " << TargetName
     << "MCRegisterClasses[] = {\n";

  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = *RegisterClasses[rc];
    OS << "  MCRegisterClass(" << RC.getQualifiedName() + "RegClassID" << ", "
       << '\"' << RC.getName() << "\", "
       << RC.SpillSize/8 << ", "
       << RC.SpillAlignment/8 << ", "
       << RC.CopyCost << ", "
       << RC.Allocatable << ", "
       << RC.getName() << ", " << RC.getName() << " + "
       << RC.getOrder().size() << ", "
       << RC.getName() << "Bits, sizeof(" << RC.getName() << "Bits)"
       << "),\n";
  }

  OS << "};\n\n";

  // MCRegisterInfo initialization routine.
  OS << "static inline void Init" << TargetName
     << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, "
     << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n";
  OS << "  RI->InitMCRegisterInfo(" << TargetName << "RegDesc, "
     << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, "
     << RegisterClasses.size() << ");\n\n";

  EmitRegMapping(OS, Regs, false);

  OS << "}\n\n";


  OS << "} // End llvm namespace \n";
  OS << "#endif // GET_REGINFO_MC_DESC\n\n";
}
Exemple #13
0
int main(int argc, char **argv) {
  // Print a stack trace if we signal out.
  sys::PrintStackTraceOnErrorSignal(argv[0]);
  PrettyStackTraceProgram X(argc, argv);

  LLVMContext Context;
  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  cl::ParseCommandLineOptions(argc, argv, "llvm extractor\n");

  // Use lazy loading, since we only care about selected global values.
  SMDiagnostic Err;
  std::unique_ptr<Module> M = getLazyIRFileModule(InputFilename, Err, Context);

  if (!M.get()) {
    Err.print(argv[0], errs());
    return 1;
  }

  // Use SetVector to avoid duplicates.
  SetVector<GlobalValue *> GVs;

  // Figure out which aliases we should extract.
  for (size_t i = 0, e = ExtractAliases.size(); i != e; ++i) {
    GlobalAlias *GA = M->getNamedAlias(ExtractAliases[i]);
    if (!GA) {
      errs() << argv[0] << ": program doesn't contain alias named '"
             << ExtractAliases[i] << "'!\n";
      return 1;
    }
    GVs.insert(GA);
  }

  // Extract aliases via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpAliases.size(); i != e; ++i) {
    std::string Error;
    Regex RegEx(ExtractRegExpAliases[i]);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpAliases[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (Module::alias_iterator GA = M->alias_begin(), E = M->alias_end();
         GA != E; GA++) {
      if (RegEx.match(GA->getName())) {
        GVs.insert(&*GA);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpAliases[i] << "'!\n";
      return 1;
    }
  }

  // Figure out which globals we should extract.
  for (size_t i = 0, e = ExtractGlobals.size(); i != e; ++i) {
    GlobalValue *GV = M->getNamedGlobal(ExtractGlobals[i]);
    if (!GV) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractGlobals[i] << "'!\n";
      return 1;
    }
    GVs.insert(GV);
  }

  // Extract globals via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpGlobals.size(); i != e; ++i) {
    std::string Error;
    Regex RegEx(ExtractRegExpGlobals[i]);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpGlobals[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (auto &GV : M->globals()) {
      if (RegEx.match(GV.getName())) {
        GVs.insert(&GV);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpGlobals[i] << "'!\n";
      return 1;
    }
  }

  // Figure out which functions we should extract.
  for (size_t i = 0, e = ExtractFuncs.size(); i != e; ++i) {
    GlobalValue *GV = M->getFunction(ExtractFuncs[i]);
    if (!GV) {
      errs() << argv[0] << ": program doesn't contain function named '"
             << ExtractFuncs[i] << "'!\n";
      return 1;
    }
    GVs.insert(GV);
  }
  // Extract functions via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpFuncs.size(); i != e; ++i) {
    std::string Error;
    StringRef RegExStr = ExtractRegExpFuncs[i];
    Regex RegEx(RegExStr);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpFuncs[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (Module::iterator F = M->begin(), E = M->end(); F != E;
         F++) {
      if (RegEx.match(F->getName())) {
        GVs.insert(&*F);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpFuncs[i] << "'!\n";
      return 1;
    }
  }

  auto Materialize = [&](GlobalValue &GV) {
    if (std::error_code EC = GV.materialize()) {
      errs() << argv[0] << ": error reading input: " << EC.message() << "\n";
      exit(1);
    }
  };

  // Materialize requisite global values.
  if (!DeleteFn) {
    for (size_t i = 0, e = GVs.size(); i != e; ++i)
      Materialize(*GVs[i]);
  } else {
    // Deleting. Materialize every GV that's *not* in GVs.
    SmallPtrSet<GlobalValue *, 8> GVSet(GVs.begin(), GVs.end());
    for (auto &F : *M) {
      if (!GVSet.count(&F))
        Materialize(F);
    }
  }

  {
    std::vector<GlobalValue *> Gvs(GVs.begin(), GVs.end());
    legacy::PassManager Extract;
    Extract.add(createGVExtractionPass(Gvs, DeleteFn));
    Extract.run(*M);

    // Now that we have all the GVs we want, mark the module as fully
    // materialized.
    // FIXME: should the GVExtractionPass handle this?
    M->materializeAll();
  }

  // In addition to deleting all other functions, we also want to spiff it
  // up a little bit.  Do this now.
  legacy::PassManager Passes;

  if (!DeleteFn)
    Passes.add(createGlobalDCEPass());           // Delete unreachable globals
  Passes.add(createStripDeadDebugInfoPass());    // Remove dead debug info
  Passes.add(createStripDeadPrototypesPass());   // Remove dead func decls

  std::error_code EC;
  tool_output_file Out(OutputFilename, EC, sys::fs::F_None);
  if (EC) {
    errs() << EC.message() << '\n';
    return 1;
  }

  if (OutputAssembly)
    Passes.add(
        createPrintModulePass(Out.os(), "", PreserveAssemblyUseListOrder));
  else if (Force || !CheckBitcodeOutputToConsole(Out.os(), true))
    Passes.add(createBitcodeWriterPass(Out.os(), PreserveBitcodeUseListOrder));

  Passes.run(*M.get());

  // Declare success.
  Out.keep();

  return 0;
}
Exemple #14
0
int main(int argc, char **argv) {
  InitLLVM X(argc, argv);

  LLVMContext Context;
  cl::ParseCommandLineOptions(argc, argv, "llvm extractor\n");

  // Use lazy loading, since we only care about selected global values.
  SMDiagnostic Err;
  std::unique_ptr<Module> M = getLazyIRFileModule(InputFilename, Err, Context);

  if (!M.get()) {
    Err.print(argv[0], errs());
    return 1;
  }

  // Use SetVector to avoid duplicates.
  SetVector<GlobalValue *> GVs;

  // Figure out which aliases we should extract.
  for (size_t i = 0, e = ExtractAliases.size(); i != e; ++i) {
    GlobalAlias *GA = M->getNamedAlias(ExtractAliases[i]);
    if (!GA) {
      errs() << argv[0] << ": program doesn't contain alias named '"
             << ExtractAliases[i] << "'!\n";
      return 1;
    }
    GVs.insert(GA);
  }

  // Extract aliases via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpAliases.size(); i != e; ++i) {
    std::string Error;
    Regex RegEx(ExtractRegExpAliases[i]);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpAliases[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (Module::alias_iterator GA = M->alias_begin(), E = M->alias_end();
         GA != E; GA++) {
      if (RegEx.match(GA->getName())) {
        GVs.insert(&*GA);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpAliases[i] << "'!\n";
      return 1;
    }
  }

  // Figure out which globals we should extract.
  for (size_t i = 0, e = ExtractGlobals.size(); i != e; ++i) {
    GlobalValue *GV = M->getNamedGlobal(ExtractGlobals[i]);
    if (!GV) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractGlobals[i] << "'!\n";
      return 1;
    }
    GVs.insert(GV);
  }

  // Extract globals via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpGlobals.size(); i != e; ++i) {
    std::string Error;
    Regex RegEx(ExtractRegExpGlobals[i]);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpGlobals[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (auto &GV : M->globals()) {
      if (RegEx.match(GV.getName())) {
        GVs.insert(&GV);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpGlobals[i] << "'!\n";
      return 1;
    }
  }

  // Figure out which functions we should extract.
  for (size_t i = 0, e = ExtractFuncs.size(); i != e; ++i) {
    GlobalValue *GV = M->getFunction(ExtractFuncs[i]);
    if (!GV) {
      errs() << argv[0] << ": program doesn't contain function named '"
             << ExtractFuncs[i] << "'!\n";
      return 1;
    }
    GVs.insert(GV);
  }
  // Extract functions via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpFuncs.size(); i != e; ++i) {
    std::string Error;
    StringRef RegExStr = ExtractRegExpFuncs[i];
    Regex RegEx(RegExStr);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpFuncs[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (Module::iterator F = M->begin(), E = M->end(); F != E;
         F++) {
      if (RegEx.match(F->getName())) {
        GVs.insert(&*F);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpFuncs[i] << "'!\n";
      return 1;
    }
  }

  // Figure out which BasicBlocks we should extract.
  SmallVector<BasicBlock *, 4> BBs;
  for (StringRef StrPair : ExtractBlocks) {
    auto BBInfo = StrPair.split(':');
    // Get the function.
    Function *F = M->getFunction(BBInfo.first);
    if (!F) {
      errs() << argv[0] << ": program doesn't contain a function named '"
             << BBInfo.first << "'!\n";
      return 1;
    }
    // Do not materialize this function.
    GVs.insert(F);
    // Get the basic block.
    auto Res = llvm::find_if(*F, [&](const BasicBlock &BB) {
      return BB.getName().equals(BBInfo.second);
    });
    if (Res == F->end()) {
      errs() << argv[0] << ": function " << F->getName()
             << " doesn't contain a basic block named '" << BBInfo.second
             << "'!\n";
      return 1;
    }
    BBs.push_back(&*Res);
  }

  // Use *argv instead of argv[0] to work around a wrong GCC warning.
  ExitOnError ExitOnErr(std::string(*argv) + ": error reading input: ");

  if (Recursive) {
    std::vector<llvm::Function *> Workqueue;
    for (GlobalValue *GV : GVs) {
      if (auto *F = dyn_cast<Function>(GV)) {
        Workqueue.push_back(F);
      }
    }
    while (!Workqueue.empty()) {
      Function *F = &*Workqueue.back();
      Workqueue.pop_back();
      ExitOnErr(F->materialize());
      for (auto &BB : *F) {
        for (auto &I : BB) {
          auto *CI = dyn_cast<CallInst>(&I);
          if (!CI)
            continue;
          Function *CF = CI->getCalledFunction();
          if (!CF)
            continue;
          if (CF->isDeclaration() || GVs.count(CF))
            continue;
          GVs.insert(CF);
          Workqueue.push_back(CF);
        }
      }
    }
  }

  auto Materialize = [&](GlobalValue &GV) { ExitOnErr(GV.materialize()); };

  // Materialize requisite global values.
  if (!DeleteFn) {
    for (size_t i = 0, e = GVs.size(); i != e; ++i)
      Materialize(*GVs[i]);
  } else {
    // Deleting. Materialize every GV that's *not* in GVs.
    SmallPtrSet<GlobalValue *, 8> GVSet(GVs.begin(), GVs.end());
    for (auto &F : *M) {
      if (!GVSet.count(&F))
        Materialize(F);
    }
  }

  {
    std::vector<GlobalValue *> Gvs(GVs.begin(), GVs.end());
    legacy::PassManager Extract;
    Extract.add(createGVExtractionPass(Gvs, DeleteFn));
    Extract.run(*M);

    // Now that we have all the GVs we want, mark the module as fully
    // materialized.
    // FIXME: should the GVExtractionPass handle this?
    ExitOnErr(M->materializeAll());
  }

