DEF_TEST(GrGLSLPrettyPrint, r) { SkTArray<const char*> testStr; SkTArray<int> lengths; testStr.push_back(input1.c_str()); lengths.push_back((int)input1.size()); testStr.push_back(input2.c_str()); lengths.push_back((int)input2.size()); testStr.push_back(input3.c_str()); lengths.push_back((int)input3.size()); testStr.push_back(input4.c_str()); lengths.push_back((int)input4.size()); testStr.push_back(input5.c_str()); lengths.push_back((int)input5.size()); testStr.push_back(input6.c_str()); lengths.push_back((int)input6.size()); SkString test = GrGLSLPrettyPrint::PrettyPrintGLSL(testStr.begin(), lengths.begin(), testStr.count(), true); ASSERT(output1 == test); testStr.reset(); lengths.reset(); testStr.push_back(neg1.c_str()); lengths.push_back((int)neg1.size()); testStr.push_back(neg2.c_str()); lengths.push_back((int)neg2.size()); testStr.push_back(neg3.c_str()); lengths.push_back((int)neg3.size()); // Just test we don't crash with garbage input ASSERT(GrGLSLPrettyPrint::PrettyPrintGLSL(testStr.begin(), lengths.begin(), 1, true).c_str() != NULL); }
static void handle_cmd(struct android_app* app, int32_t cmd) { struct VisualBenchState* state = (struct VisualBenchState*)app->userData; switch (cmd) { case APP_CMD_INIT_WINDOW: // The window is being shown, get it ready. if (state->fApp->window != nullptr && kInit_State == state->fState) { // drain any events that occurred before |window| was assigned. while (SkEvent::ProcessEvent()); // Start normal Skia sequence application_init(); SkTArray<const char*> args; args.push_back("VisualBench"); for (int i = 0; i < state->fFlags.count(); i++) { SkDebugf(state->fFlags[i].c_str()); args.push_back(state->fFlags[i].c_str()); } state->fWindow = create_sk_window((void*)state->fApp->window, args.count(), const_cast<char**>(args.begin())); state->fWindow->forceInvalAll(); state->fState = kAnimate_State; } break; case APP_CMD_TERM_WINDOW: state->fState = kDestroyRequested_State; break; } }
void GLCpuPosInstancedArraysBench::teardown(const GrGLInterface* gl) { GR_GL_CALL(gl, BindBuffer(GR_GL_ARRAY_BUFFER, 0)); GR_GL_CALL(gl, BindVertexArray(0)); GR_GL_CALL(gl, BindTexture(GR_GL_TEXTURE_2D, 0)); GR_GL_CALL(gl, BindFramebuffer(GR_GL_FRAMEBUFFER, 0)); GR_GL_CALL(gl, DeleteTextures(1, &fTexture)); GR_GL_CALL(gl, DeleteProgram(fProgram)); GR_GL_CALL(gl, DeleteBuffers(fBuffers.count(), fBuffers.begin())); GR_GL_CALL(gl, DeleteVertexArrays(1, &fVAO)); fBuffers.reset(); }
void MakeContourList(SkTArray<SkOpContour>& contours, SkTArray<SkOpContour*, true>& list, bool evenOdd, bool oppEvenOdd) { int count = contours.count(); if (count == 0) { return; } for (int index = 0; index < count; ++index) { SkOpContour& contour = contours[index]; contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); list.push_back(&contour); } SkTQSort<SkOpContour>(list.begin(), list.end() - 1); }
JNIEXPORT void JNICALL Java_com_skia_SkiaSampleRenderer_init(JNIEnv* env, jobject thiz, jobject jsampleActivity, jint msaaSampleCount) { // setup jni hooks to the java activity gActivityGlue.m_env = env; jclass clazz = env->FindClass("com/skia/SkiaSampleActivity"); gActivityGlue.m_obj = env->NewWeakGlobalRef(jsampleActivity); gActivityGlue.m_setTitle = GetJMethod(env, clazz, "setTitle", "(Ljava/lang/CharSequence;)V"); gActivityGlue.m_setSlideList = GetJMethod(env, clazz, "setSlideList", "([Ljava/lang/String;)V"); gActivityGlue.m_addToDownloads = GetJMethod(env, clazz, "addToDownloads", "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;)V"); env->DeleteLocalRef(clazz); // setup jni hooks to the java renderer clazz = env->FindClass("com/skia/SkiaSampleRenderer"); gWindowGlue.m_obj = env->NewWeakGlobalRef(thiz); gWindowGlue.m_inval = GetJMethod(env, clazz, "requestRender", "()V"); gWindowGlue.m_queueSkEvent = GetJMethod(env, clazz, "queueSkEvent", "()V"); gWindowGlue.m_startTimer = GetJMethod(env, clazz, "startTimer", "(I)V"); gWindowGlue.m_getMSAASampleCount = GetJMethod(env, clazz, "getMSAASampleCount", "()I"); env->DeleteLocalRef(clazz); application_init(); SkTArray<const char*> args; args.push_back("SampleApp"); // TODO: push ability to select skp dir into the UI args.push_back("--pictureDir"); args.push_back("/sdcard/skiabot/skia_skp"); SkString msaaSampleCountString; if (msaaSampleCount > 0) { args.push_back("--msaa"); msaaSampleCountString.appendS32(static_cast<uint32_t>(msaaSampleCount)); args.push_back(msaaSampleCountString.c_str()); } gWindow = new SampleWindow(NULL, args.count(), const_cast<char**>(args.begin()), NULL); // send the list of slides up to the activity const int slideCount = gWindow->sampleCount(); jobjectArray slideList = env->NewObjectArray(slideCount, env->FindClass("java/lang/String"), env->NewStringUTF("")); for (int i = 0; i < slideCount; i++) { jstring slideTitle = env->NewStringUTF(gWindow->getSampleTitle(i).c_str()); env->SetObjectArrayElement(slideList, i, slideTitle); env->DeleteLocalRef(slideTitle); } env->CallVoidMethod(gActivityGlue.m_obj, gActivityGlue.m_setSlideList, slideList); env->DeleteLocalRef(slideList); }
/* check start and end of each contour if not the same, record them match them up connect closest reassemble contour pieces into new path */ void Assemble(const SkPathWriter& path, SkPathWriter* simple) { #if DEBUG_PATH_CONSTRUCTION SkDebugf("%s\n", __FUNCTION__); #endif SkTArray<SkOpContour> contours; SkOpEdgeBuilder builder(path, contours); builder.finish(); int count = contours.count(); int outer; SkTArray<int, true> runs(count); // indices of partial contours for (outer = 0; outer < count; ++outer) { const SkOpContour& eContour = contours[outer]; const SkPoint& eStart = eContour.start(); const SkPoint& eEnd = eContour.end(); #if DEBUG_ASSEMBLE SkDebugf("%s contour", __FUNCTION__); if (!SkDPoint::ApproximatelyEqual(eStart, eEnd)) { SkDebugf("[%d]", runs.count()); } else { SkDebugf(" "); } SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); #endif if (SkDPoint::ApproximatelyEqual(eStart, eEnd)) { eContour.toPath(simple); continue; } runs.push_back(outer); } count = runs.count(); if (count == 0) { return; } SkTArray<int, true> sLink, eLink; sLink.push_back_n(count); eLink.push_back_n(count); int rIndex, iIndex; for (rIndex = 0; rIndex < count; ++rIndex) { sLink[rIndex] = eLink[rIndex] = SK_MaxS32; } const int ends = count * 2; // all starts and ends const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 SkTArray<double, true> distances; distances.push_back_n(entries); for (rIndex = 0; rIndex < ends - 1; ++rIndex) { outer = runs[rIndex >> 1]; const SkOpContour& oContour = contours[outer]; const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) * ends - rIndex - 1; for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { int inner = runs[iIndex >> 1]; const SkOpContour& iContour = contours[inner]; const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); double dx = iPt.fX - oPt.fX; double dy = iPt.fY - oPt.fY; double dist = dx * dx + dy * dy; distances[row + iIndex] = dist; // oStart distance from iStart } } SkTArray<int, true> sortedDist; sortedDist.push_back_n(entries); for (rIndex = 0; rIndex < entries; ++rIndex) { sortedDist[rIndex] = rIndex; } SkTQSort<int>(sortedDist.begin(), sortedDist.end() - 1, DistanceLessThan(distances.begin())); int remaining = count; // number of start/end pairs for (rIndex = 0; rIndex < entries; ++rIndex) { int pair = sortedDist[rIndex]; int row = pair / ends; int col = pair - row * ends; int thingOne = row < col ? row : ends - row - 2; int ndxOne = thingOne >> 1; bool endOne = thingOne & 1; int* linkOne = endOne ? eLink.begin() : sLink.begin(); if (linkOne[ndxOne] != SK_MaxS32) { continue; } int thingTwo = row < col ? col : ends - row + col - 1; int ndxTwo = thingTwo >> 1; bool endTwo = thingTwo & 1; int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); if (linkTwo[ndxTwo] != SK_MaxS32) { continue; } SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); bool flip = endOne == endTwo; linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; if (!