static void lookNearEnd(const SkDQuad& q1, const SkDQuad& q2, int testT,
        const SkIntersections& orig, bool swap, SkIntersections* i) {
    if (orig.used() == 1 && orig[!swap][0] == testT) {
        return;
    }
    if (orig.used() == 2 && orig[!swap][1] == testT) {
        return;
    }
    SkDLine tmpLine;
    int testTIndex = testT << 1;
    tmpLine[0] = tmpLine[1] = q2[testTIndex];
    tmpLine[1].fX += q2[1].fY - q2[testTIndex].fY;
    tmpLine[1].fY -= q2[1].fX - q2[testTIndex].fX;
    SkIntersections impTs;
    impTs.intersectRay(q1, tmpLine);
    for (int index = 0; index < impTs.used(); ++index) {
        SkDPoint realPt = impTs.pt(index);
        if (!tmpLine[0].approximatelyEqualHalf(realPt)) {
            continue;
        }
        if (swap) {
            i->insert(testT, impTs[0][index], tmpLine[0]);
        } else {
            i->insert(impTs[0][index], testT, tmpLine[0]);
        }
    }
}
static void oneOff(skiatest::Reporter* reporter, const SkDConic& c1, const SkDConic& c2,
        bool coin) {
#if DEBUG_VISUALIZE_CONICS
    writeFrames();
#endif
    chopBothWays(c1, 0.5, "c1");
    chopBothWays(c2, 0.5, "c2");
#if DEBUG_VISUALIZE_CONICS
    writeDPng(c1, "d1");
    writeDPng(c2, "d2");
#endif
    SkASSERT(ValidConic(c1));
    SkASSERT(ValidConic(c2));
    SkIntersections intersections;
    intersections.intersect(c1, c2);
    if (coin && intersections.used() != 2) {
        SkDebugf("");
    }
    REPORTER_ASSERT(reporter, !coin || intersections.used() == 2);
    double tt1, tt2;
    SkDPoint xy1, xy2;
    for (int pt3 = 0; pt3 < intersections.used(); ++pt3) {
        tt1 = intersections[0][pt3];
        xy1 = c1.ptAtT(tt1);
        tt2 = intersections[1][pt3];
        xy2 = c2.ptAtT(tt2);
        const SkDPoint& iPt = intersections.pt(pt3);
        REPORTER_ASSERT(reporter, xy1.approximatelyEqual(iPt));
        REPORTER_ASSERT(reporter, xy2.approximatelyEqual(iPt));
        REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2));
    }
    reporter->bumpTestCount();
}
static double testArc(skiatest::Reporter* reporter, const SkDQuad& quad, const SkDQuad& arcRef,
        int octant) {
    SkDQuad arc = arcRef;
    SkDVector offset = {quad[0].fX, quad[0].fY};
    arc[0] += offset;
    arc[1] += offset;
    arc[2] += offset;
    SkIntersections i;
    i.intersect(arc, quad);
    if (i.used() == 0) {
        return -1;
    }
    int smallest = -1;
    double t = 2;
    for (int idx = 0; idx < i.used(); ++idx) {
        if (i[0][idx] > 1 || i[0][idx] < 0) {
            i.reset();
            i.intersect(arc, quad);
        }
        if (i[1][idx] > 1 || i[1][idx] < 0) {
            i.reset();
            i.intersect(arc, quad);
        }
        if (t > i[1][idx]) {
            smallest = idx;
            t = i[1][idx];
        }
    }
    REPORTER_ASSERT(reporter, smallest >= 0);
    REPORTER_ASSERT(reporter, t >= 0 && t <= 1);
    return i[1][smallest];
}
SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
    SkASSERT(t1 != t2);
    SkDPoint b;
    SkDQuad sub = subDivide(t1, t2);
    SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
    SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
    SkIntersections i;
    i.intersectRay(b0, b1);
    if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) {
        b = i.pt(0);
    } else {
        SkASSERT(i.used() <= 2);
        b = SkDPoint::Mid(b0[1], b1[1]);
    }
    if (t1 == 0 || t2 == 0) {
        align(0, &b);
    }
    if (t1 == 1 || t2 == 1) {
        align(2, &b);
    }
    if (AlmostBequalUlps(b.fX, a.fX)) {
        b.fX = a.fX;
    } else if (AlmostBequalUlps(b.fX, c.fX)) {
        b.fX = c.fX;
    }
    if (AlmostBequalUlps(b.fY, a.fY)) {
        b.fY = a.fY;
    } else if (AlmostBequalUlps(b.fY, c.fY)) {
        b.fY = c.fY;
    }
    return b;
}
DEF_TEST(PathOpsAngleFindQuadEpsilon, reporter) {
    if (gDisableAngleTests) {
        return;
    }
    SkRandom ran;
    int maxEpsilon = 0;
    double maxAngle = 0;
    for (int index = 0; index < 100000; ++index) {
        SkDLine line = {{{0, 0}, {ran.nextRangeF(0.0001f, 1000), ran.nextRangeF(0.0001f, 1000)}}};
        float t = ran.nextRangeF(0.0001f, 1);
        SkDPoint dPt = line.ptAtT(t);
        float t2 = ran.nextRangeF(0.0001f, 1);
        SkDPoint qPt = line.ptAtT(t2);
        float t3 = ran.nextRangeF(0.0001f, 1);
        SkDPoint qPt2 = line.ptAtT(t3);
        qPt.fX += qPt2.fY;
        qPt.fY -= qPt2.fX;
        SkDQuad quad = {{line[0], dPt, qPt}};
        // binary search for maximum movement of quad[1] towards test that still has 1 intersection
        double moveT = 0.5f;
        double deltaT = moveT / 2;
        SkDPoint last;
        do {
            last = quad[1];
            quad[1].fX = dPt.fX - line[1].fY * moveT;
            quad[1].fY = dPt.fY + line[1].fX * moveT;
            SkIntersections i;
            i.intersect(quad, line);
            REPORTER_ASSERT(reporter, i.used() > 0);
            if (i.used() == 1) {
                moveT += deltaT;
            } else {
                moveT -= deltaT;
            }
            deltaT /= 2;
        } while (last.asSkPoint() != quad[1].asSkPoint());
        float p1 = SkDoubleToScalar(line[1].fX * last.fY);
        float p2 = SkDoubleToScalar(line[1].fY * last.fX);
        int p1Bits = SkFloatAs2sCompliment(p1);
        int p2Bits = SkFloatAs2sCompliment(p2);
        int epsilon = SkTAbs(p1Bits - p2Bits);
        if (maxEpsilon < epsilon) {
            SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g"
                    " pt={%1.7g, %1.7g} epsilon=%d\n",
                    line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, epsilon);
            maxEpsilon = epsilon;
        }
        double a1 = atan2(line[1].fY, line[1].fX);
        double a2 = atan2(last.fY, last.fX);
        double angle = fabs(a1 - a2);
        if (maxAngle < angle) {
            SkDebugf("line={{0, 0}, {%1.7g, %1.7g}} t=%1.7g/%1.7g/%1.7g moveT=%1.7g"
                    " pt={%1.7g, %1.7g} angle=%1.7g\n",
                    line[1].fX, line[1].fY, t, t2, t3, moveT, last.fX, last.fY, angle);
            maxAngle = angle;
        }
    }
}
static void oneOff(skiatest::Reporter* reporter, const SkDCubic& cubic1, const SkDCubic& cubic2,
        bool coin) {
    SkASSERT(ValidCubic(cubic1));
    SkASSERT(ValidCubic(cubic2));
#if ONE_OFF_DEBUG
    SkDebugf("computed quadratics given\n");
    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
        cubic1[0].fX, cubic1[0].fY, cubic1[1].fX, cubic1[1].fY,
        cubic1[2].fX, cubic1[2].fY, cubic1[3].fX, cubic1[3].fY);
    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
        cubic2[0].fX, cubic2[0].fY, cubic2[1].fX, cubic2[1].fY,
        cubic2[2].fX, cubic2[2].fY, cubic2[3].fX, cubic2[3].fY);
#endif
    SkTArray<SkDQuad, true> quads1;
    CubicToQuads(cubic1, cubic1.calcPrecision(), quads1);
#if ONE_OFF_DEBUG
    SkDebugf("computed quadratics set 1\n");
    for (int index = 0; index < quads1.count(); ++index) {
        const SkDQuad& q = quads1[index];
        SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", q[0].fX, q[0].fY,
                 q[1].fX, q[1].fY,  q[2].fX, q[2].fY);
    }
#endif
    SkTArray<SkDQuad, true> quads2;
    CubicToQuads(cubic2, cubic2.calcPrecision(), quads2);
#if ONE_OFF_DEBUG
    SkDebugf("computed quadratics set 2\n");
    for (int index = 0; index < quads2.count(); ++index) {
        const SkDQuad& q = quads2[index];
        SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n", q[0].fX, q[0].fY,
                 q[1].fX, q[1].fY,  q[2].fX, q[2].fY);
    }
#endif
    SkIntersections intersections;
    intersections.intersect(cubic1, cubic2);
    REPORTER_ASSERT(reporter, !coin || intersections.used() == 2);
    double tt1, tt2;
    SkDPoint xy1, xy2;
    for (int pt3 = 0; pt3 < intersections.used(); ++pt3) {