  // Extract the specified basic blocks from the module and erase the existing
  // functions.
  if (!ExtractBlocks.empty()) {
    legacy::PassManager PM;
    PM.add(createBlockExtractorPass(BBs, true));
    PM.run(*M);
  }

  // In addition to deleting all other functions, we also want to spiff it
  // up a little bit.  Do this now.
  legacy::PassManager Passes;

  if (!DeleteFn)
    Passes.add(createGlobalDCEPass());           // Delete unreachable globals
  Passes.add(createStripDeadDebugInfoPass());    // Remove dead debug info
  Passes.add(createStripDeadPrototypesPass());   // Remove dead func decls

  std::error_code EC;
  ToolOutputFile Out(OutputFilename, EC, sys::fs::F_None);
  if (EC) {
    errs() << EC.message() << '\n';
    return 1;
  }

  if (OutputAssembly)
    Passes.add(
        createPrintModulePass(Out.os(), "", PreserveAssemblyUseListOrder));
  else if (Force || !CheckBitcodeOutputToConsole(Out.os(), true))
    Passes.add(createBitcodeWriterPass(Out.os(), PreserveBitcodeUseListOrder));

  Passes.run(*M.get());

  // Declare success.
  Out.keep();

  return 0;
}
int main(int argc, char **argv) {
  // Print a stack trace if we signal out.
  sys::PrintStackTraceOnErrorSignal();
  PrettyStackTraceProgram X(argc, argv);

  LLVMContext &Context = getGlobalContext();
  llvm_shutdown_obj Y;  // Call llvm_shutdown() on exit.
  cl::ParseCommandLineOptions(argc, argv, "llvm extractor\n");

  // Use lazy loading, since we only care about selected global values.
  SMDiagnostic Err;
  std::auto_ptr<Module> M;
  M.reset(getLazyIRFileModule(InputFilename, Err, Context));

  if (M.get() == 0) {
    Err.print(argv[0], errs());
    return 1;
  }

  // Use SetVector to avoid duplicates.
  SetVector<GlobalValue *> GVs;

  // Figure out which globals we should extract.
  for (size_t i = 0, e = ExtractGlobals.size(); i != e; ++i) {
    GlobalValue *GV = M.get()->getNamedGlobal(ExtractGlobals[i]);
    if (!GV) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractGlobals[i] << "'!\n";
      return 1;
    }
    GVs.insert(GV);
  }

  // Extract globals via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpGlobals.size(); i != e; ++i) {
    std::string Error;
    Regex RegEx(ExtractRegExpGlobals[i]);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpGlobals[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (Module::global_iterator GV = M.get()->global_begin(), 
           E = M.get()->global_end(); GV != E; GV++) {
      if (RegEx.match(GV->getName())) {
        GVs.insert(&*GV);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpGlobals[i] << "'!\n";
      return 1;
    }
  }

  // Figure out which functions we should extract.
  for (size_t i = 0, e = ExtractFuncs.size(); i != e; ++i) {
    GlobalValue *GV = M.get()->getFunction(ExtractFuncs[i]);
    if (!GV) {
      errs() << argv[0] << ": program doesn't contain function named '"
             << ExtractFuncs[i] << "'!\n";
      return 1;
    }
    GVs.insert(GV);
  }
  // Extract functions via regular expression matching.
  for (size_t i = 0, e = ExtractRegExpFuncs.size(); i != e; ++i) {
    std::string Error;
    StringRef RegExStr = ExtractRegExpFuncs[i];
    Regex RegEx(RegExStr);
    if (!RegEx.isValid(Error)) {
      errs() << argv[0] << ": '" << ExtractRegExpFuncs[i] << "' "
        "invalid regex: " << Error;
    }
    bool match = false;
    for (Module::iterator F = M.get()->begin(), E = M.get()->end(); F != E; 
         F++) {
      if (RegEx.match(F->getName())) {
        GVs.insert(&*F);
        match = true;
      }
    }
    if (!match) {
      errs() << argv[0] << ": program doesn't contain global named '"
             << ExtractRegExpFuncs[i] << "'!\n";
      return 1;
    }
  }

  // Materialize requisite global values.
  if (!DeleteFn)
    for (size_t i = 0, e = GVs.size(); i != e; ++i) {
      GlobalValue *GV = GVs[i];
      if (GV->isMaterializable()) {
        std::string ErrInfo;
        if (GV->Materialize(&ErrInfo)) {
          errs() << argv[0] << ": error reading input: " << ErrInfo << "\n";
          return 1;
        }
      }
    }
  else {
    // Deleting. Materialize every GV that's *not* in GVs.
    SmallPtrSet<GlobalValue *, 8> GVSet(GVs.begin(), GVs.end());
    for (Module::global_iterator I = M->global_begin(), E = M->global_end();
         I != E; ++I) {
      GlobalVariable *G = I;
      if (!GVSet.count(G) && G->isMaterializable()) {
        std::string ErrInfo;
        if (G->Materialize(&ErrInfo)) {
          errs() << argv[0] << ": error reading input: " << ErrInfo << "\n";
          return 1;
        }
      }
    }
    for (Module::iterator I = M->begin(), E = M->end(); I != E; ++I) {
      Function *F = I;
      if (!GVSet.count(F) && F->isMaterializable()) {
        std::string ErrInfo;
        if (F->Materialize(&ErrInfo)) {
          errs() << argv[0] << ": error reading input: " << ErrInfo << "\n";
          return 1;
        }
      }
    }
  }

  // In addition to deleting all other functions, we also want to spiff it
  // up a little bit.  Do this now.
  PassManager Passes;
  Passes.add(new TargetData(M.get())); // Use correct TargetData

  std::vector<GlobalValue*> Gvs(GVs.begin(), GVs.end());

  Passes.add(createGVExtractionPass(Gvs, DeleteFn));
  if (!DeleteFn)
    Passes.add(createGlobalDCEPass());           // Delete unreachable globals
  Passes.add(createStripDeadDebugInfoPass());    // Remove dead debug info
  Passes.add(createStripDeadPrototypesPass());   // Remove dead func decls

  std::string ErrorInfo;
  tool_output_file Out(OutputFilename.c_str(), ErrorInfo,
                       raw_fd_ostream::F_Binary);
  if (!ErrorInfo.empty()) {
    errs() << ErrorInfo << '\n';
    return 1;
  }

  if (OutputAssembly)
    Passes.add(createPrintModulePass(&Out.os()));
  else if (Force || !CheckBitcodeOutputToConsole(Out.os(), true))
    Passes.add(createBitcodeWriterPass(Out.os()));

  Passes.run(*M.get());

  // Declare success.
  Out.keep();

  return 0;
}
Exemple #16
0
void ADFun<Base,RecBase>::ForSparseHesCase(
    const std::set<size_t>&   set_type         ,
    const SetVector&          r                ,
    const SetVector&          s                ,
    SetVector&                h                )
{
    // used to identify the RecBase type in calls to sweeps
    RecBase not_used_rec_base;
    //
    size_t n = Domain();
# ifndef NDEBUG
    size_t m = Range();
# endif
    std::set<size_t>::const_iterator itr_1;
    //
    // check SetVector is Simple Vector class with sets for elements
    CheckSimpleVector<std::set<size_t>, SetVector>(
        local::one_element_std_set<size_t>(), local::two_element_std_set<size_t>()
    );
    CPPAD_ASSERT_KNOWN(
        r.size() == 1,
        "ForSparseHes: size of s is not equal to one."
    );
    CPPAD_ASSERT_KNOWN(
        s.size() == 1,
        "ForSparseHes: size of s is not equal to one."
    );
    //
    // sparsity pattern corresponding to r
    local::sparse_list for_jac_pattern;
    for_jac_pattern.resize(num_var_tape_, n + 1);
    itr_1 = r[0].begin();
    while( itr_1 != r[0].end() )
    {   size_t i = *itr_1++;
        CPPAD_ASSERT_UNKNOWN( ind_taddr_[i] < n + 1 );
        // ind_taddr_[i] is operator taddr for i-th independent variable
        CPPAD_ASSERT_UNKNOWN( play_.GetOp( ind_taddr_[i] ) == local::InvOp );
        //
        // Use add_element when only adding one element per set is added.
        for_jac_pattern.add_element( ind_taddr_[i], ind_taddr_[i] );
    }
    // compute forward Jacobiain sparsity pattern
    bool dependency = false;
    local::sweep::for_jac<addr_t>(
        &play_,
        dependency,
        n,
        num_var_tape_,
        for_jac_pattern,
        not_used_rec_base

    );
    // sparsity pattern correspnding to s
    local::sparse_list rev_jac_pattern;
    rev_jac_pattern.resize(num_var_tape_, 1);
    itr_1 = s[0].begin();
    while( itr_1 != s[0].end() )
    {   size_t i = *itr_1++;
        CPPAD_ASSERT_KNOWN(
            i < m,
            "ForSparseHes: an element of the set s[0] has value "
            "greater than or equal m"
        );
        CPPAD_ASSERT_UNKNOWN( dep_taddr_[i] < num_var_tape_ );
        //
        // Use add_element when only adding one element per set is added.
        rev_jac_pattern.add_element( dep_taddr_[i], 0);
    }
    //
    // compute reverse sparsity pattern for dependency analysis
    // (note that we are only want non-zero derivatives not true dependency)
    local::sweep::rev_jac<addr_t>(
        &play_,
        dependency,
        n,
        num_var_tape_,
        rev_jac_pattern,
        not_used_rec_base

    );
    //
    // vector of sets that will hold reverse Hessain values
    local::sparse_list for_hes_pattern;
    for_hes_pattern.resize(n+1, n+1);
    //
    // compute the Hessian sparsity patterns
    local::sweep::for_hes<addr_t>(
        &play_,
        n,
        num_var_tape_,
        for_jac_pattern,
        rev_jac_pattern,
        for_hes_pattern,
        not_used_rec_base

    );
    // return values corresponding to independent variables
    // j is index corresponding to reverse mode partial
    h.resize(n);
    CPPAD_ASSERT_UNKNOWN( for_hes_pattern.end() == n+1 );
    for(size_t i = 0; i < n; i++)
    {   CPPAD_ASSERT_UNKNOWN( ind_taddr_[i] == i + 1 );
        CPPAD_ASSERT_UNKNOWN( play_.GetOp( ind_taddr_[i] ) == local::InvOp );

        // extract the result from for_hes_pattern
        local::sparse_list::const_iterator itr_2(for_hes_pattern, ind_taddr_[i] );
        size_t j = *itr_2;
        while( j < for_hes_pattern.end() )
        {   CPPAD_ASSERT_UNKNOWN( 0 < j )
                h[i].insert(j-1);
            j = *(++itr_2);
        }
    }
}
Exemple #17
0
void ADFun<Base,RecBase>::ForSparseHesCase(
    bool              set_type         ,
    const SetVector&  r                ,
    const SetVector&  s                ,
    SetVector&        h                )
{
    // used to identify the RecBase type in calls to sweeps
    RecBase not_used_rec_base;
    //
    size_t n = Domain();
    size_t m = Range();
    //
    // check Vector is Simple SetVector class with bool elements
    CheckSimpleVector<bool, SetVector>();
    //
    CPPAD_ASSERT_KNOWN(
        size_t(r.size()) == n,
        "ForSparseHes: size of r is not equal to\n"
        "domain dimension for ADFun object."
    );
    CPPAD_ASSERT_KNOWN(
        size_t(s.size()) == m,
        "ForSparseHes: size of s is not equal to\n"
        "range dimension for ADFun object."
    );
    //
    // sparsity pattern corresponding to r
    local::sparse_pack for_jac_pattern;
    for_jac_pattern.resize(num_var_tape_, n + 1);
    for(size_t i = 0; i < n; i++)
    {   CPPAD_ASSERT_UNKNOWN( ind_taddr_[i] < n + 1 );
        // ind_taddr_[i] is operator taddr for i-th independent variable
        CPPAD_ASSERT_UNKNOWN( play_.GetOp( ind_taddr_[i] ) == local::InvOp );
        //
        // Use add_element when only adding one element per set is added.
        if( r[i] )
            for_jac_pattern.add_element( ind_taddr_[i], ind_taddr_[i] );
    }
    // compute forward Jacobiain sparsity pattern
    bool dependency = false;
    local::sweep::for_jac<addr_t>(
        &play_,
        dependency,
        n,
        num_var_tape_,
        for_jac_pattern,
        not_used_rec_base