--remaining) { break; } } SkASSERT(!remaining); #if DEBUG_ASSEMBLE for (rIndex = 0; rIndex < count; ++rIndex) { int s = sLink[rIndex]; int e = eLink[rIndex]; SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); } #endif rIndex = 0; do { bool forward = true; bool first = true; int sIndex = sLink[rIndex]; SkASSERT(sIndex != SK_MaxS32); sLink[rIndex] = SK_MaxS32; int eIndex; if (sIndex < 0) { eIndex = sLink[~sIndex]; sLink[~sIndex] = SK_MaxS32; } else { eIndex = eLink[sIndex]; eLink[sIndex] = SK_MaxS32; } SkASSERT(eIndex != SK_MaxS32); #if DEBUG_ASSEMBLE SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', eIndex < 0 ? ~eIndex : eIndex); #endif do { outer = runs[rIndex]; const SkOpContour& contour = contours[outer]; if (first) { first = false; const SkPoint* startPtr = &contour.start(); simple->deferredMove(startPtr[0]); } if (forward) { contour.toPartialForward(simple); } else { contour.toPartialBackward(simple); } #if DEBUG_ASSEMBLE SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); #endif if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { simple->close(); break; } if (forward) { eIndex = eLink[rIndex]; SkASSERT(eIndex != SK_MaxS32); eLink[rIndex] = SK_MaxS32; if (eIndex >= 0) { SkASSERT(sLink[eIndex] == rIndex); sLink[eIndex] = SK_MaxS32; } else { SkASSERT(eLink[~eIndex] == ~rIndex); eLink[~eIndex] = SK_MaxS32; } } else { eIndex = sLink[rIndex]; SkASSERT(eIndex != SK_MaxS32); sLink[rIndex] = SK_MaxS32; if (eIndex >= 0) { SkASSERT(eLink[eIndex] == rIndex); eLink[eIndex] = SK_MaxS32; } else { SkASSERT(sLink[~eIndex] == ~rIndex); sLink[~eIndex] = SK_MaxS32; } } rIndex = eIndex; if (rIndex < 0) { forward ^= 1; rIndex = ~rIndex; } } while (true); for (rIndex = 0; rIndex < count; ++rIndex) { if (sLink[rIndex] != SK_MaxS32) { break; } } } while (rIndex < count); #if DEBUG_ASSEMBLE for (rIndex = 0; rIndex < count; ++rIndex) { SkASSERT(sLink[rIndex] == SK_MaxS32); SkASSERT(eLink[rIndex] == SK_MaxS32); } #endif }
// Create the base Vulkan objects needed by the GrVkGpu object const GrVkBackendContext* GrVkBackendContext::Create(uint32_t* presentQueueIndexPtr, bool(*canPresent)(VkInstance, VkPhysicalDevice, uint32_t queueIndex)) { VkPhysicalDevice physDev; VkDevice device; VkInstance inst; VkResult err; const VkApplicationInfo app_info = { VK_STRUCTURE_TYPE_APPLICATION_INFO, // sType nullptr, // pNext "vktest", // pApplicationName 0, // applicationVersion "vktest", // pEngineName 0, // engineVerison kGrVkMinimumVersion, // apiVersion }; GrVkExtensions extensions; extensions.initInstance(kGrVkMinimumVersion); SkTArray<const char*> instanceLayerNames; SkTArray<const char*> instanceExtensionNames; uint32_t extensionFlags = 0; #ifdef ENABLE_VK_LAYERS for (size_t i = 0; i < SK_ARRAY_COUNT(kDebugLayerNames); ++i) { if (extensions.hasInstanceLayer(kDebugLayerNames[i])) { instanceLayerNames.push_back(kDebugLayerNames[i]); } } if (extensions.hasInstanceExtension(VK_EXT_DEBUG_REPORT_EXTENSION_NAME)) { instanceExtensionNames.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME); extensionFlags |= kEXT_debug_report_GrVkExtensionFlag; } #endif if (extensions.hasInstanceExtension(VK_KHR_SURFACE_EXTENSION_NAME)) { instanceExtensionNames.push_back(VK_KHR_SURFACE_EXTENSION_NAME); extensionFlags |= kKHR_surface_GrVkExtensionFlag; } if (extensions.hasInstanceExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME)) { instanceExtensionNames.