        tt1 = intersections[0][pt3];
        xy1 = cubic1.ptAtT(tt1);
        tt2 = intersections[1][pt3];
        xy2 = cubic2.ptAtT(tt2);
        const SkDPoint& iPt = intersections.pt(pt3);
#if ONE_OFF_DEBUG
        SkDebugf("%s t1=%1.9g (%1.9g, %1.9g) (%1.9g, %1.9g) (%1.9g, %1.9g) t2=%1.9g\n",
                __FUNCTION__, tt1, xy1.fX, xy1.fY, iPt.fX,
                iPt.fY, xy2.fX, xy2.fY, tt2);
#endif
       REPORTER_ASSERT(reporter, xy1.approximatelyEqual(iPt));
       REPORTER_ASSERT(reporter, xy2.approximatelyEqual(iPt));
       REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2));
    }
    reporter->bumpTestCount();
}
static void standardTestCases(skiatest::Reporter* reporter) {
    for (size_t index = firstCubicIntersectionTest; index < tests_count; ++index) {
        int iIndex = static_cast<int>(index);
        const CubicPts& cubic1 = tests[index][0];
        const CubicPts& cubic2 = tests[index][1];
        SkDCubic c1, c2;
        c1.debugSet(cubic1.fPts);
        c2.debugSet(cubic2.fPts);
        SkReduceOrder reduce1, reduce2;
        int order1 = reduce1.reduce(c1, SkReduceOrder::kNo_Quadratics);
        int order2 = reduce2.reduce(c2, SkReduceOrder::kNo_Quadratics);
        const bool showSkipped = false;
        if (order1 < 4) {
            if (showSkipped) {
                SkDebugf("%s [%d] cubic1 order=%d\n", __FUNCTION__, iIndex, order1);
            }
            continue;
        }
        if (order2 < 4) {
            if (showSkipped) {
                SkDebugf("%s [%d] cubic2 order=%d\n", __FUNCTION__, iIndex, order2);
            }
            continue;
        }
        SkIntersections tIntersections;
        tIntersections.intersect(c1, c2);
        if (!tIntersections.used()) {
            if (showSkipped) {
                SkDebugf("%s [%d] no intersection\n", __FUNCTION__, iIndex);
            }
            continue;
        }
        if (tIntersections.isCoincident(0)) {
            if (showSkipped) {
                SkDebugf("%s [%d] coincident\n", __FUNCTION__, iIndex);
            }
            continue;
        }
        for (int pt = 0; pt < tIntersections.used(); ++pt) {
            double tt1 = tIntersections[0][pt];
            SkDPoint xy1 = c1.ptAtT(tt1);
            double tt2 = tIntersections[1][pt];
            SkDPoint xy2 = c2.ptAtT(tt2);
            if (!xy1.approximatelyEqual(xy2)) {
                SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
                    __FUNCTION__, (int)index, pt, tt1, xy1.fX, xy1.fY, tt2, xy2.fX, xy2.fY);
            }
            REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2));
        }
        reporter->bumpTestCount();
    }
}
static void check_results(skiatest::Reporter* reporter, const SkDLine& line1, const SkDLine& line2,
                          const SkIntersections& ts) {
    for (int i = 0; i < ts.used(); ++i) {
        SkDPoint result1 = line1.ptAtT(ts[0][i]);
        SkDPoint result2 = line2.ptAtT(ts[1][i]);
        if (!result1.approximatelyEqual(result2)) {
            REPORTER_ASSERT(reporter, ts.used() != 1);
            result2 = line2.ptAtT(ts[1][i ^ 1]);
            REPORTER_ASSERT(reporter, result1.approximatelyEqual(result2));
            REPORTER_ASSERT(reporter, result1.approximatelyEqual(ts.pt(i).asSkPoint()));
        }
    }
}
static void oneOff(skiatest::Reporter* reporter, const CubicPts& cubic1, const CubicPts& cubic2,
        bool coin) {
    SkDCubic c1, c2;
    c1.debugSet(cubic1.fPts);
    c2.debugSet(cubic2.fPts);
    SkASSERT(ValidCubic(c1));
    SkASSERT(ValidCubic(c2));
#if ONE_OFF_DEBUG
    SkDebugf("computed quadratics given\n");
    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
        cubic1[0].fX, cubic1[0].fY, cubic1[1].fX, cubic1[1].fY,
        cubic1[2].fX, cubic1[2].fY, cubic1[3].fX, cubic1[3].fY);
    SkDebugf("  {{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}},\n",
        cubic2[0].fX, cubic2[0].fY, cubic2[1].fX, cubic2[1].fY,
        cubic2[2].fX, cubic2[2].fY, cubic2[3].fX, cubic2[3].fY);
#endif
    SkIntersections intersections;
    intersections.intersect(c1, c2);
#if DEBUG_T_SECT_DUMP == 3
    SkDebugf("</div>\n\n");
    SkDebugf("<script type=\"text/javascript\">\n\n");
    SkDebugf("var testDivs = [\n");
    for (int index = 1; index <= gDumpTSectNum; ++index) {
        SkDebugf("sect%d,\n", index);
    }
#endif
    if (coin && intersections.used() < 2) {
        SkDebugf("");
    }
    REPORTER_ASSERT(reporter, !coin || intersections.used() >= 2);
    double tt1, tt2;
    SkDPoint xy1, xy2;
    for (int pt3 = 0; pt3 < intersections.used(); ++pt3) {
        tt1 = intersections[0][pt3];
        xy1 = c1.ptAtT(tt1);
        tt2 = intersections[1][pt3];
        xy2 = c2.ptAtT(tt2);
        const SkDPoint& iPt = intersections.pt(pt3);
#if ONE_OFF_DEBUG
        SkDebugf("%s t1=%1.9g (%1.9g, %1.9g) (%1.9g, %1.9g) (%1.9g, %1.9g) t2=%1.9g\n",
                __FUNCTION__, tt1, xy1.fX, xy1.fY, iPt.fX,
                iPt.fY, xy2.fX, xy2.fY, tt2);
#endif
       REPORTER_ASSERT(reporter, xy1.approximatelyEqual(iPt));
       REPORTER_ASSERT(reporter, xy2.approximatelyEqual(iPt));
       REPORTER_ASSERT(reporter, xy1.approximatelyEqual(xy2));
    }
    reporter->bumpTestCount();
}
static void selfOneOff(skiatest::Reporter* reporter, int index) {
    const SkDCubic& cubic = selfSet[index];
#if ONE_OFF_DEBUG
    int idx2;
    double max[3];
    int ts = cubic.findMaxCurvature(max);
    for (idx2 = 0; idx2 < ts; ++idx2) {
        SkDebugf("%s max[%d]=%1.9g (%1.9g, %1.9g)\n", __FUNCTION__, idx2,
                max[idx2], cubic.ptAtT(max[idx2]).fX, cubic.ptAtT(max[idx2]).fY);
    }
    SkTArray<double, true> ts1;
    SkTArray<SkDQuad, true> quads1;
    cubic.toQuadraticTs(cubic.calcPrecision(), &ts1);
    for (idx2 = 0; idx2 < ts1.count(); ++idx2) {
        SkDebugf("%s t[%d]=%1.9g\n", __FUNCTION__, idx2, ts1[idx2]);
    }
    CubicToQuads(cubic, cubic.calcPrecision(), quads1);
    for (idx2 = 0; idx2 < quads1.count(); ++idx2) {
        const SkDQuad& q = quads1[idx2];
        SkDebugf("  {{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}},\n",
                q[0].fX, q[0].fY,  q[1].fX, q[1].fY,  q[2].fX, q[2].fY);
    }
    SkDebugf("\n");
#endif
    SkIntersections i;
    int result = i.intersect(cubic);
    REPORTER_ASSERT(reporter, result == 1);
    REPORTER_ASSERT(reporter, i.used() == 1);
    REPORTER_ASSERT(reporter, !approximately_equal(i[0][0], i[1][0]));
    SkDPoint pt1 = cubic.ptAtT(i[0][0]);
    SkDPoint pt2 = cubic.ptAtT(i[1][0]);
    REPORTER_ASSERT(reporter, pt1.approximatelyEqual(pt2));
    reporter->bumpTestCount();
}
static void selfOneOff(skiatest::Reporter* reporter, int index) {
    const CubicPts& cubic = selfSet[index];
    SkPoint c[4];
    for (int i = 0; i < 4; ++i) {
        c[i] = cubic.fPts[i].asSkPoint();
    }
    SkScalar loopT;
    SkScalar d[3];
    SkCubicType cubicType = SkClassifyCubic(c, d);
    if (SkDCubic::ComplexBreak(c, &loopT) && cubicType == SkCubicType::kLoop_SkCubicType) {
        SkIntersections i;
        SkPoint twoCubics[7];
        SkChopCubicAt(c, twoCubics, loopT);
        SkDCubic chopped[2];
        chopped[0].set(&twoCubics[0]);
        chopped[1].set(&twoCubics[3]);
        int result = i.intersect(chopped[0], chopped[1]);
        REPORTER_ASSERT(reporter, result == 2);
        REPORTER_ASSERT(reporter, i.used() == 2);
        for (int index = 0; index < result; ++index) {
            SkDPoint pt1 = chopped[0].ptAtT(i[0][index]);
            SkDPoint pt2 = chopped[1].ptAtT(i[1][index]);
            REPORTER_ASSERT(reporter, pt1.approximatelyEqual(pt2));
            reporter->bumpTestCount();
        }
    }
}
// intersect the end of the cubic with the other. Try lines from the end to control and opposite
// end to determine range of t on opposite cubic.