    );
    // sparsity pattern correspnding to s
    local::sparse_pack rev_jac_pattern;
    rev_jac_pattern.resize(num_var_tape_, 1);
    for(size_t i = 0; i < m; i++)
    {   CPPAD_ASSERT_UNKNOWN( dep_taddr_[i] < num_var_tape_ );
        //
        // Use add_element when only adding one element per set is added.
        if( s[i] )
            rev_jac_pattern.add_element( dep_taddr_[i], 0);
    }
    // compute reverse sparsity pattern for dependency analysis
    // (note that we are only want non-zero derivatives not true dependency)
    local::sweep::rev_jac<addr_t>(
        &play_,
        dependency,
        n,
        num_var_tape_,
        rev_jac_pattern,
        not_used_rec_base

    );
    // vector of sets that will hold the forward Hessain values
    local::sparse_pack for_hes_pattern;
    for_hes_pattern.resize(n+1, n+1);
    //
    // compute the Hessian sparsity patterns
    local::sweep::for_hes<addr_t>(
        &play_,
        n,
        num_var_tape_,
        for_jac_pattern,
        rev_jac_pattern,
        for_hes_pattern,
        not_used_rec_base

    );
    // initialize return values corresponding to independent variables
    h.resize(n * n);
    for(size_t i = 0; i < n; i++)
    {   for(size_t j = 0; j < n; j++)
            h[ i * n + j ] = false;
    }
    // copy to result pattern
    CPPAD_ASSERT_UNKNOWN( for_hes_pattern.end() == n+1 );
    for(size_t i = 0; i < n; i++)
    {   // ind_taddr_[i] is operator taddr for i-th independent variable
        CPPAD_ASSERT_UNKNOWN( ind_taddr_[i] == i + 1 );
        CPPAD_ASSERT_UNKNOWN( play_.GetOp( ind_taddr_[i] ) == local::InvOp );

        // extract the result from for_hes_pattern
        local::sparse_pack::const_iterator itr(for_hes_pattern, ind_taddr_[i] );
        size_t j = *itr;
        while( j < for_hes_pattern.end() )
        {   CPPAD_ASSERT_UNKNOWN( 0 < j )
            h[ i * n + (j-1) ] = true;
            j = *(++itr);
        }
    }
}
Exemple #18
0
void ClastStmtCodeGen::codegenForGPGPU(const clast_for *F) {
  BasicBlock::iterator LoopBody;
  SetVector<Value *> Values;
  SetVector<Value *> IVS;
  std::vector<int> NumIterations;
  PTXGenerator::ValueToValueMapTy VMap;

  assert(!GPUTriple.empty() &&
         "Target triple should be set properly for GPGPU code generation.");
  PTXGenerator PTXGen(Builder, P, GPUTriple);

  // Get original IVS and ScopStmt
  unsigned TiledLoopDepth, NonPLoopDepth;
  const clast_stmt *InnerStmt =
      getScheduleInfo(F, NumIterations, TiledLoopDepth, NonPLoopDepth);
  const clast_stmt *TmpStmt;
  const clast_user_stmt *U;
  const clast_for *InnerFor;
  if (CLAST_STMT_IS_A(InnerStmt, stmt_for)) {
    InnerFor = (const clast_for *)InnerStmt;
    TmpStmt = InnerFor->body;
  } else
    TmpStmt = InnerStmt;
  U = (const clast_user_stmt *)TmpStmt;
  ScopStmt *Statement = (ScopStmt *)U->statement->usr;
  for (unsigned i = 0; i < Statement->getNumIterators() - NonPLoopDepth; i++) {
    const Value *IV = Statement->getInductionVariableForDimension(i);
    IVS.insert(const_cast<Value *>(IV));
  }

  unsigned OutBytes;
  Values = getGPUValues(OutBytes);
  PTXGen.setOutputBytes(OutBytes);
  PTXGen.startGeneration(Values, IVS, VMap, &LoopBody);

  BasicBlock::iterator AfterLoop = Builder.GetInsertPoint();
  Builder.SetInsertPoint(LoopBody);

  BasicBlock *AfterBB = 0;
  if (NonPLoopDepth) {
    Value *LowerBound, *UpperBound, *IV, *Stride;
    Type *IntPtrTy = getIntPtrTy();
    LowerBound = ExpGen.codegen(InnerFor->LB, IntPtrTy);
    UpperBound = ExpGen.codegen(InnerFor->UB, IntPtrTy);
    Stride = Builder.getInt(APInt_from_MPZ(InnerFor->stride));
    IV = createLoop(LowerBound, UpperBound, Stride, Builder, P, AfterBB,
                    CmpInst::ICMP_SLE);
    const Value *OldIV_ = Statement->getInductionVariableForDimension(2);
    Value *OldIV = const_cast<Value *>(OldIV_);
    VMap.insert(std::make_pair<Value *, Value *>(OldIV, IV));
  }

  updateWithValueMap(VMap);

  BlockGenerator::generate(Builder, *Statement, ValueMap, P);

  if (AfterBB)
    Builder.SetInsertPoint(AfterBB->begin());

  // FIXME: The replacement of the host base address with the parameter of ptx
  // subfunction should have been done by updateWithValueMap. We use the
  // following codes to avoid affecting other parts of Polly. This should be
  // fixed later.
  Function *FN = Builder.GetInsertBlock()->getParent();
  for (unsigned j = 0; j < Values.size(); j++) {
    Value *baseAddr = Values[j];
    for (Function::iterator B = FN->begin(); B != FN->end(); ++B) {
      for (BasicBlock::iterator I = B->begin(); I != B->end(); ++I)
        I->replaceUsesOfWith(baseAddr, ValueMap[baseAddr]);
    }
  }
  Builder.SetInsertPoint(AfterLoop);
  PTXGen.setLaunchingParameters(NumIterations[0], NumIterations[1],
                                NumIterations[2], NumIterations[3]);
  PTXGen.finishGeneration(FN);
}
Exemple #19
0
//
// RegisterInfoEmitter::run - Main register file description emitter.
//
void RegisterInfoEmitter::run(raw_ostream &OS) {
  CodeGenTarget Target(Records);
  CodeGenRegBank &RegBank = Target.getRegBank();
  RegBank.computeDerivedInfo();
  std::map<const CodeGenRegister*, CodeGenRegister::Set> Overlaps;
  RegBank.computeOverlaps(Overlaps);

  EmitSourceFileHeader("Register Information Source Fragment", OS);

  OS << "namespace llvm {\n\n";

  // Start out by emitting each of the register classes.
  const std::vector<CodeGenRegisterClass> &RegisterClasses =
    Target.getRegisterClasses();

  // Collect all registers belonging to any allocatable class.
  std::set<Record*> AllocatableRegs;

  // Loop over all of the register classes... emitting each one.
  OS << "namespace {     // Register classes...\n";

  // Emit the register enum value arrays for each RegisterClass
  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = RegisterClasses[rc];
    ArrayRef<Record*> Order = RC.getOrder();

    // Collect allocatable registers.
    if (RC.Allocatable)
      AllocatableRegs.insert(Order.begin(), Order.end());

    // Give the register class a legal C name if it's anonymous.
    std::string Name = RC.getName();

    // Emit the register list now.
    OS << "  // " << Name << " Register Class...\n"
       << "  static const unsigned " << Name
       << "[] = {\n    ";
    for (unsigned i = 0, e = Order.size(); i != e; ++i) {
      Record *Reg = Order[i];
      OS << getQualifiedName(Reg) << ", ";
    }
    OS << "\n  };\n\n";
  }

  // Emit the ValueType arrays for each RegisterClass
  for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
    const CodeGenRegisterClass &RC = RegisterClasses[rc];

    // Give the register class a legal C name if it's anonymous.
    std::string Name = RC.getName() + "VTs";

    // Emit the register list now.
    OS << "  // " << Name
       << " Register Class Value Types...\n"
       << "  static const EVT " << Name
       << "[] = {\n    ";
    for (unsigned i = 0, e = RC.VTs.size(); i != e; ++i)
      OS << getEnumName(RC.VTs[i]) << ", ";
    OS << "MVT::Other\n  };\n\n";
  }
  OS << "}  // end anonymous namespace\n\n";

  // Now that all of the structs have been emitted, emit the instances.
  if (!RegisterClasses.empty()) {
    OS << "namespace " << RegisterClasses[0].Namespace
       << " {   // Register class instances\n";
    for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i)
      OS << "  " << RegisterClasses[i].getName()  << "Class\t"
         << RegisterClasses[i].getName() << "RegClass;\n";

    std::map<unsigned, std::set<unsigned> > SuperClassMap;
    std::map<unsigned, std::set<unsigned> > SuperRegClassMap;
    OS << "\n";

    unsigned NumSubRegIndices = RegBank.getSubRegIndices().size();

    if (NumSubRegIndices) {
      // Emit the sub-register classes for each RegisterClass
      for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
        const CodeGenRegisterClass &RC = RegisterClasses[rc];
        std::vector<Record*> SRC(NumSubRegIndices);
        for (DenseMap<Record*,Record*>::const_iterator
             i = RC.SubRegClasses.begin(),
             e = RC.SubRegClasses.end(); i != e; ++i) {
          // Build SRC array.
          unsigned idx = RegBank.getSubRegIndexNo(i->first);
          SRC.at(idx-1) = i->second;

          // Find the register class number of i->second for SuperRegClassMap.
          for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) {
            const CodeGenRegisterClass &RC2 =  RegisterClasses[rc2];
            if (RC2.TheDef == i->second) {
              SuperRegClassMap[rc2].insert(rc);
              break;
            }
          }
        }

        // Give the register class a legal C name if it's anonymous.
        std::string Name = RC.TheDef->getName();

        OS << "  // " << Name
           << " Sub-register Classes...\n"
           << "  static const TargetRegisterClass* const "
           << Name << "SubRegClasses[] = {\n    ";

        for (unsigned idx = 0; idx != NumSubRegIndices; ++idx) {
          if (idx)
            OS << ", ";
          if (SRC[idx])
            OS << "&" << getQualifiedName(SRC[idx]) << "RegClass";
          else
            OS << "0";
        }
        OS << "\n  };\n\n";
      }

      // Emit the super-register classes for each RegisterClass
      for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
        const CodeGenRegisterClass &RC = RegisterClasses[rc];

        // Give the register class a legal C name if it's anonymous.
        std::string Name = RC.TheDef->getName();

        OS << "  // " << Name
           << " Super-register Classes...\n"
           << "  static const TargetRegisterClass* const "
           << Name << "SuperRegClasses[] = {\n    ";

        bool Empty = true;
        std::map<unsigned, std::set<unsigned> >::iterator I =
          SuperRegClassMap.find(rc);
        if (I != SuperRegClassMap.end()) {
          for (std::set<unsigned>::iterator II = I->second.begin(),
                 EE = I->second.end(); II != EE; ++II) {
            const CodeGenRegisterClass &RC2 = RegisterClasses[*II];
            if (!Empty)
              OS << ", ";
            OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
            Empty = false;
          }
        }

        OS << (!Empty ? ", " : "") << "NULL";
        OS << "\n  };\n\n";
      }
    } else {
      // No subregindices in this target
      OS << "  static const TargetRegisterClass* const "
         << "NullRegClasses[] = { NULL };\n\n";
    }

    // Emit the sub-classes array for each RegisterClass
    for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
      const CodeGenRegisterClass &RC = RegisterClasses[rc];

      // Give the register class a legal C name if it's anonymous.
      std::string Name = RC.TheDef->getName();

      OS << "  // " << Name
         << " Register Class sub-classes...\n"
         << "  static const TargetRegisterClass* const "
         << Name << "Subclasses[] = {\n    ";

      bool Empty = true;
      for (unsigned rc2 = 0, e2 = RegisterClasses.size(); rc2 != e2; ++rc2) {
        const CodeGenRegisterClass &RC2 = RegisterClasses[rc2];

        // Sub-classes are used to determine if a virtual register can be used
        // as an instruction operand, or if it must be copied first.
        if (rc == rc2 || !RC.hasSubClass(&RC2)) continue;

        if (!Empty) OS << ", ";
        OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
        Empty = false;

        std::map<unsigned, std::set<unsigned> >::iterator SCMI =
          SuperClassMap.find(rc2);
        if (SCMI == SuperClassMap.end()) {
          SuperClassMap.insert(std::make_pair(rc2, std::set<unsigned>()));
          SCMI = SuperClassMap.find(rc2);
        }
        SCMI->second.insert(rc);
      }

      OS << (!Empty ? ", " : "") << "NULL";
      OS << "\n  };\n\n";
    }

    for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
      const CodeGenRegisterClass &RC = RegisterClasses[rc];

      // Give the register class a legal C name if it's anonymous.
      std::string Name = RC.TheDef->getName();

      OS << "  // " << Name
         << " Register Class super-classes...\n"
         << "  static const TargetRegisterClass* const "
         << Name << "Superclasses[] = {\n    ";

      bool Empty = true;
      std::map<unsigned, std::set<unsigned> >::iterator I =
        SuperClassMap.find(rc);
      if (I != SuperClassMap.end()) {
        for (std::set<unsigned>::iterator II = I->second.begin(),
               EE = I->second.end(); II != EE; ++II) {
          const CodeGenRegisterClass &RC2 = RegisterClasses[*II];
          if (!Empty) OS << ", ";
          OS << "&" << getQualifiedName(RC2.TheDef) << "RegClass";
          Empty = false;
        }
      }

      OS << (!Empty ? ", " : "") << "NULL";
      OS << "\n  };\n\n";
    }

    // Emit methods.
    for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i) {
      const CodeGenRegisterClass &RC = RegisterClasses[i];
      OS << RC.getName() << "Class::" << RC.getName()
         << "Class()  : TargetRegisterClass("
         << RC.getName() + "RegClassID" << ", "
         << '\"' << RC.getName() << "\", "
         << RC.getName() + "VTs" << ", "
         << RC.getName() + "Subclasses" << ", "
         << RC.getName() + "Superclasses" << ", "
         << (NumSubRegIndices ? RC.getName() + "Sub" : std::string("Null"))
         << "RegClasses, "
         << (NumSubRegIndices ? RC.getName() + "Super" : std::string("Null"))
         << "RegClasses, "
         << RC.SpillSize/8 << ", "
         << RC.SpillAlignment/8 << ", "
         << RC.CopyCost << ", "
         << RC.Allocatable << ", "
         << RC.getName() << ", " << RC.getName() << " + "
         << RC.getOrder().size()
         << ") {}\n";
      if (!RC.AltOrderSelect.empty()) {
        OS << "\nstatic inline unsigned " << RC.getName()
           << "AltOrderSelect(const MachineFunction &MF) {"
           << RC.AltOrderSelect << "}\n\nArrayRef<unsigned> "
           << RC.getName() << "Class::"
           << "getRawAllocationOrder(const MachineFunction &MF) const {\n";
        for (unsigned oi = 1 , oe = RC.getNumOrders(); oi != oe; ++oi) {
          ArrayRef<Record*> Elems = RC.getOrder(oi);
          OS << "  static const unsigned AltOrder" << oi << "[] = {";
          for (unsigned elem = 0; elem != Elems.size(); ++elem)
            OS << (elem ? ", " : " ") << getQualifiedName(Elems[elem]);
          OS << " };\n";
        }
        OS << "  static const ArrayRef<unsigned> Order[] = {\n"
           << "    ArrayRef<unsigned>(" << RC.getName();
        for (unsigned oi = 1, oe = RC.getNumOrders(); oi != oe; ++oi)
          OS << "),\n    ArrayRef<unsigned>(AltOrder" << oi;
        OS << ")\n  };\n  const unsigned Select = " << RC.getName()
           << "AltOrderSelect(MF);\n  assert(Select < " << RC.getNumOrders()
           << ");\n  return Order[Select];\n}\n";
        }
    }

    OS << "}\n";
  }

  OS << "\nnamespace {\n";
  OS << "  const TargetRegisterClass* const RegisterClasses[] = {\n";
  for (unsigned i = 0, e = RegisterClasses.size(); i != e; ++i)
    OS << "    &" << getQualifiedName(RegisterClasses[i].TheDef)
       << "RegClass,\n";
  OS << "  };\n";

  typedef std::map<Record*, std::vector<int64_t>, LessRecord> DwarfRegNumsMapTy;
  DwarfRegNumsMapTy DwarfRegNums;
  const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters();

  // Emit an overlap list for all registers.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister *Reg = Regs[i];
    const CodeGenRegister::Set &O = Overlaps[Reg];
    // Move Reg to the front so TRI::getAliasSet can share the list.
    OS << "  const unsigned " << Reg->getName() << "_Overlaps[] = { "
       << getQualifiedName(Reg->TheDef) << ", ";
    for (CodeGenRegister::Set::const_iterator I = O.begin(), E = O.end();
         I != E; ++I)
      if (*I != Reg)
        OS << getQualifiedName((*I)->TheDef) << ", ";
    OS << "0 };\n";
  }

  // Emit the empty sub-registers list
  OS << "  const unsigned Empty_SubRegsSet[] = { 0 };\n";
  // Loop over all of the registers which have sub-registers, emitting the
  // sub-registers list to memory.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    if (Reg.getSubRegs().empty())
     continue;
    // getSubRegs() orders by SubRegIndex. We want a topological order.
    SetVector<CodeGenRegister*> SR;
    Reg.addSubRegsPreOrder(SR);
    OS << "  const unsigned " << Reg.getName() << "_SubRegsSet[] = { ";
    for (unsigned j = 0, je = SR.size(); j != je; ++j)
      OS << getQualifiedName(SR[j]->TheDef) << ", ";
    OS << "0 };\n";
  }

  // Emit the empty super-registers list
  OS << "  const unsigned Empty_SuperRegsSet[] = { 0 };\n";
  // Loop over all of the registers which have super-registers, emitting the
  // super-registers list to memory.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    const CodeGenRegister::SuperRegList &SR = Reg.getSuperRegs();
    if (SR.empty())
      continue;
    OS << "  const unsigned " << Reg.getName() << "_SuperRegsSet[] = { ";
    for (unsigned j = 0, je = SR.size(); j != je; ++j)
      OS << getQualifiedName(SR[j]->TheDef) << ", ";
    OS << "0 };\n";
  }

  OS<<"\n  const TargetRegisterDesc RegisterDescriptors[] = { // Descriptors\n";
  OS << "    { \"NOREG\",\t0,\t0,\t0,\t0,\t0 },\n";

  // Now that register alias and sub-registers sets have been emitted, emit the
  // register descriptors now.
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister &Reg = *Regs[i];
    OS << "    { \"";
    OS << Reg.getName() << "\",\t" << Reg.getName() << "_Overlaps,\t";
    if (!Reg.getSubRegs().empty())
      OS << Reg.getName() << "_SubRegsSet,\t";
    else
      OS << "Empty_SubRegsSet,\t";
    if (!Reg.getSuperRegs().empty())
      OS << Reg.getName() << "_SuperRegsSet,\t";
    else
      OS << "Empty_SuperRegsSet,\t";
    OS << Reg.CostPerUse << ",\t"
       << int(AllocatableRegs.count(Reg.TheDef)) << " },\n";
  }
  OS << "  };\n";      // End of register descriptors...

  // Calculate the mapping of subregister+index pairs to physical registers.
  // This will also create further anonymous indexes.
  unsigned NamedIndices = RegBank.getNumNamedIndices();

  // Emit SubRegIndex names, skipping 0
  const std::vector<Record*> &SubRegIndices = RegBank.getSubRegIndices();
  OS << "\n  const char *const SubRegIndexTable[] = { \"";
  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
    OS << SubRegIndices[i]->getName();
    if (i+1 != e)
      OS << "\", \"";
  }
  OS << "\" };\n\n";

  // Emit names of the anonymus subreg indexes.
  if (SubRegIndices.size() > NamedIndices) {
    OS << "  enum {";
    for (unsigned i = NamedIndices, e = SubRegIndices.size(); i != e; ++i) {
      OS << "\n    " << SubRegIndices[i]->getName() << " = " << i+1;
      if (i+1 != e)
        OS << ',';
    }
    OS << "\n  };\n\n";
  }
  OS << "}\n\n";       // End of anonymous namespace...

  std::string ClassName = Target.getName() + "GenRegisterInfo";

  // Emit the subregister + index mapping function based on the information
  // calculated above.
  OS << "unsigned " << ClassName
     << "::getSubReg(unsigned RegNo, unsigned Index) const {\n"
     << "  switch (RegNo) {\n"
     << "  default:\n    return 0;\n";
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    const CodeGenRegister::SubRegMap &SRM = Regs[i]->getSubRegs();
    if (SRM.empty())
      continue;
    OS << "  case " << getQualifiedName(Regs[i]->TheDef) << ":\n";
    OS << "    switch (Index) {\n";
    OS << "    default: return 0;\n";
    for (CodeGenRegister::SubRegMap::const_iterator ii = SRM.begin(),
         ie = SRM.end(); ii != ie; ++ii)
      OS << "    case " << getQualifiedName(ii->first)
         << ": return " << getQualifiedName(ii->second->TheDef) << ";\n";
    OS << "    };\n" << "    break;\n";
  }
  OS << "  };\n";
  OS << "  return 0;\n";
  OS << "}\n\n";

  OS << "unsigned " << ClassName
     << "::getSubRegIndex(unsigned RegNo, unsigned SubRegNo) const {\n"
     << "  switch (RegNo) {\n"
     << "  default:\n    return 0;\n";
   for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
     const CodeGenRegister::SubRegMap &SRM = Regs[i]->getSubRegs();
     if (SRM.empty())
       continue;
    OS << "  case " << getQualifiedName(Regs[i]->TheDef) << ":\n";
    for (CodeGenRegister::SubRegMap::const_iterator ii = SRM.begin(),
         ie = SRM.end(); ii != ie; ++ii)
      OS << "    if (SubRegNo == " << getQualifiedName(ii->second->TheDef)
         << ")  return " << getQualifiedName(ii->first) << ";\n";
    OS << "    return 0;\n";
  }
  OS << "  };\n";
  OS << "  return 0;\n";
  OS << "}\n\n";

  // Emit composeSubRegIndices
  OS << "unsigned " << ClassName
     << "::composeSubRegIndices(unsigned IdxA, unsigned IdxB) const {\n"
     << "  switch (IdxA) {\n"
     << "  default:\n    return IdxB;\n";
  for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) {
    bool Open = false;
    for (unsigned j = 0; j != e; ++j) {
      if (Record *Comp = RegBank.getCompositeSubRegIndex(SubRegIndices[i],
                                                         SubRegIndices[j])) {
        if (!Open) {
          OS << "  case " << getQualifiedName(SubRegIndices[i])
             << ": switch(IdxB) {\n    default: return IdxB;\n";
          Open = true;
        }
        OS << "    case " << getQualifiedName(SubRegIndices[j])
           << ": return " << getQualifiedName(Comp) << ";\n";
      }
    }
    if (Open)
      OS << "    }\n";
  }
  OS << "  }\n}\n\n";