bool SkIntersections::cubicExactEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2) {
    int t1Index = start ? 0 : 3;
    double testT = (double) !start;
    bool swap = swapped();
    // quad/quad at this point checks to see if exact matches have already been found
    // cubic/cubic can't reject so easily since cubics can intersect same point more than once
    SkDLine tmpLine;
    tmpLine[0] = tmpLine[1] = cubic2[t1Index];
    tmpLine[1].fX += cubic2[2 - start].fY - cubic2[t1Index].fY;
    tmpLine[1].fY -= cubic2[2 - start].fX - cubic2[t1Index].fX;
    SkIntersections impTs;
    impTs.allowNear(false);
    impTs.intersectRay(cubic1, tmpLine);
    for (int index = 0; index < impTs.used(); ++index) {
        SkDPoint realPt = impTs.pt(index);
        if (!tmpLine[0].approximatelyEqual(realPt)) {
            continue;
        }
        if (swap) {
            cubicInsert(testT, impTs[0][index], tmpLine[0], cubic2, cubic1);
        } else {
            cubicInsert(impTs[0][index], testT, tmpLine[0], cubic1, cubic2);
        }
        return true;
    }
    return false;
}
Exemple #13
0
static int doIntersect(SkIntersections& intersections, const SkDQuad& quad, const SkDLine& line,
                       bool& flipped) {
    int result;
    flipped = false;
    if (line[0].fX == line[1].fX) {
        double top = line[0].fY;
        double bottom = line[1].fY;
        flipped = top > bottom;
        if (flipped) {
            using std::swap;
            swap(top, bottom);
        }
        result = intersections.vertical(quad, top, bottom, line[0].fX, flipped);
    } else if (line[0].fY == line[1].fY) {
        double left = line[0].fX;
        double right = line[1].fX;
        flipped = left > right;
        if (flipped) {
            using std::swap;
            swap(left, right);
        }
        result = intersections.horizontal(quad, left, right, line[0].fY, flipped);
    } else {
        intersections.intersect(quad, line);
        result = intersections.used();
    }
    return result;
}
static int doIntersect(SkIntersections& intersections, const SkDConic& conic, const SkDLine& line,
                       bool& flipped) {
    int result;
    flipped = false;
    if (line[0].fX == line[1].fX) {
        double top = line[0].fY;
        double bottom = line[1].fY;
        flipped = top > bottom;
        if (flipped) {
            SkTSwap<double>(top, bottom);
        }
        result = intersections.vertical(conic, top, bottom, line[0].fX, flipped);
    } else if (line[0].fY == line[1].fY) {
        double left = line[0].fX;
        double right = line[1].fX;
        flipped = left > right;
        if (flipped) {
            SkTSwap<double>(left, right);
        }
        result = intersections.horizontal(conic, left, right, line[0].fY, flipped);
    } else {
        intersections.intersect(conic, line);
        result = intersections.used();
    }
    return result;
}
static bool closeEnd(const SkDCubic& cubic, int cubicIndex, SkIntersections& i, SkDPoint& pt) {
    int last = i.used() - 1;
    if (i[cubicIndex][last] != 1 || i[cubicIndex][last - 1] < 1 - CLOSE_ENOUGH) {
        return false;
    }
    pt = cubic.xyAtT((i[cubicIndex][last] + i[cubicIndex][last - 1]) / 2);
    return true;
}
static void standardTestCases(skiatest::Reporter* reporter) {
    bool showSkipped = false;
    for (size_t index = 0; index < quadraticTests_count; ++index) {
        const SkDQuad& quad1 = quadraticTests[index][0];
        SkASSERT(ValidQuad(quad1));
        const SkDQuad& quad2 = quadraticTests[index][1];
        SkASSERT(ValidQuad(quad2));
        SkReduceOrder reduce1, reduce2;
        int order1 = reduce1.reduce(quad1);
        int order2 = reduce2.reduce(quad2);
        if (order1 < 3) {
            if (showSkipped) {
                SkDebugf("[%d] quad1 order=%d\n", static_cast<int>(index), order1);
            }
        }
        if (order2 < 3) {
            if (showSkipped) {
                SkDebugf("[%d] quad2 order=%d\n", static_cast<int>(index), order2);
            }
        }
        if (order1 == 3 && order2 == 3) {
            SkIntersections intersections;
            intersections.intersect(quad1, quad2);
            if (intersections.used() > 0) {
                for (int pt = 0; pt < intersections.used(); ++pt) {
                    double tt1 = intersections[0][pt];
                    SkDPoint xy1 = quad1.ptAtT(tt1);
                    double tt2 = intersections[1][pt];
                    SkDPoint xy2 = quad2.ptAtT(tt2);
                    if (!xy1.approximatelyEqual(xy2)) {
                        SkDebugf("%s [%d,%d] x!= t1=%g (%g,%g) t2=%g (%g,%g)\n",
                                __FUNCTION__, static_cast<int>(index), pt, tt1, xy1.fX, xy1.fY,
                                tt2, xy2.fX, xy2.fY);
                        REPORTER_ASSERT(reporter, 0);
                    }
                }
            }
        }
    }
}
SkDPoint SkDQuad::subDivide(const SkDPoint& a, const SkDPoint& c, double t1, double t2) const {
    SkASSERT(t1 != t2);
    SkDPoint b;
#if 0
    // this approach assumes that the control point computed directly is accurate enough
    double dx = interp_quad_coords(&fPts[0].fX, (t1 + t2) / 2);
    double dy = interp_quad_coords(&fPts[0].fY, (t1 + t2) / 2);
    b.fX = 2 * dx - (a.fX + c.fX) / 2;
    b.fY = 2 * dy - (a.fY + c.fY) / 2;
#else
    SkDQuad sub = subDivide(t1, t2);
    SkDLine b0 = {{a, sub[1] + (a - sub[0])}};
    SkDLine b1 = {{c, sub[1] + (c - sub[2])}};
    SkIntersections i;
    i.intersectRay(b0, b1);
    if (i.used() == 1 && i[0][0] >= 0 && i[1][0] >= 0) {
        b = i.pt(0);
    } else {
        SkASSERT(i.used() <= 2);
        b = SkDPoint::Mid(b0[1], b1[1]);
    }
#endif
    if (t1 == 0 || t2 == 0) {
        align(0, &b);
    }
    if (t1 == 1 || t2 == 1) {
        align(2, &b);
    }
    if (AlmostBequalUlps(b.fX, a.fX)) {
        b.fX = a.fX;
    } else if (AlmostBequalUlps(b.fX, c.fX)) {
        b.fX = c.fX;
    }
    if (AlmostBequalUlps(b.fY, a.fY)) {
        b.fY = a.fY;
    } else if (AlmostBequalUlps(b.fY, c.fY)) {
        b.fY = c.fY;
    }
    return b;
}
static void debugShowCubicIntersection(int pts, const SkIntersectionHelper& wt,
        const SkIntersections& i) {
    SkASSERT(i.used() == pts);
    if (!pts) {
        SkDebugf("%s no self intersect " CUBIC_DEBUG_STR "\n", __FUNCTION__,
                CUBIC_DEBUG_DATA(wt.pts()));
        return;
    }
    SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
            i[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
    SkDebugf(" " T_DEBUG_STR(wtTs, 1), i[1][0]);
    SkDebugf("\n");
}
DEF_TEST(PathOpsConicLineIntersection, reporter) {
    for (size_t index = 0; index < lineConicTests_count; ++index) {
        int iIndex = static_cast<int>(index);
        const SkDConic& conic = lineConicTests[index].conic;
        SkASSERT(ValidConic(conic));
        const SkDLine& line = lineConicTests[index].line;
        SkASSERT(ValidLine(line));
        SkReduceOrder reducer;
        SkPoint pts[3] = { conic.fPts.fPts[0].asSkPoint(), conic.fPts.fPts[1].asSkPoint(),
            conic.fPts.fPts[2].asSkPoint() };
        SkPoint reduced[3];
        SkPath::Verb order1 = SkReduceOrder::Conic(pts, conic.fWeight, reduced);
        if (order1 != SkPath::kConic_Verb) {
            SkDebugf("%s [%d] conic verb=%d\n", __FUNCTION__, iIndex, order1);
            REPORTER_ASSERT(reporter, 0);
        }
        int order2 = reducer.reduce(line);
        if (order2 < 2) {
            SkDebugf("%s [%d] line order=%d\n", __FUNCTION__, iIndex, order2);
            REPORTER_ASSERT(reporter, 0);
        }
        SkIntersections intersections;
        bool flipped = false;
        int result = doIntersect(intersections, conic, line, flipped);
        REPORTER_ASSERT(reporter, result == lineConicTests[index].result);
        if (intersections.used() <= 0) {
            continue;
        }
        for (int pt = 0; pt < result; ++pt) {
            double tt1 = intersections[0][pt];
            REPORTER_ASSERT(reporter, tt1 >= 0 && tt1 <= 1);
            SkDPoint t1 = conic.ptAtT(tt1);
            double tt2 = intersections[1][pt];
            REPORTER_ASSERT(reporter, tt2 >= 0 && tt2 <= 1);
            SkDPoint t2 = line.ptAtT(tt2);
            if (!t1.approximatelyEqual(t2)) {
                SkDebugf("%s [%d,%d] x!= t1=%1.9g (%1.9g,%1.9g) t2=%1.9g (%1.9g,%1.9g)\n",
                    __FUNCTION__, iIndex, pt, tt1, t1.fX, t1.fY, tt2, t2.fX, t2.fY);
                REPORTER_ASSERT(reporter, 0);
            }
            if (!t1.approximatelyEqual(lineConicTests[index].expected[0])
                    && (lineConicTests[index].result == 1
                    || !t1.approximatelyEqual(lineConicTests[index].expected[1]))) {
                SkDebugf("%s t1=(%1.9g,%1.9g)\n", __FUNCTION__, t1.fX, t1.fY);
                REPORTER_ASSERT(reporter, 0);
            }
        }
    }
}
Exemple #20
0
DEF_TEST(PathOpsQuadLineIntersection, reporter) {
    for (size_t index = 0; index < lineQuadTests_count; ++index) {
        int iIndex = static_cast<int>(index);
        const QuadPts& q = lineQuadTests[index].quad;
        SkDQuad quad;
        quad.debugSet(q.fPts);
        SkASSERT(ValidQuad(quad));
        const SkDLine& line = lineQuadTests[index].line;
        SkASSERT(ValidLine(line));
        SkReduceOrder reducer1, reducer2;
        int order1 = reducer1.reduce(quad);
        int order2 = reducer2.reduce(line);
        if (order1 < 3) {
            SkDebugf("%s [%d] quad order=%d\n", __FUNCTION__, iIndex, order1);
            REPORTER_ASSERT(reporter, 0);
        }
        if (order2 < 2) {
            SkDebugf("%s [%d] line order=%d\n", __FUNCTION__, iIndex, order2);
            REPORTER_ASSERT(reporter, 0);
        }
        SkIntersections intersections;
        bool flipped = false;
        int result = doIntersect(intersections, quad, line, flipped);
        REPORTER_ASSERT(reporter, result == lineQuadTests[index].result);
        if (intersections.used() <= 0) {
            continue;
        }
        for (int pt = 0; pt < result; ++pt) {
            double tt1 = intersections[0][pt];
            REPORTER_ASSERT(reporter, tt1 >= 0 && tt1 <= 1);
            SkDPoint t1 = quad.ptAtT(tt1);
            double tt2 = intersections[1][pt];
            REPORTER_ASSERT(reporter, tt2 >= 0 && tt2 <= 1);
            SkDPoint t2 = line.ptAtT(tt2);
            if (!t1.approximatelyEqual(t2)) {
                SkDebugf("%s [%d,%d] x!= t1=%1.9g (%1.9g,%1.9g) t2=%1.9g (%1.9g,%1.9g)\n",
                    __FUNCTION__, iIndex, pt, tt1, t1.fX, t1.fY, tt2, t2.fX, t2.fY);
                REPORTER_ASSERT(reporter, 0);
            }
            if (!t1.approximatelyEqual(lineQuadTests[index].expected[0])
                    && (lineQuadTests[index].result == 1
                    || !t1.approximatelyEqual(lineQuadTests[index].expected[1]))) {
                SkDebugf("%s t1=(%1.9g,%1.9g)\n", __FUNCTION__, t1.fX, t1.fY);
                REPORTER_ASSERT(reporter, 0);
            }
        }
    }
}
static void testOneCoincident(skiatest::Reporter* reporter, const SkDLine& line1,
                              const SkDLine& line2) {
    SkASSERT(ValidLine(line1));
    SkASSERT(ValidLine(line2));
    SkIntersections ts2;
    int pts2 = ts2.intersect(line1, line2);
    REPORTER_ASSERT(reporter, pts2 == 2);
    REPORTER_ASSERT(reporter, pts2 == ts2.used());
    check_results(reporter, line1, line2, ts2);
#if 0
    SkIntersections ts;
    int pts = ts.intersect(line1, line2);
    REPORTER_ASSERT(reporter, pts == pts2);
    REPORTER_ASSERT(reporter, pts == 2);
    REPORTER_ASSERT(reporter, pts == ts.used());
    check_results(reporter, line1, line2, ts);
#endif
}
static void debugShowLineIntersection(int pts, const SkIntersectionHelper& wt,
                                      const SkIntersectionHelper& wn, const SkIntersections& i) {
    SkASSERT(i.used() == pts);
    if (!pts) {
        SkDebugf("%s no intersect " LINE_DEBUG_STR " " LINE_DEBUG_STR "\n",
                __FUNCTION__, LINE_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts()));
        return;
    }
    SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " LINE_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
            i[0][0], LINE_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
    if (pts == 2) {
        SkDebugf(" " T_DEBUG_STR(wtTs, 1) " " PT_DEBUG_STR, i[0][1], PT_DEBUG_DATA(i, 1));
    }
    SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i[1][0], LINE_DEBUG_DATA(wn.pts()));
    if (pts == 2) {
        SkDebugf(" " T_DEBUG_STR(wnTs, 1), i[1][1]);
    }
    SkDebugf("\n");
}
static void debugShowCubicQuadIntersection(int pts, const SkIntersectionHelper& wt,
        const SkIntersectionHelper& wn, const SkIntersections& i) {
    SkASSERT(i.used() == pts);
    if (!pts) {
        SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " QUAD_DEBUG_STR "\n",
                __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts()));
        return;
    }
    SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
            i[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
    for (int n = 1; n < pts; ++n) {
        SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i[0][n], PT_DEBUG_DATA(i, n));
    }
    SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i[1][0], QUAD_DEBUG_DATA(wn.pts()));
    for (int n = 1; n < pts; ++n) {
        SkDebugf(" " TX_DEBUG_STR(wnTs), n, i[1][n]);
    }
    SkDebugf("\n");
}
static void testOne(skiatest::Reporter* reporter, const SkDLine& line1, const SkDLine& line2) {
    SkASSERT(ValidLine(line1));
    SkASSERT(ValidLine(line2));
    SkIntersections i;
    int pts = i.intersect(line1, line2);
    REPORTER_ASSERT(reporter, pts);
    REPORTER_ASSERT(reporter, pts == i.used());
    check_results(reporter, line1, line2, i);
    if (line1[0] == line1[1] || line2[0] == line2[1]) {
        return;
    }
    if (line1[0].fY == line1[1].fY) {
        double left = SkTMin(line1[0].fX, line1[1].fX);
        double right = SkTMax(line1[0].fX, line1[1].fX);
        SkIntersections ts;
        ts.horizontal(line2, left, right, line1[0].fY, line1[0].fX != left);
        check_results(reporter, line2, line1, ts);
    }
    if (line2[0].fY == line2[1].fY) {
        double left = SkTMin(line2[0].fX, line2[1].fX);
        double right = SkTMax(line2[0].fX, line2[1].fX);
        SkIntersections ts;
        ts.horizontal(line1, left, right, line2[0].fY, line2[0].fX != left);
        check_results(reporter, line1, line2, ts);
    }
    if (line1[0].fX == line1[1].fX) {
        double top = SkTMin(line1[0].fY, line1[1].fY);
        double bottom = SkTMax(line1[0].fY, line1[1].fY);
        SkIntersections ts;
        ts.vertical(line2, top, bottom, line1[0].fX, line1[0].fY != top);
        check_results(reporter, line2, line1, ts);
    }
    if (line2[0].fX == line2[1].fX) {
        double top = SkTMin(line2[0].fY, line2[1].fY);
        double bottom = SkTMax(line2[0].fY, line2[1].fY);
        SkIntersections ts;
        ts.vertical(line1, top, bottom, line2[0].fX, line2[0].fY != top);
        check_results(reporter, line1, line2, ts);
    }
}
static void PathOpsLineIntersectionTest(skiatest::Reporter* reporter) {
    size_t index;
    for (index = 0; index < coincidentTests_count; ++index) {
        const SkDLine& line1 = coincidentTests[index][0];
        const SkDLine& line2 = coincidentTests[index][1];
        testOneCoincident(reporter, line1, line2);
        reporter->bumpTestCount();
    }
    for (index = 0; index < tests_count; ++index) {
        const SkDLine& line1 = tests[index][0];
        const SkDLine& line2 = tests[index][1];
        testOne(reporter, line1, line2);
        reporter->bumpTestCount();
    }
    for (index = 0; index < noIntersect_count; ++index) {
        const SkDLine& line1 = noIntersect[index][0];
        const SkDLine& line2 = noIntersect[index][1];
        SkIntersections ts;
        int pts = ts.intersect(line1, line2);
        REPORTER_ASSERT(reporter, !pts);
        REPORTER_ASSERT(reporter, pts == ts.used());
        reporter->bumpTestCount();