  // Emit the constructor of the class...
  OS << ClassName << "::" << ClassName
     << "(int CallFrameSetupOpcode, int CallFrameDestroyOpcode)\n"
     << "  : TargetRegisterInfo(RegisterDescriptors, " << Regs.size()+1
     << ", RegisterClasses, RegisterClasses+" << RegisterClasses.size() <<",\n"
     << "                 SubRegIndexTable,\n"
     << "                 CallFrameSetupOpcode, CallFrameDestroyOpcode) {\n"
     << "}\n\n";

  // Collect all information about dwarf register numbers

  // First, just pull all provided information to the map
  unsigned maxLength = 0;
  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    std::vector<int64_t> RegNums = Reg->getValueAsListOfInts("DwarfNumbers");
    maxLength = std::max((size_t)maxLength, RegNums.size());
    if (DwarfRegNums.count(Reg))
      errs() << "Warning: DWARF numbers for register " << getQualifiedName(Reg)
             << "specified multiple times\n";
    DwarfRegNums[Reg] = RegNums;
  }

  // Now we know maximal length of number list. Append -1's, where needed
  for (DwarfRegNumsMapTy::iterator
       I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I)
    for (unsigned i = I->second.size(), e = maxLength; i != e; ++i)
      I->second.push_back(-1);

  // Emit reverse information about the dwarf register numbers.
  OS << "int " << ClassName << "::getLLVMRegNumFull(unsigned DwarfRegNum, "
     << "unsigned Flavour) const {\n"
     << "  switch (Flavour) {\n"
     << "  default:\n"
     << "    assert(0 && \"Unknown DWARF flavour\");\n"
     << "    return -1;\n";

  for (unsigned i = 0, e = maxLength; i != e; ++i) {
    OS << "  case " << i << ":\n"
       << "    switch (DwarfRegNum) {\n"
       << "    default:\n"
       << "      assert(0 && \"Invalid DwarfRegNum\");\n"
       << "      return -1;\n";

    for (DwarfRegNumsMapTy::iterator
           I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
      int DwarfRegNo = I->second[i];
      if (DwarfRegNo >= 0)
        OS << "    case " <<  DwarfRegNo << ":\n"
           << "      return " << getQualifiedName(I->first) << ";\n";
    }
    OS << "    };\n";
  }

  OS << "  };\n}\n\n";

  for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
    Record *Reg = Regs[i]->TheDef;
    const RecordVal *V = Reg->getValue("DwarfAlias");
    if (!V || !V->getValue())
      continue;

    DefInit *DI = dynamic_cast<DefInit*>(V->getValue());
    Record *Alias = DI->getDef();
    DwarfRegNums[Reg] = DwarfRegNums[Alias];
  }

  // Emit information about the dwarf register numbers.
  OS << "int " << ClassName << "::getDwarfRegNumFull(unsigned RegNum, "
     << "unsigned Flavour) const {\n"
     << "  switch (Flavour) {\n"
     << "  default:\n"
     << "    assert(0 && \"Unknown DWARF flavour\");\n"
     << "    return -1;\n";

  for (unsigned i = 0, e = maxLength; i != e; ++i) {
    OS << "  case " << i << ":\n"
       << "    switch (RegNum) {\n"
       << "    default:\n"
       << "      assert(0 && \"Invalid RegNum\");\n"
       << "      return -1;\n";

    // Sort by name to get a stable order.


    for (DwarfRegNumsMapTy::iterator
           I = DwarfRegNums.begin(), E = DwarfRegNums.end(); I != E; ++I) {
      int RegNo = I->second[i];
      OS << "    case " << getQualifiedName(I->first) << ":\n"
         << "      return " << RegNo << ";\n";
    }
    OS << "    };\n";
  }

  OS << "  };\n}\n\n";

  OS << "} // End llvm namespace \n";
}
bool AAEval::runOnFunction(Function &F) {
  AliasAnalysis &AA = getAnalysis<AliasAnalysis>();

  SetVector<Value *> Pointers;
  SetVector<CallSite> CallSites;
  SetVector<Value *> Loads;
  SetVector<Value *> Stores;

  for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
    if (I->getType()->isPointerTy())    // Add all pointer arguments.
      Pointers.insert(I);

  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
    if (I->getType()->isPointerTy()) // Add all pointer instructions.
      Pointers.insert(&*I);
    if (EvalTBAA && isa<LoadInst>(&*I))
      Loads.insert(&*I);
    if (EvalTBAA && isa<StoreInst>(&*I))
      Stores.insert(&*I);
    Instruction &Inst = *I;
    if (CallSite CS = cast<Value>(&Inst)) {
      Value *Callee = CS.getCalledValue();
      // Skip actual functions for direct function calls.
      if (!isa<Function>(Callee) && isInterestingPointer(Callee))
        Pointers.insert(Callee);
      // Consider formals.
      for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end();
           AI != AE; ++AI)
        if (isInterestingPointer(*AI))
          Pointers.insert(*AI);
      CallSites.insert(CS);
    } else {
      // Consider all operands.
      for (Instruction::op_iterator OI = Inst.op_begin(), OE = Inst.op_end();
           OI != OE; ++OI)
        if (isInterestingPointer(*OI))
          Pointers.insert(*OI);
    }
  }

  if (PrintNoAlias || PrintMayAlias || PrintPartialAlias || PrintMustAlias ||
      PrintNoModRef || PrintMod || PrintRef || PrintModRef)
    errs() << "Function: " << F.getName() << ": " << Pointers.size()
           << " pointers, " << CallSites.size() << " call sites\n";

  // iterate over the worklist, and run the full (n^2)/2 disambiguations
  for (SetVector<Value *>::iterator I1 = Pointers.begin(), E = Pointers.end();
       I1 != E; ++I1) {
    uint64_t I1Size = AliasAnalysis::UnknownSize;
    Type *I1ElTy = cast<PointerType>((*I1)->getType())->getElementType();
    if (I1ElTy->isSized()) I1Size = AA.getTypeStoreSize(I1ElTy);

    for (SetVector<Value *>::iterator I2 = Pointers.begin(); I2 != I1; ++I2) {
      uint64_t I2Size = AliasAnalysis::UnknownSize;
      Type *I2ElTy =cast<PointerType>((*I2)->getType())->getElementType();
      if (I2ElTy->isSized()) I2Size = AA.getTypeStoreSize(I2ElTy);

      switch (AA.alias(*I1, I1Size, *I2, I2Size)) {
      case AliasAnalysis::NoAlias:
        PrintResults("NoAlias", PrintNoAlias, *I1, *I2, F.getParent());
        ++NoAlias; break;
      case AliasAnalysis::MayAlias:
        PrintResults("MayAlias", PrintMayAlias, *I1, *I2, F.getParent());
        ++MayAlias; break;
      case AliasAnalysis::PartialAlias:
        PrintResults("PartialAlias", PrintPartialAlias, *I1, *I2,
                     F.getParent());
        ++PartialAlias; break;
      case AliasAnalysis::MustAlias:
        PrintResults("MustAlias", PrintMustAlias, *I1, *I2, F.getParent());
        ++MustAlias; break;
      }
    }
  }

  if (EvalTBAA) {
    // iterate over all pairs of load, store
    for (SetVector<Value *>::iterator I1 = Loads.begin(), E = Loads.end();
         I1 != E; ++I1) {
      for (SetVector<Value *>::iterator I2 = Stores.begin(), E2 = Stores.end();
           I2 != E2; ++I2) {
        switch (AA.alias(AA.getLocation(cast<LoadInst>(*I1)),
                         AA.getLocation(cast<StoreInst>(*I2)))) {
        case AliasAnalysis::NoAlias:
          PrintLoadStoreResults("NoAlias", PrintNoAlias, *I1, *I2,
                                F.getParent());
          ++NoAlias; break;
        case AliasAnalysis::MayAlias:
          PrintLoadStoreResults("MayAlias", PrintMayAlias, *I1, *I2,
                                F.getParent());
          ++MayAlias; break;
        case AliasAnalysis::PartialAlias:
          PrintLoadStoreResults("PartialAlias", PrintPartialAlias, *I1, *I2,
                                F.getParent());
          ++PartialAlias; break;
        case AliasAnalysis::MustAlias:
          PrintLoadStoreResults("MustAlias", PrintMustAlias, *I1, *I2,
                                F.getParent());
          ++MustAlias; break;
        }
      }
    }

    // iterate over all pairs of store, store
    for (SetVector<Value *>::iterator I1 = Stores.begin(), E = Stores.end();
         I1 != E; ++I1) {
      for (SetVector<Value *>::iterator I2 = Stores.begin(); I2 != I1; ++I2) {
        switch (AA.alias(AA.getLocation(cast<StoreInst>(*I1)),
                         AA.getLocation(cast<StoreInst>(*I2)))) {
        case AliasAnalysis::NoAlias:
          PrintLoadStoreResults("NoAlias", PrintNoAlias, *I1, *I2,
                                F.getParent());
          ++NoAlias; break;
        case AliasAnalysis::MayAlias:
          PrintLoadStoreResults("MayAlias", PrintMayAlias, *I1, *I2,
                                F.getParent());
          ++MayAlias; break;
        case AliasAnalysis::PartialAlias:
          PrintLoadStoreResults("PartialAlias", PrintPartialAlias, *I1, *I2,
                                F.getParent());
          ++PartialAlias; break;
        case AliasAnalysis::MustAlias:
          PrintLoadStoreResults("MustAlias", PrintMustAlias, *I1, *I2,
                                F.getParent());
          ++MustAlias; break;
        }
      }
    }
  }

  // Mod/ref alias analysis: compare all pairs of calls and values
  for (SetVector<CallSite>::iterator C = CallSites.begin(),
         Ce = CallSites.end(); C != Ce; ++C) {
    Instruction *I = C->getInstruction();

    for (SetVector<Value *>::iterator V = Pointers.begin(), Ve = Pointers.end();
         V != Ve; ++V) {
      uint64_t Size = AliasAnalysis::UnknownSize;
      Type *ElTy = cast<PointerType>((*V)->getType())->getElementType();
      if (ElTy->isSized()) Size = AA.getTypeStoreSize(ElTy);

      switch (AA.getModRefInfo(*C, *V, Size)) {
      case AliasAnalysis::NoModRef:
        PrintModRefResults("NoModRef", PrintNoModRef, I, *V, F.getParent());
        ++NoModRef; break;
      case AliasAnalysis::Mod:
        PrintModRefResults("Just Mod", PrintMod, I, *V, F.getParent());
        ++Mod; break;
      case AliasAnalysis::Ref:
        PrintModRefResults("Just Ref", PrintRef, I, *V, F.getParent());
        ++Ref; break;
      case AliasAnalysis::ModRef:
        PrintModRefResults("Both ModRef", PrintModRef, I, *V, F.getParent());
        ++ModRef; break;
      }
    }
  }

  // Mod/ref alias analysis: compare all pairs of calls
  for (SetVector<CallSite>::iterator C = CallSites.begin(),
         Ce = CallSites.end(); C != Ce; ++C) {
    for (SetVector<CallSite>::iterator D = CallSites.begin(); D != Ce; ++D) {
      if (D == C)
        continue;
      switch (AA.getModRefInfo(*C, *D)) {
      case AliasAnalysis::NoModRef:
        PrintModRefResults("NoModRef", PrintNoModRef, *C, *D, F.getParent());
        ++NoModRef; break;
      case AliasAnalysis::Mod:
        PrintModRefResults("Just Mod", PrintMod, *C, *D, F.getParent());
        ++Mod; break;
      case AliasAnalysis::Ref:
        PrintModRefResults("Just Ref", PrintRef, *C, *D, F.getParent());
        ++Ref; break;
      case AliasAnalysis::ModRef:
        PrintModRefResults("Both ModRef", PrintModRef, *C, *D, F.getParent());
        ++ModRef; break;
      }
    }
  }

  return false;
}
void AAEvaluator::runInternal(Function &F, AAResults &AA) {
  const DataLayout &DL = F.getParent()->getDataLayout();