    }
}
// determine that slop required after quad/quad finds a candidate intersection
// use the cross of the tangents plus the distance from 1 or 0 as knobs
DEF_TEST(PathOpsCubicQuadSlop, reporter) {
    // create a random non-selfintersecting cubic
    // break it into quadratics
    // offset the quadratic, measuring the slop required to find the intersection
    if (!gPathOpCubicQuadSlopVerbose) {  // takes a while to run -- so exclude it by default
        return;
    }
    int results[101];
    sk_bzero(results, sizeof(results));
    double minCross[101];
    sk_bzero(minCross, sizeof(minCross));
    double maxCross[101];
    sk_bzero(maxCross, sizeof(maxCross));
    double sumCross[101];
    sk_bzero(sumCross, sizeof(sumCross));
    int foundOne = 0;
    int slopCount = 1;
    SkRandom ran;
    for (int index = 0; index < 10000000; ++index) {
        if (index % 1000 == 999) SkDebugf(".");
        SkDCubic cubic = {{
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)},
                {ran.nextRangeF(-1000, 1000), ran.nextRangeF(-1000, 1000)}
        }};
        SkIntersections i;
        if (i.intersect(cubic)) {
            continue;
        }
        SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts;
        cubic.toQuadraticTs(cubic.calcPrecision(), &ts);
        double tStart = 0;
        int tsCount = ts.count();
        for (int i1 = 0; i1 <= tsCount; ++i1) {
            const double tEnd = i1 < tsCount ? ts[i1] : 1;
            SkDCubic part = cubic.subDivide(tStart, tEnd);
            SkDQuad quad = part.toQuad();
            SkReduceOrder reducer;
            int order = reducer.reduce(quad);
            if (order != 3) {
                continue;
            }
            for (int i2 = 0; i2 < 100; ++i2) {
                SkDPoint endDisplacement = {ran.nextRangeF(-100, 100), ran.nextRangeF(-100, 100)};
                SkDQuad nearby = {{
                        {quad[0].fX + endDisplacement.fX, quad[0].fY + endDisplacement.fY},
                        {quad[1].fX + ran.nextRangeF(-100, 100), quad[1].fY + ran.nextRangeF(-100, 100)},
                        {quad[2].fX - endDisplacement.fX, quad[2].fY - endDisplacement.fY}
                }};
                order = reducer.reduce(nearby);
                if (order != 3) {
                    continue;
                }
                SkIntersections locals;
                locals.allowNear(false);
                locals.intersect(quad, nearby);
                if (locals.used() != 1) {
                    continue;
                }
                // brute force find actual intersection
                SkDLine cubicLine = {{ {0, 0}, {cubic[0].fX, cubic[0].fY } }};
                SkIntersections liner;
                int i3;
                int found = -1;
                int foundErr = true;
                for (i3 = 1; i3 <= 1000; ++i3) {
                    cubicLine[0] = cubicLine[1];
                    cubicLine[1] = cubic.ptAtT(i3 / 1000.);
                    liner.reset();
                    liner.allowNear(false);
                    liner.intersect(nearby, cubicLine);
                    if (liner.used() == 0) {
                        continue;
                    }
                    if (liner.used() > 1) {
                        foundErr = true;
                        break;
                    }
                    if (found > 0) {
                        foundErr = true;
                        break;
                    }
                    foundErr = false;
                    found = i3;
                }
                if (foundErr) {
                    continue;
                }
                SkDVector dist = liner.pt(0) - locals.pt(0);
                SkDVector qV = nearby.dxdyAtT(locals[0][0]);
                double cubicT = (found - 1 + liner[1][0]) / 1000.;
                SkDVector cV = cubic.dxdyAtT(cubicT);
                double qxc = qV.crossCheck(cV);
                double qvLen = qV.length();
                double cvLen = cV.length();
                double maxLen = SkTMax(qvLen, cvLen);
                qxc /= maxLen;
                double quadT = tStart + (tEnd - tStart) * locals[0][0];
                double diffT = fabs(cubicT - quadT);
                int diffIdx = (int) (diffT * 100);
                results[diffIdx]++;
                double absQxc = fabs(qxc);
                if (sumCross[diffIdx] == 0) {
                    minCross[diffIdx] = maxCross[diffIdx] = sumCross[diffIdx] = absQxc;
                } else {
                    minCross[diffIdx] = SkTMin(minCross[diffIdx], absQxc);
                    maxCross[diffIdx] = SkTMax(maxCross[diffIdx], absQxc);
                    sumCross[diffIdx] +=  absQxc;
                }
                if (diffIdx >= 20) {
#if 01
                    SkDebugf("cubic={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
                        " quad={{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
                        " {{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}"
                        " qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n",
                        cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY,
                        cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY,
                        nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY,
                        nearby[2].fX, nearby[2].fY,
                        liner.pt(0).fX, liner.pt(0).fY,
                        locals.pt(0).fX, locals.pt(0).fY, quadT, cubicT, dist.length(), qxc);
#else
                    SkDebugf("qT=%1.9g cT=%1.9g dist=%1.9g cross=%1.9g\n",
                        quadT, cubicT, dist.length(), qxc);
                    SkDebugf("<div id=\"slop%d\">\n", ++slopCount);
                    SkDebugf("{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n"
                        "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n"
                        "{{{%1.9g,%1.9g}, {%1.9g,%1.9g}}}\n",
                        cubic[0].fX, cubic[0].fY, cubic[1].fX, cubic[1].fY,
                        cubic[2].fX, cubic[2].fY, cubic[3].fX, cubic[3].fY,
                        nearby[0].fX, nearby[0].fY, nearby[1].fX, nearby[1].fY,
                        nearby[2].fX, nearby[2].fY,
                        liner.pt(0).fX, liner.pt(0).fY,
                        locals.pt(0).fX, locals.pt(0).fY);
                    SkDebugf("</div>\n\n");
#endif
                }
                ++foundOne;
            }
            tStart = tEnd;
        }
        if (++foundOne >= 100000) {
            break;
        }
    }
#if 01
    SkDebugf("slopCount=%d\n", slopCount);
    int max = 100;
    while (results[max] == 0) {
        --max;
    }
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%d ", results[i]);
    }
    SkDebugf("min\n");
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%1.9g ", minCross[i]);
    }
    SkDebugf("max\n");
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%1.9g ", maxCross[i]);
    }
    SkDebugf("avg\n");
    for (int i = 0; i <= max; ++i) {
        if (i > 0 && i % 10 == 0) {
            SkDebugf("\n");
        }
        SkDebugf("%1.9g ", sumCross[i] / results[i]);
    }
#else
    for (int i = 1; i < slopCount; ++i) {
        SkDebugf("        slop%d,\n", i);
    }
#endif
    SkDebugf("\n");
}
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
        double t2s, double t2e, double precisionScale, SkIntersections& i) {
    i.upDepth();
    SkDCubic c1 = cubic1.subDivide(t1s, t1e);
    SkDCubic c2 = cubic2.subDivide(t2s, t2e);
    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts1;
    // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
    c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
    SkSTArray<kCubicToQuadSubdivisionDepth, double, true> ts2;
    c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        SkReduceOrder s1;
        int o1 = quadPart(cubic1, t1Start, t1, &s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            if (&cubic1 == &cubic2 && t1Start >= t2Start) {
                t2Start = t2;
                continue;
            }
            SkReduceOrder s2;
            int o2 = quadPart(cubic2, t2Start, t2, &s2);
        #if ONE_OFF_DEBUG
            char tab[] = "                  ";
            if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
                    && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
                SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
                        __FUNCTION__, t1Start, t1, t2Start, t2);
                SkIntersections xlocals;
                xlocals.allowNear(false);
                intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
                SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
            }
        #endif
            SkIntersections locals;
            locals.allowNear(false);
            intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
            int tCount = locals.used();
            for (int tIdx = 0; tIdx < tCount; ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                SkDPoint p1 = cubic1.ptAtT(to1);
                SkDPoint p2 = cubic2.ptAtT(to2);
                if (p1.approximatelyEqual(p2)) {
    // FIXME: local edge may be coincident -- experiment with not propagating coincidence to caller
//                    SkASSERT(!locals.isCoincident(tIdx));
                    if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
                        if (i.swapped()) {  //  FIXME: insert should respect swap
                            i.insert(to2, to1, p1);
                        } else {
                            i.insert(to1, to2, p1);
                        }
                    }
                } else {
/*for random cubics, 16 below catches 99.997% of the intersections. To test for the remaining 0.003%
  look for nearly coincident curves. and check each 1/16th section.
*/
                    double offset = precisionScale / 16;  // FIXME: const is arbitrary: test, refine
                    double c1Bottom = tIdx == 0 ? 0 :
                            (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
                    double c1Min = SkTMax(c1Bottom, to1 - offset);
                    double c1Top = tIdx == tCount - 1 ? 1 :
                            (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
                    double c1Max = SkTMin(c1Top, to1 + offset);
                    double c2Min = SkTMax(0., to2 - offset);
                    double c2Max = SkTMin(1., to2 + offset);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                            __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                    SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                            i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                    SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                            " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                            c1Max, c2Min, c2Max);
                #endif
                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                    if (tCount > 1) {
                        c1Min = SkTMax(0., to1 - offset);
                        c1Max = SkTMin(1., to1 + offset);
                        double c2Bottom = tIdx == 0 ? to2 :
                                (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
                        double c2Top = tIdx == tCount - 1 ? to2 :
                                (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
                        if (c2Bottom > c2Top) {
                            SkTSwap(c2Bottom, c2Top);
                        }
                        if (c2Bottom == to2) {
                            c2Bottom = 0;
                        }
                        if (c2Top == to2) {
                            c2Top = 1;
                        }
                        c2Min = SkTMax(c2Bottom, to2 - offset);
                        c2Max = SkTMin(c2Top, to2 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                            __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                                c1Max, c2Min, c2Max);
                    #endif
                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                        c1Min = SkTMax(c1Bottom, to1 - offset);
                        c1Max = SkTMin(c1Top, to1 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                        __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                                c1Max, c2Min, c2Max);
                    #endif
                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                    }
          //          intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                    // FIXME: if no intersection is found, either quadratics intersected where
                    // cubics did not, or the intersection was missed. In the former case, expect
                    // the quadratics to be nearly parallel at the point of intersection, and check
                    // for that.
                }
            }
            t2Start = t2;
        }
        t1Start = t1;
    }
    i.downDepth();
}
// intersect the end of the cubic with the other. Try lines from the end to control and opposite
// end to determine range of t on opposite cubic.
static void intersectEnd(const SkDCubic& cubic1, bool start, const SkDCubic& cubic2,
                         const SkDRect& bounds2, SkIntersections& i) {
    SkDLine line;
    int t1Index = start ? 0 : 3;
    line[0] = cubic1[t1Index];
    // don't bother if the two cubics are connnected
    SkTDArray<double> tVals;  // OPTIMIZE: replace with hard-sized array
    for (int index = 0; index < 4; ++index) {
        if (index == t1Index) {
            continue;
        }
        SkDVector dxy1 = cubic1[index] - line[0];
        dxy1 /= SkDCubic::gPrecisionUnit;
        line[1] = line[0] + dxy1;
        SkDRect lineBounds;
        lineBounds.setBounds(line);
        if (!bounds2.intersects(&lineBounds)) {
            continue;
        }
        SkIntersections local;
        if (!local.intersect(cubic2, line)) {
            continue;
        }
        for (int idx2 = 0; idx2 < local.used(); ++idx2) {
            double foundT = local[0][idx2];
            if (approximately_less_than_zero(foundT)
                    || approximately_greater_than_one(foundT)) {
                continue;
            }
            if (local.pt(idx2).approximatelyEqual(line[0])) {
                if (i.swapped()) {  // FIXME: insert should respect swap
                    i.insert(foundT, start ? 0 : 1, line[0]);
                } else {
                    i.insert(start ? 0 : 1, foundT, line[0]);
                }
            } else {
                *tVals.append() = local[0][idx2];
            }
        }
    }
    if (tVals.count() == 0) {
        return;
    }
    QSort<double>(tVals.begin(), tVals.end() - 1);
    double tMin1 = start ? 0 : 1 - LINE_FRACTION;
    double tMax1 = start ? LINE_FRACTION : 1;
    int tIdx = 0;
    do {
        int tLast = tIdx;
        while (tLast + 1 < tVals.count() && roughly_equal(tVals[tLast + 1], tVals[tIdx])) {
            ++tLast;
        }
        double tMin2 = SkTMax<double>(tVals[tIdx] - LINE_FRACTION, 0.0);
        double tMax2 = SkTMin<double>(tVals[tLast] + LINE_FRACTION, 1.0);
        int lastUsed = i.used();
        intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
        if (lastUsed == i.used()) {
            tMin2 = SkTMax<double>(tVals[tIdx] - (1.0 / SkDCubic::gPrecisionUnit), 0.0);
            tMax2 = SkTMin<double>(tVals[tLast] + (1.0 / SkDCubic::gPrecisionUnit), 1.0);
            intersect(cubic1, tMin1, tMax1, cubic2, tMin2, tMax2, 1, i);
        }
        tIdx = tLast + 1;
    } while (tIdx < tVals.count());
    return;
}
// this flavor centers potential intersections recursively. In contrast, '2' may inadvertently
// chase intersections near quadratic ends, requiring odd hacks to find them.