  ++FunctionCount;

  SetVector<Value *> Pointers;
  SmallSetVector<CallBase *, 16> Calls;
  SetVector<Value *> Loads;
  SetVector<Value *> Stores;

  for (auto &I : F.args())
    if (I.getType()->isPointerTy())    // Add all pointer arguments.
      Pointers.insert(&I);

  for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
    if (I->getType()->isPointerTy()) // Add all pointer instructions.
      Pointers.insert(&*I);
    if (EvalAAMD && isa<LoadInst>(&*I))
      Loads.insert(&*I);
    if (EvalAAMD && isa<StoreInst>(&*I))
      Stores.insert(&*I);
    Instruction &Inst = *I;
    if (auto *Call = dyn_cast<CallBase>(&Inst)) {
      Value *Callee = Call->getCalledValue();
      // Skip actual functions for direct function calls.
      if (!isa<Function>(Callee) && isInterestingPointer(Callee))
        Pointers.insert(Callee);
      // Consider formals.
      for (Use &DataOp : Call->data_ops())
        if (isInterestingPointer(DataOp))
          Pointers.insert(DataOp);
      Calls.insert(Call);
    } else {
      // Consider all operands.
      for (Instruction::op_iterator OI = Inst.op_begin(), OE = Inst.op_end();
           OI != OE; ++OI)
        if (isInterestingPointer(*OI))
          Pointers.insert(*OI);
    }
  }

  if (PrintAll || PrintNoAlias || PrintMayAlias || PrintPartialAlias ||
      PrintMustAlias || PrintNoModRef || PrintMod || PrintRef || PrintModRef)
    errs() << "Function: " << F.getName() << ": " << Pointers.size()
           << " pointers, " << Calls.size() << " call sites\n";

  // iterate over the worklist, and run the full (n^2)/2 disambiguations
  for (SetVector<Value *>::iterator I1 = Pointers.begin(), E = Pointers.end();
       I1 != E; ++I1) {
    auto I1Size = LocationSize::unknown();
    Type *I1ElTy = cast<PointerType>((*I1)->getType())->getElementType();
    if (I1ElTy->isSized())
      I1Size = LocationSize::precise(DL.getTypeStoreSize(I1ElTy));

    for (SetVector<Value *>::iterator I2 = Pointers.begin(); I2 != I1; ++I2) {
      auto I2Size = LocationSize::unknown();
      Type *I2ElTy = cast<PointerType>((*I2)->getType())->getElementType();
      if (I2ElTy->isSized())
        I2Size = LocationSize::precise(DL.getTypeStoreSize(I2ElTy));

      AliasResult AR = AA.alias(*I1, I1Size, *I2, I2Size);
      switch (AR) {
      case NoAlias:
        PrintResults(AR, PrintNoAlias, *I1, *I2, F.getParent());
        ++NoAliasCount;
        break;
      case MayAlias:
        PrintResults(AR, PrintMayAlias, *I1, *I2, F.getParent());
        ++MayAliasCount;
        break;
      case PartialAlias:
        PrintResults(AR, PrintPartialAlias, *I1, *I2, F.getParent());
        ++PartialAliasCount;
        break;
      case MustAlias:
        PrintResults(AR, PrintMustAlias, *I1, *I2, F.getParent());
        ++MustAliasCount;
        break;
      }
    }
  }

  if (EvalAAMD) {
    // iterate over all pairs of load, store
    for (Value *Load : Loads) {
      for (Value *Store : Stores) {
        AliasResult AR = AA.alias(MemoryLocation::get(cast<LoadInst>(Load)),
                                  MemoryLocation::get(cast<StoreInst>(Store)));
        switch (AR) {
        case NoAlias:
          PrintLoadStoreResults(AR, PrintNoAlias, Load, Store, F.getParent());
          ++NoAliasCount;
          break;
        case MayAlias:
          PrintLoadStoreResults(AR, PrintMayAlias, Load, Store, F.getParent());
          ++MayAliasCount;
          break;
        case PartialAlias:
          PrintLoadStoreResults(AR, PrintPartialAlias, Load, Store, F.getParent());
          ++PartialAliasCount;
          break;
        case MustAlias:
          PrintLoadStoreResults(AR, PrintMustAlias, Load, Store, F.getParent());
          ++MustAliasCount;
          break;
        }
      }
    }

    // iterate over all pairs of store, store
    for (SetVector<Value *>::iterator I1 = Stores.begin(), E = Stores.end();
         I1 != E; ++I1) {
      for (SetVector<Value *>::iterator I2 = Stores.begin(); I2 != I1; ++I2) {
        AliasResult AR = AA.alias(MemoryLocation::get(cast<StoreInst>(*I1)),
                                  MemoryLocation::get(cast<StoreInst>(*I2)));
        switch (AR) {
        case NoAlias:
          PrintLoadStoreResults(AR, PrintNoAlias, *I1, *I2, F.getParent());
          ++NoAliasCount;
          break;
        case MayAlias:
          PrintLoadStoreResults(AR, PrintMayAlias, *I1, *I2, F.getParent());
          ++MayAliasCount;
          break;
        case PartialAlias:
          PrintLoadStoreResults(AR, PrintPartialAlias, *I1, *I2, F.getParent());
          ++PartialAliasCount;
          break;
        case MustAlias:
          PrintLoadStoreResults(AR, PrintMustAlias, *I1, *I2, F.getParent());
          ++MustAliasCount;
          break;
        }
      }
    }
  }

  // Mod/ref alias analysis: compare all pairs of calls and values
  for (CallBase *Call : Calls) {
    for (auto Pointer : Pointers) {
      auto Size = LocationSize::unknown();
      Type *ElTy = cast<PointerType>(Pointer->getType())->getElementType();
      if (ElTy->isSized())
        Size = LocationSize::precise(DL.getTypeStoreSize(ElTy));

      switch (AA.getModRefInfo(Call, Pointer, Size)) {
      case ModRefInfo::NoModRef:
        PrintModRefResults("NoModRef", PrintNoModRef, Call, Pointer,
                           F.getParent());
        ++NoModRefCount;
        break;
      case ModRefInfo::Mod:
        PrintModRefResults("Just Mod", PrintMod, Call, Pointer, F.getParent());
        ++ModCount;
        break;
      case ModRefInfo::Ref:
        PrintModRefResults("Just Ref", PrintRef, Call, Pointer, F.getParent());
        ++RefCount;
        break;
      case ModRefInfo::ModRef:
        PrintModRefResults("Both ModRef", PrintModRef, Call, Pointer,
                           F.getParent());
        ++ModRefCount;
        break;
      case ModRefInfo::Must:
        PrintModRefResults("Must", PrintMust, Call, Pointer, F.getParent());
        ++MustCount;
        break;
      case ModRefInfo::MustMod:
        PrintModRefResults("Just Mod (MustAlias)", PrintMustMod, Call, Pointer,
                           F.getParent());
        ++MustModCount;
        break;
      case ModRefInfo::MustRef:
        PrintModRefResults("Just Ref (MustAlias)", PrintMustRef, Call, Pointer,
                           F.getParent());
        ++MustRefCount;
        break;
      case ModRefInfo::MustModRef:
        PrintModRefResults("Both ModRef (MustAlias)", PrintMustModRef, Call,
                           Pointer, F.getParent());
        ++MustModRefCount;
        break;
      }
    }
  }

  // Mod/ref alias analysis: compare all pairs of calls
  for (CallBase *CallA : Calls) {
    for (CallBase *CallB : Calls) {
      if (CallA == CallB)
        continue;
      switch (AA.getModRefInfo(CallA, CallB)) {
      case ModRefInfo::NoModRef:
        PrintModRefResults("NoModRef", PrintNoModRef, CallA, CallB,
                           F.getParent());
        ++NoModRefCount;
        break;
      case ModRefInfo::Mod:
        PrintModRefResults("Just Mod", PrintMod, CallA, CallB, F.getParent());
        ++ModCount;
        break;
      case ModRefInfo::Ref:
        PrintModRefResults("Just Ref", PrintRef, CallA, CallB, F.getParent());
        ++RefCount;
        break;
      case ModRefInfo::ModRef:
        PrintModRefResults("Both ModRef", PrintModRef, CallA, CallB,
                           F.getParent());
        ++ModRefCount;
        break;
      case ModRefInfo::Must:
        PrintModRefResults("Must", PrintMust, CallA, CallB, F.getParent());
        ++MustCount;
        break;
      case ModRefInfo::MustMod:
        PrintModRefResults("Just Mod (MustAlias)", PrintMustMod, CallA, CallB,
                           F.getParent());
        ++MustModCount;
        break;
      case ModRefInfo::MustRef:
        PrintModRefResults("Just Ref (MustAlias)", PrintMustRef, CallA, CallB,
                           F.getParent());
        ++MustRefCount;
        break;
      case ModRefInfo::MustModRef:
        PrintModRefResults("Both ModRef (MustAlias)", PrintMustModRef, CallA,
                           CallB, F.getParent());
        ++MustModRefCount;
        break;
      }
    }
  }
}
Exemple #22
0
//
// runMCDesc - Print out MC register descriptions.
//
void
RegisterInfoEmitter::runMCDesc(raw_ostream &OS, CodeGenTarget &Target,
                               CodeGenRegBank &RegBank) {
    EmitSourceFileHeader("MC Register Information", OS);

    OS << "\n#ifdef GET_REGINFO_MC_DESC\n";
    OS << "#undef GET_REGINFO_MC_DESC\n";

    std::map<const CodeGenRegister*, CodeGenRegister::Set> Overlaps;
    RegBank.computeOverlaps(Overlaps);

    OS << "namespace llvm {\n\n";

    const std::string &TargetName = Target.getName();

    const std::vector<CodeGenRegister*> &Regs = RegBank.getRegisters();

    OS << "extern const uint16_t " << TargetName << "RegOverlaps[] = {\n";

    // Emit an overlap list for all registers.
    for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
        const CodeGenRegister *Reg = Regs[i];
        const CodeGenRegister::Set &O = Overlaps[Reg];
        // Move Reg to the front so TRI::getAliasSet can share the list.
        OS << "  /* " << Reg->getName() << "_Overlaps */ "
           << getQualifiedName(Reg->TheDef) << ", ";
        for (CodeGenRegister::Set::const_iterator I = O.begin(), E = O.end();
                I != E; ++I)
            if (*I != Reg)
                OS << getQualifiedName((*I)->TheDef) << ", ";
        OS << "0,\n";
    }
    OS << "};\n\n";

    OS << "extern const uint16_t " << TargetName << "SubRegsSet[] = {\n";
    // Emit the empty sub-registers list
    OS << "  /* Empty_SubRegsSet */ 0,\n";
    // Loop over all of the registers which have sub-registers, emitting the
    // sub-registers list to memory.
    for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
        const CodeGenRegister &Reg = *Regs[i];
        if (Reg.getSubRegs().empty())
            continue;
        // getSubRegs() orders by SubRegIndex. We want a topological order.
        SetVector<CodeGenRegister*> SR;
        Reg.addSubRegsPreOrder(SR, RegBank);
        OS << "  /* " << Reg.getName() << "_SubRegsSet */ ";
        for (unsigned j = 0, je = SR.size(); j != je; ++j)
            OS << getQualifiedName(SR[j]->TheDef) << ", ";
        OS << "0,\n";
    }
    OS << "};\n\n";

    OS << "extern const uint16_t " << TargetName << "SuperRegsSet[] = {\n";
    // Emit the empty super-registers list
    OS << "  /* Empty_SuperRegsSet */ 0,\n";
    // Loop over all of the registers which have super-registers, emitting the
    // super-registers list to memory.
    for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
        const CodeGenRegister &Reg = *Regs[i];
        const CodeGenRegister::SuperRegList &SR = Reg.getSuperRegs();
        if (SR.empty())
            continue;
        OS << "  /* " << Reg.getName() << "_SuperRegsSet */ ";
        for (unsigned j = 0, je = SR.size(); j != je; ++j)
            OS << getQualifiedName(SR[j]->TheDef) << ", ";
        OS << "0,\n";
    }
    OS << "};\n\n";

    OS << "extern const MCRegisterDesc " << TargetName
       << "RegDesc[] = { // Descriptors\n";
    OS << "  { \"NOREG\", 0, 0, 0 },\n";

    // Now that register alias and sub-registers sets have been emitted, emit the
    // register descriptors now.
    unsigned OverlapsIndex = 0;
    unsigned SubRegIndex = 1; // skip 1 for empty set
    unsigned SuperRegIndex = 1; // skip 1 for empty set
    for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
        const CodeGenRegister *Reg = Regs[i];
        OS << "  { \"";
        OS << Reg->getName() << "\", /* " << Reg->getName() << "_Overlaps */ "
           << OverlapsIndex << ", ";
        OverlapsIndex += Overlaps[Reg].size() + 1;
        if (!Reg->getSubRegs().empty()) {
            OS << "/* " << Reg->getName() << "_SubRegsSet */ " << SubRegIndex
               << ", ";
            // FIXME not very nice to recalculate this
            SetVector<CodeGenRegister*> SR;
            Reg->addSubRegsPreOrder(SR, RegBank);
            SubRegIndex += SR.size() + 1;
        } else
            OS << "/* Empty_SubRegsSet */ 0, ";
        if (!Reg->getSuperRegs().empty()) {
            OS << "/* " << Reg->getName() << "_SuperRegsSet */ " << SuperRegIndex;
            SuperRegIndex += Reg->getSuperRegs().size() + 1;
        } else
            OS << "/* Empty_SuperRegsSet */ 0";
        OS << " },\n";
    }
    OS << "};\n\n";      // End of register descriptors...

    ArrayRef<CodeGenRegisterClass*> RegisterClasses = RegBank.getRegClasses();

    // Loop over all of the register classes... emitting each one.
    OS << "namespace {     // Register classes...\n";

    // Emit the register enum value arrays for each RegisterClass
    for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
        const CodeGenRegisterClass &RC = *RegisterClasses[rc];
        ArrayRef<Record*> Order = RC.getOrder();

        // Give the register class a legal C name if it's anonymous.
        std::string Name = RC.getName();

        // Emit the register list now.
        OS << "  // " << Name << " Register Class...\n"
           << "  const uint16_t " << Name
           << "[] = {\n    ";
        for (unsigned i = 0, e = Order.size(); i != e; ++i) {
            Record *Reg = Order[i];
            OS << getQualifiedName(Reg) << ", ";
        }
        OS << "\n  };\n\n";

        OS << "  // " << Name << " Bit set.\n"
           << "  const uint8_t " << Name
           << "Bits[] = {\n    ";
        BitVectorEmitter BVE;
        for (unsigned i = 0, e = Order.size(); i != e; ++i) {
            Record *Reg = Order[i];
            BVE.add(Target.getRegBank().getReg(Reg)->EnumValue);
        }
        BVE.print(OS);
        OS << "\n  };\n\n";

    }
    OS << "}\n\n";

    OS << "extern const MCRegisterClass " << TargetName
       << "MCRegisterClasses[] = {\n";

    for (unsigned rc = 0, e = RegisterClasses.size(); rc != e; ++rc) {
        const CodeGenRegisterClass &RC = *RegisterClasses[rc];

        // Asserts to make sure values will fit in table assuming types from
        // MCRegisterInfo.h
        assert((RC.SpillSize/8) <= 0xffff && "SpillSize too large.");
        assert((RC.SpillAlignment/8) <= 0xffff && "SpillAlignment too large.");
        assert(RC.CopyCost >= -128 && RC.CopyCost <= 127 && "Copy cost too large.");

        OS << "  { " << '\"' << RC.getName() << "\", "
           << RC.getName() << ", " << RC.getName() << "Bits, "
           << RC.getOrder().size() << ", sizeof(" << RC.getName() << "Bits), "
           << RC.getQualifiedName() + "RegClassID" << ", "
           << RC.SpillSize/8 << ", "
           << RC.SpillAlignment/8 << ", "
           << RC.CopyCost << ", "
           << RC.Allocatable << " },\n";
    }

    OS << "};\n\n";

    // Emit the data table for getSubReg().
    ArrayRef<CodeGenSubRegIndex*> SubRegIndices = RegBank.getSubRegIndices();
    if (SubRegIndices.size()) {
        OS << "const uint16_t " << TargetName << "SubRegTable[]["
           << SubRegIndices.size() << "] = {\n";
        for (unsigned i = 0, e = Regs.size(); i != e; ++i) {
            const CodeGenRegister::SubRegMap &SRM = Regs[i]->getSubRegs();
            OS << "  /* " << Regs[i]->TheDef->getName() << " */\n";
            if (SRM.empty()) {
                OS << "  {0},\n";
                continue;
            }
            OS << "  {";
            for (unsigned j = 0, je = SubRegIndices.size(); j != je; ++j) {
                // FIXME: We really should keep this to 80 columns...
                CodeGenRegister::SubRegMap::const_iterator SubReg =
                    SRM.find(SubRegIndices[j]);
                if (SubReg != SRM.end())
                    OS << getQualifiedName(SubReg->second->TheDef);
                else
                    OS << "0";
                if (j != je - 1)
                    OS << ", ";
            }
            OS << "}" << (i != e ? "," : "") << "\n";
        }
        OS << "};\n\n";
        OS << "const uint16_t *get" << TargetName
           << "SubRegTable() {\n  return (const uint16_t *)" << TargetName
           << "SubRegTable;\n}\n\n";
    }

    // MCRegisterInfo initialization routine.
    OS << "static inline void Init" << TargetName
       << "MCRegisterInfo(MCRegisterInfo *RI, unsigned RA, "
       << "unsigned DwarfFlavour = 0, unsigned EHFlavour = 0) {\n";
    OS << "  RI->InitMCRegisterInfo(" << TargetName << "RegDesc, "
       << Regs.size()+1 << ", RA, " << TargetName << "MCRegisterClasses, "
       << RegisterClasses.size() << ", " << TargetName << "RegOverlaps, "
       << TargetName << "SubRegsSet, " << TargetName << "SuperRegsSet, ";
    if (SubRegIndices.size() != 0)
        OS << "(uint16_t*)" << TargetName << "SubRegTable, "
           << SubRegIndices.size() << ");\n\n";
    else
        OS << "NULL, 0);\n\n";

    EmitRegMapping(OS, Regs, false);

    OS << "}\n\n";

    OS << "} // End llvm namespace \n";
    OS << "#endif // GET_REGINFO_MC_DESC\n\n";
}
Exemple #23
0
bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
                                 MachineBasicBlock &MBB, BitVector &DefOnEntry,
                                 BitVector &UndefOnEntry) {
  unsigned BN = MBB.getNumber();
  if (DefOnEntry[BN])
    return true;
  if (UndefOnEntry[BN])
    return false;

  auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
    for (MachineBasicBlock *S : B.successors())
      DefOnEntry[S->getNumber()] = true;
    DefOnEntry[BN] = true;
    return true;
  };

  SetVector<unsigned> WorkList;
  // Checking if the entry of MBB is reached by some def: add all predecessors
  // that are potentially defined-on-exit to the work list.
  for (MachineBasicBlock *P : MBB.predecessors())
    WorkList.insert(P->getNumber());

  for (unsigned i = 0; i != WorkList.size(); ++i) {
    // Determine if the exit from the block is reached by some def.
    unsigned N = WorkList[i];
    MachineBasicBlock &B = *MF->getBlockNumbered(N);
    if (Seen[N]) {
      const LiveOutPair &LOB = Map[&B];
      if (LOB.first != nullptr && LOB.first != &UndefVNI)
        return MarkDefined(B);
    }
    SlotIndex Begin, End;
    std::tie(Begin, End) = Indexes->getMBBRange(&B);
    // Treat End as not belonging to B.
    // If LR has a segment S that starts at the next block, i.e. [End, ...),
    // std::upper_bound will return the segment following S. Instead,
    // S should be treated as the first segment that does not overlap B.
    LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(),
                                              End.getPrevSlot());
    if (UB != LR.begin()) {
      LiveRange::Segment &Seg = *std::prev(UB);
      if (Seg.end > Begin) {
        // There is a segment that overlaps B. If the range is not explicitly
        // undefined between the end of the segment and the end of the block,
        // treat the block as defined on exit. If it is, go to the next block
        // on the work list.
        if (LR.isUndefIn(Undefs, Seg.end, End))
          continue;
        return MarkDefined(B);
      }
    }

    // No segment overlaps with this block. If this block is not defined on
    // entry, or it undefines the range, do not process its predecessors.
    if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
      UndefOnEntry[N] = true;
      continue;
    }
    if (DefOnEntry[N])
      return MarkDefined(B);

    // Still don't know: add all predecessors to the work list.
    for (MachineBasicBlock *P : B.predecessors())
      WorkList.insert(P->getNumber());
  }

  UndefOnEntry[BN] = true;
  return false;
}
Exemple #24
0
void Liveness::computePhiInfo() {
  RealUseMap.clear();

  NodeList Phis;
  NodeAddr<FuncNode*> FA = DFG.getFunc();
  NodeList Blocks = FA.Addr->members(DFG);
  for (NodeAddr<BlockNode*> BA : Blocks) {
    auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
    Phis.insert(Phis.end(), Ps.begin(), Ps.end());
  }

  // phi use -> (map: reaching phi -> set of registers defined in between)
  std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
  std::vector<NodeId> PhiUQ;  // Work list of phis for upward propagation.

  // Go over all phis.
  for (NodeAddr<PhiNode*> PhiA : Phis) {
    // Go over all defs and collect the reached uses that are non-phi uses
    // (i.e. the "real uses").
    RefMap &RealUses = RealUseMap[PhiA.Id];
    NodeList PhiRefs = PhiA.Addr->members(DFG);

    // Have a work queue of defs whose reached uses need to be found.
    // For each def, add to the queue all reached (non-phi) defs.
    SetVector<NodeId> DefQ;
    NodeSet PhiDefs;
    for (NodeAddr<RefNode*> R : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Def>(R))
        continue;
      DefQ.insert(R.Id);
      PhiDefs.insert(R.Id);
    }

    // Collect the super-set of all possible reached uses. This set will
    // contain all uses reached from this phi, either directly from the
    // phi defs, or (recursively) via non-phi defs reached by the phi defs.
    // This set of uses will later be trimmed to only contain these uses that
    // are actually reached by the phi defs.
    for (unsigned i = 0; i < DefQ.size(); ++i) {
      NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
      // Visit all reached uses. Phi defs should not really have the "dead"
      // flag set, but check it anyway for consistency.
      bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
      NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
      while (UN != 0) {
        NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
        uint16_t F = A.Addr->getFlags();
        if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
          RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
          RealUses[R.Reg].insert({A.Id,R.Mask});
        }
        UN = A.Addr->getSibling();
      }
      // Visit all reached defs, and add them to the queue. These defs may
      // override some of the uses collected here, but that will be handled
      // later.
      NodeId DN = DA.Addr->getReachedDef();
      while (DN != 0) {
        NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
        for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
          uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
          // Must traverse the reached-def chain. Consider:
          //   def(D0) -> def(R0) -> def(R0) -> use(D0)
          // The reachable use of D0 passes through a def of R0.
          if (!(Flags & NodeAttrs::PhiRef))
            DefQ.insert(T.Id);
        }
        DN = A.Addr->getSibling();
      }
    }
    // Filter out these uses that appear to be reachable, but really
    // are not. For example:
    //
    // R1:0 =          d1
    //      = R1:0     u2     Reached by d1.
    //   R0 =          d3
    //      = R1:0     u4     Still reached by d1: indirectly through
    //                        the def d3.
    //   R1 =          d5
    //      = R1:0     u6     Not reached by d1 (covered collectively
    //                        by d3 and d5), but following reached
    //                        defs and uses from d1 will lead here.
    auto InPhiDefs = [&PhiDefs] (NodeAddr<DefNode*> DA) -> bool {
      return PhiDefs.count(DA.Id);
    };
    for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
      // For each reached register UI->first, there is a set UI->second, of
      // uses of it. For each such use, check if it is reached by this phi,
      // i.e. check if the set of its reaching uses intersects the set of
      // this phi's defs.
      NodeRefSet &Uses = UI->second;
      for (auto I = Uses.begin(), E = Uses.end(); I != E; ) {
        auto UA = DFG.addr<UseNode*>(I->first);
        // Undef flag is checked above.
        assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
        RegisterRef R(UI->first, I->second);
        NodeList RDs = getAllReachingDefs(R, UA);
        // If none of the reaching defs of R are from this phi, remove this
        // use of R.
        I = any_of(RDs, InPhiDefs) ? std::next(I) : Uses.erase(I);
      }
      UI = Uses.empty() ? RealUses.erase(UI) : std::next(UI);
    }