static void intersect(const SkDCubic& cubic1, double t1s, double t1e, const SkDCubic& cubic2,
        double t2s, double t2e, double precisionScale, SkIntersections& i) {
    i.upDepth();
    SkDCubic c1 = cubic1.subDivide(t1s, t1e);
    SkDCubic c2 = cubic2.subDivide(t2s, t2e);
    SkTDArray<double> ts1;
    // OPTIMIZE: if c1 == c2, call once (happens when detecting self-intersection)
    c1.toQuadraticTs(c1.calcPrecision() * precisionScale, &ts1);
    SkTDArray<double> ts2;
    c2.toQuadraticTs(c2.calcPrecision() * precisionScale, &ts2);
    double t1Start = t1s;
    int ts1Count = ts1.count();
    for (int i1 = 0; i1 <= ts1Count; ++i1) {
        const double tEnd1 = i1 < ts1Count ? ts1[i1] : 1;
        const double t1 = t1s + (t1e - t1s) * tEnd1;
        SkReduceOrder s1;
        int o1 = quadPart(cubic1, t1Start, t1, &s1);
        double t2Start = t2s;
        int ts2Count = ts2.count();
        for (int i2 = 0; i2 <= ts2Count; ++i2) {
            const double tEnd2 = i2 < ts2Count ? ts2[i2] : 1;
            const double t2 = t2s + (t2e - t2s) * tEnd2;
            if (&cubic1 == &cubic2 && t1Start >= t2Start) {
                t2Start = t2;
                continue;
            }
            SkReduceOrder s2;
            int o2 = quadPart(cubic2, t2Start, t2, &s2);
        #if ONE_OFF_DEBUG
            char tab[] = "                  ";
            if (tLimits1[0][0] >= t1Start && tLimits1[0][1] <= t1
                    && tLimits1[1][0] >= t2Start && tLimits1[1][1] <= t2) {
                SkDCubic cSub1 = cubic1.subDivide(t1Start, t1);
                SkDCubic cSub2 = cubic2.subDivide(t2Start, t2);
                SkDebugf("%.*s %s t1=(%1.9g,%1.9g) t2=(%1.9g,%1.9g)", i.depth()*2, tab,
                        __FUNCTION__, t1Start, t1, t2Start, t2);
                SkIntersections xlocals;
                intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, xlocals);
                SkDebugf(" xlocals.fUsed=%d\n", xlocals.used());
            }
        #endif
            SkIntersections locals;
            intersectWithOrder(s1.fQuad, o1, s2.fQuad, o2, locals);
            double coStart[2] = { -1 };
            SkDPoint coPoint;
            int tCount = locals.used();
            for (int tIdx = 0; tIdx < tCount; ++tIdx) {
                double to1 = t1Start + (t1 - t1Start) * locals[0][tIdx];
                double to2 = t2Start + (t2 - t2Start) * locals[1][tIdx];
    // if the computed t is not sufficiently precise, iterate
                SkDPoint p1 = cubic1.xyAtT(to1);
                SkDPoint p2 = cubic2.xyAtT(to2);
                if (p1.approximatelyEqual(p2)) {
                    if (locals.isCoincident(tIdx)) {
                        if (coStart[0] < 0) {
                            coStart[0] = to1;
                            coStart[1] = to2;
                            coPoint = p1;
                        } else {
                            i.insertCoincidentPair(coStart[0], to1, coStart[1], to2, coPoint, p1);
                            coStart[0] = -1;
                        }
                    } else if (&cubic1 != &cubic2 || !approximately_equal(to1, to2)) {
                        if (i.swapped()) {  //  FIXME: insert should respect swap
                            i.insert(to2, to1, p1);
                        } else {
                            i.insert(to1, to2, p1);
                        }
                    }
                } else {
                    double offset = precisionScale / 16;  // FIME: const is arbitrary: test, refine
#if 1
                    double c1Bottom = tIdx == 0 ? 0 :
                            (t1Start + (t1 - t1Start) * locals[0][tIdx - 1] + to1) / 2;
                    double c1Min = SkTMax<double>(c1Bottom, to1 - offset);
                    double c1Top = tIdx == tCount - 1 ? 1 :
                            (t1Start + (t1 - t1Start) * locals[0][tIdx + 1] + to1) / 2;
                    double c1Max = SkTMin<double>(c1Top, to1 + offset);
                    double c2Min = SkTMax<double>(0., to2 - offset);
                    double c2Max = SkTMin<double>(1., to2 + offset);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                            __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                    SkDebugf("%.*s %s 1 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                            i.depth()*2, tab, __FUNCTION__, c1Bottom, c1Top, 0., 1.,
                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                    SkDebugf("%.*s %s 1 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                            " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                            c1Max, c2Min, c2Max);
                #endif
                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 1 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                    if (tCount > 1) {
                        c1Min = SkTMax<double>(0., to1 - offset);
                        c1Max = SkTMin<double>(1., to1 + offset);
                        double c2Bottom = tIdx == 0 ? to2 :
                                (t2Start + (t2 - t2Start) * locals[1][tIdx - 1] + to2) / 2;
                        double c2Top = tIdx == tCount - 1 ? to2 :
                                (t2Start + (t2 - t2Start) * locals[1][tIdx + 1] + to2) / 2;
                        if (c2Bottom > c2Top) {
                            SkTSwap(c2Bottom, c2Top);
                        }
                        if (c2Bottom == to2) {
                            c2Bottom = 0;
                        }
                        if (c2Top == to2) {
                            c2Top = 1;
                        }
                        c2Min = SkTMax<double>(c2Bottom, to2 - offset);
                        c2Max = SkTMin<double>(c2Top, to2 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 2 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                            __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 2 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 2 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                                c1Max, c2Min, c2Max);
                    #endif
                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 2 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                        c1Min = SkTMax<double>(c1Bottom, to1 - offset);
                        c1Max = SkTMin<double>(c1Top, to1 + offset);
                    #if ONE_OFF_DEBUG
                        SkDebugf("%.*s %s 3 contains1=%d/%d contains2=%d/%d\n", i.depth()*2, tab,
                        __FUNCTION__,
                            c1Min <= tLimits1[0][1] && tLimits1[0][0] <= c1Max
                         && c2Min <= tLimits1[1][1] && tLimits1[1][0] <= c2Max,
                            to1 - offset <= tLimits1[0][1] && tLimits1[0][0] <= to1 + offset
                         && to2 - offset <= tLimits1[1][1] && tLimits1[1][0] <= to2 + offset,
                            c1Min <= tLimits2[0][1] && tLimits2[0][0] <= c1Max
                         && c2Min <= tLimits2[1][1] && tLimits2[1][0] <= c2Max,
                            to1 - offset <= tLimits2[0][1] && tLimits2[0][0] <= to1 + offset
                         && to2 - offset <= tLimits2[1][1] && tLimits2[1][0] <= to2 + offset);
                        SkDebugf("%.*s %s 3 c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                                " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                                i.depth()*2, tab, __FUNCTION__, 0., 1., c2Bottom, c2Top,
                                to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                        SkDebugf("%.*s %s 3 to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                                " c2Max=%1.9g\n", i.depth()*2, tab, __FUNCTION__, to1, to2, c1Min,
                                c1Max, c2Min, c2Max);
                    #endif
                        intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                #if ONE_OFF_DEBUG
                    SkDebugf("%.*s %s 3 i.used=%d t=%1.9g\n", i.depth()*2, tab, __FUNCTION__,
                            i.used(), i.used() > 0 ? i[0][i.used() - 1] : -1);
                #endif