    // If this phi reaches some "real" uses, add it to the queue for upward
    // propagation.
    if (!RealUses.empty())
      PhiUQ.push_back(PhiA.Id);

    // Go over all phi uses and check if the reaching def is another phi.
    // Collect the phis that are among the reaching defs of these uses.
    // While traversing the list of reaching defs for each phi use, accumulate
    // the set of registers defined between this phi (PhiA) and the owner phi
    // of the reaching def.
    NodeSet SeenUses;

    for (auto I : PhiRefs) {
      if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
        continue;
      NodeAddr<PhiUseNode*> PUA = I;
      if (PUA.Addr->getReachingDef() == 0)
        continue;

      RegisterRef UR = PUA.Addr->getRegRef(DFG);
      NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
      RegisterAggr DefRRs(PRI);

      for (NodeAddr<DefNode*> D : Ds) {
        if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
          NodeId RP = D.Addr->getOwner(DFG).Id;
          std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
          auto F = M.find(RP);
          if (F == M.end())
            M.insert(std::make_pair(RP, DefRRs));
          else
            F->second.insert(DefRRs);
        }
        DefRRs.insert(D.Addr->getRegRef(DFG));
      }

      for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
        SeenUses.insert(T.Id);
    }
  }

  if (Trace) {
    dbgs() << "Phi-up-to-phi map with intervening defs:\n";
    for (auto I : PhiUp) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
      for (auto R : I.second)
        dbgs() << ' ' << Print<NodeId>(R.first, DFG)
               << Print<RegisterAggr>(R.second, DFG);
      dbgs() << " }\n";
    }
  }

  // Propagate the reached registers up in the phi chain.
  //
  // The following type of situation needs careful handling:
  //
  //   phi d1<R1:0>  (1)
  //        |
  //   ... d2<R1>
  //        |
  //   phi u3<R1:0>  (2)
  //        |
  //   ... u4<R1>
  //
  // The phi node (2) defines a register pair R1:0, and reaches a "real"
  // use u4 of just R1. The same phi node is also known to reach (upwards)
  // the phi node (1). However, the use u4 is not reached by phi (1),
  // because of the intervening definition d2 of R1. The data flow between
  // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
  //
  // When propagating uses up the phi chains, get the all reaching defs
  // for a given phi use, and traverse the list until the propagated ref
  // is covered, or until reaching the final phi. Only assume that the
  // reference reaches the phi in the latter case.

  for (unsigned i = 0; i < PhiUQ.size(); ++i) {
    auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
    NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
    RefMap &RUM = RealUseMap[PA.Id];

    for (NodeAddr<UseNode*> UA : PUs) {
      std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
      RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
      for (const std::pair<NodeId,RegisterAggr> &P : PUM) {
        bool Changed = false;
        const RegisterAggr &MidDefs = P.second;

        // Collect the set PropUp of uses that are reached by the current
        // phi PA, and are not covered by any intervening def between the
        // currently visited use UA and the the upward phi P.

        if (MidDefs.hasCoverOf(UR))
          continue;

        // General algorithm:
        //   for each (R,U) : U is use node of R, U is reached by PA
        //     if MidDefs does not cover (R,U)
        //       then add (R-MidDefs,U) to RealUseMap[P]
        //
        for (const std::pair<RegisterId,NodeRefSet> &T : RUM) {
          RegisterRef R = DFG.restrictRef(RegisterRef(T.first), UR);
          if (!R)
            continue;
          for (std::pair<NodeId,LaneBitmask> V : T.second) {
            RegisterRef S = DFG.restrictRef(RegisterRef(R.Reg, V.second), R);
            if (!S)
              continue;
            if (RegisterRef SS = MidDefs.clearIn(S)) {
              NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
              Changed |= RS.insert({V.first,SS.Mask}).second;
            }
          }
        }

        if (Changed)
          PhiUQ.push_back(P.first);
      }
    }
  }

  if (Trace) {
    dbgs() << "Real use map:\n";
    for (auto I : RealUseMap) {
      dbgs() << "phi " << Print<NodeId>(I.first, DFG);
      NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
      NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
      if (!Ds.empty()) {
        RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
        dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
      } else {
        dbgs() << "<noreg>";
      }
      dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
    }
  }
}
Exemple #25
0
void PTXGenerator::createSubfunction(SetVector<Value *> &UsedValues,
                                     SetVector<Value *> &OriginalIVS,
                                     PTXGenerator::ValueToValueMapTy &VMap,
                                     Function **SubFunction) {
  Function *FN = createSubfunctionDefinition(UsedValues.size());
  Module *M = getModule();
  LLVMContext &Context = FN->getContext();
  IntegerType *Ty = Builder.getInt64Ty();

  // Store the previous basic block.
  BasicBlock *PrevBB = Builder.GetInsertBlock();

  // Create basic blocks.
  BasicBlock *HeaderBB = BasicBlock::Create(Context, "ptx.setup", FN);
  BasicBlock *ExitBB = BasicBlock::Create(Context, "ptx.exit", FN);
  BasicBlock *BodyBB = BasicBlock::Create(Context, "ptx.loop_body", FN);

  DominatorTree &DT = P->getAnalysis<DominatorTree>();
  DT.addNewBlock(HeaderBB, PrevBB);
  DT.addNewBlock(ExitBB, HeaderBB);
  DT.addNewBlock(BodyBB, HeaderBB);

  Builder.SetInsertPoint(HeaderBB);

  // Insert VMap items with maps of array base address on the host to base
  // address on the device.
  Function::arg_iterator AI = FN->arg_begin();
  for (unsigned j = 0; j < UsedValues.size(); j++) {
    Value *BaseAddr = UsedValues[j];
    Type *ArrayTy = BaseAddr->getType();
    Value *Param = Builder.CreateBitCast(AI, ArrayTy);
    VMap.insert(std::make_pair<Value *, Value *>(BaseAddr, Param));
    AI++;
  }

  // FIXME: These intrinsics should be inserted on-demand. However, we insert
  // them all currently for simplicity.
  Function *GetNctaidX =
      Intrinsic::getDeclaration(M, Intrinsic::ptx_read_nctaid_x);
  Function *GetNctaidY =
      Intrinsic::getDeclaration(M, Intrinsic::ptx_read_nctaid_y);
  Function *GetCtaidX =
      Intrinsic::getDeclaration(M, Intrinsic::ptx_read_ctaid_x);
  Function *GetCtaidY =
      Intrinsic::getDeclaration(M, Intrinsic::ptx_read_ctaid_y);
  Function *GetNtidX = Intrinsic::getDeclaration(M, Intrinsic::ptx_read_ntid_x);
  Function *GetNtidY = Intrinsic::getDeclaration(M, Intrinsic::ptx_read_ntid_y);
  Function *GetTidX = Intrinsic::getDeclaration(M, Intrinsic::ptx_read_tid_x);
  Function *GetTidY = Intrinsic::getDeclaration(M, Intrinsic::ptx_read_tid_y);

  Value *GridWidth = Builder.CreateCall(GetNctaidX);
  GridWidth = Builder.CreateIntCast(GridWidth, Ty, false);
  Value *GridHeight = Builder.CreateCall(GetNctaidY);
  GridHeight = Builder.CreateIntCast(GridHeight, Ty, false);
  Value *BlockWidth = Builder.CreateCall(GetNtidX);
  BlockWidth = Builder.CreateIntCast(BlockWidth, Ty, false);
  Value *BlockHeight = Builder.CreateCall(GetNtidY);
  BlockHeight = Builder.CreateIntCast(BlockHeight, Ty, false);
  Value *BIDx = Builder.CreateCall(GetCtaidX);
  BIDx = Builder.CreateIntCast(BIDx, Ty, false);
  Value *BIDy = Builder.CreateCall(GetCtaidY);
  BIDy = Builder.CreateIntCast(BIDy, Ty, false);
  Value *TIDx = Builder.CreateCall(GetTidX);
  TIDx = Builder.CreateIntCast(TIDx, Ty, false);
  Value *TIDy = Builder.CreateCall(GetTidY);
  TIDy = Builder.CreateIntCast(TIDy, Ty, false);

  Builder.CreateBr(BodyBB);
  Builder.SetInsertPoint(BodyBB);

  unsigned NumDims = OriginalIVS.size();
  std::vector<Value *> Substitutions;
  Value *BlockID, *ThreadID;
  switch (NumDims) {
  case 1: {
    Value *BlockSize =
        Builder.CreateMul(BlockWidth, BlockHeight, "p_gpu_blocksize");
    BlockID = Builder.CreateMul(BIDy, GridWidth, "p_gpu_index_i");
    BlockID = Builder.CreateAdd(BlockID, BIDx);
    BlockID = Builder.CreateMul(BlockID, BlockSize);
    ThreadID = Builder.CreateMul(TIDy, BlockWidth, "p_gpu_index_j");
    ThreadID = Builder.CreateAdd(ThreadID, TIDx);
    ThreadID = Builder.CreateAdd(ThreadID, BlockID);
    Substitutions.push_back(ThreadID);
    break;
  }
  case 2: {
    BlockID = Builder.CreateMul(BIDy, GridWidth, "p_gpu_index_i");
    BlockID = Builder.CreateAdd(BlockID, BIDx);
    Substitutions.push_back(BlockID);
    ThreadID = Builder.CreateMul(TIDy, BlockWidth, "p_gpu_index_j");
    ThreadID = Builder.CreateAdd(ThreadID, TIDx);
    Substitutions.push_back(ThreadID);
    break;
  }
  case 3: {
    BlockID = Builder.CreateMul(BIDy, GridWidth, "p_gpu_index_i");
    BlockID = Builder.CreateAdd(BlockID, BIDx);
    Substitutions.push_back(BlockID);
    Substitutions.push_back(TIDy);
    Substitutions.push_back(TIDx);
    break;
  }
  case 4: {
    Substitutions.push_back(BIDy);
    Substitutions.push_back(BIDx);
    Substitutions.push_back(TIDy);
    Substitutions.push_back(TIDx);
    break;
  }
  default:
    assert(true &&
           "We cannot transform parallel loops whose depth is larger than 4.");
    return;
  }

  assert(OriginalIVS.size() == Substitutions.size() &&
         "The size of IVS should be equal to the size of substitutions.");
  for (unsigned i = 0; i < OriginalIVS.size(); ++i) {
    VMap.insert(
        std::make_pair<Value *, Value *>(OriginalIVS[i], Substitutions[i]));
  }

  Builder.CreateBr(ExitBB);
  Builder.SetInsertPoint(--Builder.GetInsertPoint());
  BasicBlock::iterator LoopBody = Builder.GetInsertPoint();

  // Add the termination of the ptx-device subfunction.
  Builder.SetInsertPoint(ExitBB);
  Builder.CreateRetVoid();

  Builder.SetInsertPoint(LoopBody);
  *SubFunction = FN;
}