                    }
#else
                    double c1Bottom = tIdx == 0 ? 0 :
                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx - 1] + to1) / 2;
                    double c1Min = SkTMax<double>(c1Bottom, to1 - offset);
                    double c1Top = tIdx == tCount - 1 ? 1 :
                            (t1Start + (t1 - t1Start) * locals.fT[0][tIdx + 1] + to1) / 2;
                    double c1Max = SkTMin<double>(c1Top, to1 + offset);
                    double c2Bottom = tIdx == 0 ? to2 :
                            (t2Start + (t2 - t2Start) * locals.fT[1][tIdx - 1] + to2) / 2;
                    double c2Top = tIdx == tCount - 1 ? to2 :
                            (t2Start + (t2 - t2Start) * locals.fT[1][tIdx + 1] + to2) / 2;
                    if (c2Bottom > c2Top) {
                        SkTSwap(c2Bottom, c2Top);
                    }
                    if (c2Bottom == to2) {
                        c2Bottom = 0;
                    }
                    if (c2Top == to2) {
                        c2Top = 1;
                    }
                    double c2Min = SkTMax<double>(c2Bottom, to2 - offset);
                    double c2Max = SkTMin<double>(c2Top, to2 + offset);
                #if ONE_OFF_DEBUG
                    SkDebugf("%s contains1=%d/%d contains2=%d/%d\n", __FUNCTION__,
                            c1Min <= 0.210357794 && 0.210357794 <= c1Max
                         && c2Min <= 0.223476406 && 0.223476406 <= c2Max,
                            to1 - offset <= 0.210357794 && 0.210357794 <= to1 + offset
                         && to2 - offset <= 0.223476406 && 0.223476406 <= to2 + offset,
                            c1Min <= 0.211324707 && 0.211324707 <= c1Max
                         && c2Min <= 0.211327209 && 0.211327209 <= c2Max,
                            to1 - offset <= 0.211324707 && 0.211324707 <= to1 + offset
                         && to2 - offset <= 0.211327209 && 0.211327209 <= to2 + offset);
                    SkDebugf("%s c1Bottom=%1.9g c1Top=%1.9g c2Bottom=%1.9g c2Top=%1.9g"
                            " 1-o=%1.9g 1+o=%1.9g 2-o=%1.9g 2+o=%1.9g offset=%1.9g\n",
                            __FUNCTION__, c1Bottom, c1Top, c2Bottom, c2Top,
                            to1 - offset, to1 + offset, to2 - offset, to2 + offset, offset);
                    SkDebugf("%s to1=%1.9g to2=%1.9g c1Min=%1.9g c1Max=%1.9g c2Min=%1.9g"
                            " c2Max=%1.9g\n", __FUNCTION__, to1, to2, c1Min, c1Max, c2Min, c2Max);
                #endif
#endif
                    intersect(cubic1, c1Min, c1Max, cubic2, c2Min, c2Max, offset, i);
                    // FIXME: if no intersection is found, either quadratics intersected where
                    // cubics did not, or the intersection was missed. In the former case, expect
                    // the quadratics to be nearly parallel at the point of intersection, and check
                    // for that.
                }
            }
            SkASSERT(coStart[0] == -1);
            t2Start = t2;
        }
        t1Start = t1;
    }
    i.downDepth();
}
Exemple #30
0
bool SkOpAngle::endsIntersect(const SkOpAngle& rh) const {
    SkPath::Verb lVerb = fSegment->verb();
    SkPath::Verb rVerb = rh.fSegment->verb();
    int lPts = SkPathOpsVerbToPoints(lVerb);
    int rPts = SkPathOpsVerbToPoints(rVerb);
    SkDLine rays[] = {{{fCurvePart[0], rh.fCurvePart[rPts]}},
            {{fCurvePart[0], fCurvePart[lPts]}}};
    if (rays[0][1] == rays[1][1]) {
        return checkParallel(rh);
    }
    double smallTs[2] = {-1, -1};
    bool limited[2] = {false, false};
    for (int index = 0; index < 2; ++index) {
        const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
        SkIntersections i;
        (*CurveIntersectRay[index ? rPts : lPts])(segment.pts(), rays[index], &i);
//      SkASSERT(i.used() >= 1);
//        if (i.used() <= 1) {
//            continue;
//        }
        double tStart = segment.t(index ? rh.fStart : fStart);
        double tEnd = segment.t(index ? rh.fComputedEnd : fComputedEnd);
        bool testAscends = index ? rh.fStart < rh.fComputedEnd : fStart < fComputedEnd;
        double t = testAscends ? 0 : 1;
        for (int idx2 = 0; idx2 < i.used(); ++idx2) {
            double testT = i[0][idx2];
            if (!approximately_between_orderable(tStart, testT, tEnd)) {
                continue;
            }
            if (approximately_equal_orderable(tStart, testT)) {
                continue;
            }
            smallTs[index] = t = testAscends ? SkTMax(t, testT) : SkTMin(t, testT);
            limited[index] = approximately_equal_orderable(t, tEnd);
        }
    }
#if 0
    if (smallTs[0] < 0 && smallTs[1] < 0) {  // if neither ray intersects, do endpoint sort
        double m0xm1 = 0;
        if (lVerb == SkPath::kLine_Verb) {
            SkASSERT(rVerb != SkPath::kLine_Verb);
            SkDVector m0 = rays[1][1] - fCurvePart[0];
            SkDPoint endPt;
            endPt.set(rh.fSegment->pts()[rh.fStart < rh.fEnd ? rPts : 0]);
            SkDVector m1 = endPt - fCurvePart[0];
            m0xm1 = m0.crossCheck(m1);
        }
        if (rVerb == SkPath::kLine_Verb) {
            SkDPoint endPt;
            endPt.set(fSegment->pts()[fStart < fEnd ? lPts : 0]);
            SkDVector m0 = endPt - fCurvePart[0];
            SkDVector m1 = rays[0][1] - fCurvePart[0];
            m0xm1 = m0.crossCheck(m1);
        }
        if (m0xm1 != 0) {
            return m0xm1 < 0;
        }
    }
#endif
    bool sRayLonger = false;
    SkDVector sCept = {0, 0};
    double sCeptT = -1;
    int sIndex = -1;
    bool useIntersect = false;
    for (int index = 0; index < 2; ++index) {
        if (smallTs[index] < 0) {
            continue;
        }
        const SkOpSegment& segment = index ? *rh.fSegment : *fSegment;
        const SkDPoint& dPt = segment.dPtAtT(smallTs[index]);
        SkDVector cept = dPt - rays[index][0];
        // If this point is on the curve, it should have been detected earlier by ordinary
        // curve intersection. This may be hard to determine in general, but for lines,
        // the point could be close to or equal to its end, but shouldn't be near the start.
        if ((index ? lPts : rPts) == 1) {
            SkDVector total = rays[index][1] - rays[index][0];
            if (cept.lengthSquared() * 2 < total.lengthSquared()) {
                continue;
            }
        }
        SkDVector end = rays[index][1] - rays[index][0];
        if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) {
            continue;
        }
        double rayDist = cept.length();
        double endDist = end.length();
        bool rayLonger = rayDist > endDist;
        if (limited[0] && limited[1] && rayLonger) {
            useIntersect = true;
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
            break;
        }
        double delta = fabs(rayDist - endDist);
        double minX, minY, maxX, maxY;
        minX = minY = SK_ScalarInfinity;
        maxX = maxY = -SK_ScalarInfinity;
        const SkDCubic& curve = index ? rh.fCurvePart : fCurvePart;
        int ptCount = index ? rPts : lPts;
        for (int idx2 = 0; idx2 <= ptCount; ++idx2) {
            minX = SkTMin(minX, curve[idx2].fX);
            minY = SkTMin(minY, curve[idx2].fY);
            maxX = SkTMax(maxX, curve[idx2].fX);
            maxY = SkTMax(maxY, curve[idx2].fY);
        }
        double maxWidth = SkTMax(maxX - minX, maxY - minY);
        delta /= maxWidth;
        if (delta > 1e-4 && (useIntersect ^= true)) {  // FIXME: move this magic number
            sRayLonger = rayLonger;
            sCept = cept;
            sCeptT = smallTs[index];
            sIndex = index;
        }
    }
    if (useIntersect) {
        const SkDCubic& curve = sIndex ? rh.fCurvePart : fCurvePart;
        const SkOpSegment& segment = sIndex ? *rh.fSegment : *fSegment;
        double tStart = segment.t(sIndex ? rh.fStart : fStart);
        SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0];
        double septDir = mid.crossCheck(sCept);
        if (!septDir) {
            return checkParallel(rh);
        }
        return sRayLonger ^ (sIndex == 0) ^ (septDir < 0);
    } else {
        return checkParallel(rh);
    }
}