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); extensionFlags |= kKHR_swapchain_GrVkExtensionFlag; } #ifdef SK_BUILD_FOR_WIN if (extensions.hasInstanceExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME)) { instanceExtensionNames.push_back(VK_KHR_WIN32_SURFACE_EXTENSION_NAME); extensionFlags |= kKHR_win32_surface_GrVkExtensionFlag; } #elif SK_BUILD_FOR_ANDROID if (extensions.hasInstanceExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME)) { instanceExtensionNames.push_back(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME); extensionFlags |= kKHR_android_surface_GrVkExtensionFlag; } #elif SK_BUILD_FOR_UNIX if (extensions.hasInstanceExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME)) { instanceExtensionNames.push_back(VK_KHR_XLIB_SURFACE_EXTENSION_NAME); extensionFlags |= kKHR_xlib_surface_GrVkExtensionFlag; } #endif const VkInstanceCreateInfo instance_create = { VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // sType nullptr, // pNext 0, // flags &app_info, // pApplicationInfo (uint32_t) instanceLayerNames.count(), // enabledLayerNameCount instanceLayerNames.begin(), // ppEnabledLayerNames (uint32_t) instanceExtensionNames.count(), // enabledExtensionNameCount instanceExtensionNames.begin(), // ppEnabledExtensionNames }; err = vkCreateInstance(&instance_create, nullptr, &inst); if (err < 0) { SkDebugf("vkCreateInstance failed: %d\n", err); return nullptr; } uint32_t gpuCount; err = vkEnumeratePhysicalDevices(inst, &gpuCount, nullptr); if (err) { SkDebugf("vkEnumeratePhysicalDevices failed: %d\n", err); vkDestroyInstance(inst, nullptr); return nullptr; } SkASSERT(gpuCount > 0); // Just returning the first physical device instead of getting the whole array. // TODO: find best match for our needs gpuCount = 1; err = vkEnumeratePhysicalDevices(inst, &gpuCount, &physDev); if (err) { SkDebugf("vkEnumeratePhysicalDevices failed: %d\n", err); vkDestroyInstance(inst, nullptr); return nullptr; } // query to get the initial queue props size uint32_t queueCount; vkGetPhysicalDeviceQueueFamilyProperties(physDev, &queueCount, nullptr); SkASSERT(queueCount >= 1); SkAutoMalloc queuePropsAlloc(queueCount * sizeof(VkQueueFamilyProperties)); // now get the actual queue props VkQueueFamilyProperties* queueProps = (VkQueueFamilyProperties*)queuePropsAlloc.get(); vkGetPhysicalDeviceQueueFamilyProperties(physDev, &queueCount, queueProps); // iterate to find the graphics queue uint32_t graphicsQueueIndex = queueCount; for (uint32_t i = 0; i < queueCount; i++) { if (queueProps[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) { graphicsQueueIndex = i; break; } } SkASSERT(graphicsQueueIndex < queueCount); // iterate to find the present queue, if needed uint32_t presentQueueIndex = graphicsQueueIndex; if (presentQueueIndexPtr && canPresent) { for (uint32_t i = 0; i < queueCount; i++) { if (canPresent(inst, physDev, i)) { presentQueueIndex = i; break; } } SkASSERT(presentQueueIndex < queueCount); *presentQueueIndexPtr = presentQueueIndex; } extensions.initDevice(kGrVkMinimumVersion, inst, physDev); SkTArray<const char*> deviceLayerNames; SkTArray<const char*> deviceExtensionNames; #ifdef ENABLE_VK_LAYERS for (size_t i = 0; i < SK_ARRAY_COUNT(kDebugLayerNames); ++i) { if (extensions.hasDeviceLayer(kDebugLayerNames[i])) { deviceLayerNames.push_back(kDebugLayerNames[i]); } } #endif if (extensions.hasDeviceExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME)) { deviceExtensionNames.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME); extensionFlags |= kKHR_swapchain_GrVkExtensionFlag; } if (extensions.hasDeviceExtension("VK_NV_glsl_shader")) { deviceExtensionNames.push_back("VK_NV_glsl_shader"); extensionFlags |= kNV_glsl_shader_GrVkExtensionFlag; } // query to get the physical device properties VkPhysicalDeviceFeatures deviceFeatures; vkGetPhysicalDeviceFeatures(physDev, &deviceFeatures); // this looks like it would slow things down, // and we can't depend on it on all platforms deviceFeatures.robustBufferAccess = VK_FALSE; uint32_t featureFlags = 0; if (deviceFeatures.geometryShader) { featureFlags |= kGeometryShader_GrVkFeatureFlag; } if (deviceFeatures.dualSrcBlend) { featureFlags |= kDualSrcBlend_GrVkFeatureFlag; } if (deviceFeatures.sampleRateShading) { featureFlags |= kSampleRateShading_GrVkFeatureFlag; } float queuePriorities[1] = { 0.0 }; // Here we assume no need for swapchain queue // If one is needed, the client will need its own setup code const VkDeviceQueueCreateInfo queueInfo[2] = { { VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType nullptr, // pNext 0, // VkDeviceQueueCreateFlags graphicsQueueIndex, // queueFamilyIndex 1, // queueCount queuePriorities, // pQueuePriorities }, { VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO, // sType nullptr, // pNext 0, // VkDeviceQueueCreateFlags presentQueueIndex, // queueFamilyIndex 1, // queueCount queuePriorities, // pQueuePriorities } }; uint32_t queueInfoCount = (presentQueueIndex != graphicsQueueIndex) ? 2 : 1; const VkDeviceCreateInfo deviceInfo = { VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO, // sType nullptr, // pNext 0, // VkDeviceCreateFlags queueInfoCount, // queueCreateInfoCount queueInfo, // pQueueCreateInfos (uint32_t) deviceLayerNames.count(), // layerCount deviceLayerNames.begin(), // ppEnabledLayerNames (uint32_t) deviceExtensionNames.count(), // extensionCount deviceExtensionNames.begin(), // ppEnabledExtensionNames &deviceFeatures // ppEnabledFeatures }; err = vkCreateDevice(physDev, &deviceInfo, nullptr, &device); if (err) { SkDebugf("CreateDevice failed: %d\n", err); vkDestroyInstance(inst, nullptr); return nullptr; } VkQueue queue; vkGetDeviceQueue(device, graphicsQueueIndex, 0, &queue); GrVkBackendContext* ctx = new GrVkBackendContext(); ctx->fInstance = inst; ctx->fPhysicalDevice = physDev; ctx->fDevice = device; ctx->fQueue = queue; ctx->fGraphicsQueueIndex = graphicsQueueIndex; ctx->fMinAPIVersion = kGrVkMinimumVersion; ctx->fExtensions = extensionFlags; ctx->fFeatures = featureFlags; ctx->fInterface.reset(GrVkCreateInterface(inst, device, extensionFlags)); return ctx; }
void GLCpuPosInstancedArraysBench::teardown(const GrGLInterface* gl) { GR_GL_CALL(gl, DeleteProgram(fProgram)); GR_GL_CALL(gl, DeleteBuffers(fBuffers.count(), fBuffers.begin())); GR_GL_CALL(gl, DeleteVertexArrays(1, &fVAO)); }
void GrDistanceFieldTextContext::onDrawPosText(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkPaint& skPaint, const SkMatrix& viewMatrix, const char text[], size_t byteLength, const SkScalar pos[], int scalarsPerPosition, const SkPoint& offset, const SkIRect& regionClipBounds) { SkASSERT(byteLength == 0 || text != NULL); SkASSERT(1 == scalarsPerPosition || 2 == scalarsPerPosition); // nothing to draw if (text == NULL || byteLength == 0 /* no raster clip? || fRC->isEmpty()*/) { return; } fViewMatrix = viewMatrix; this->init(rt, clip, paint, skPaint, regionClipBounds); SkDrawCacheProc glyphCacheProc = fSkPaint.getDrawCacheProc(); SkAutoGlyphCacheNoGamma autoCache(fSkPaint, &fDeviceProperties, NULL); SkGlyphCache* cache = autoCache.getCache(); GrFontScaler* fontScaler = GetGrFontScaler(cache); int numGlyphs = fSkPaint.textToGlyphs(text, byteLength, NULL); fTotalVertexCount = kVerticesPerGlyph*numGlyphs; const char* stop = text + byteLength; SkTArray<char> fallbackTxt; SkTArray<SkScalar> fallbackPos; if (SkPaint::kLeft_Align == fSkPaint.getTextAlign()) { while (text < stop) { const char* lastText = text; // the last 2 parameters are ignored const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { SkScalar x = offset.x() + pos[0]; SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0); if (!this->appendGlyph(GrGlyph::Pack(glyph.getGlyphID(), glyph.getSubXFixed(), glyph.getSubYFixed(), GrGlyph::kDistance_MaskStyle), x, y, fontScaler)) { // couldn't append, send to fallback fallbackTxt.push_back_n(SkToInt(text-lastText), lastText); fallbackPos.push_back(pos[0]); if (2 == scalarsPerPosition) { fallbackPos.push_back(pos[1]); } } } pos += scalarsPerPosition; } } else { SkScalar alignMul = SkPaint::kCenter_Align == fSkPaint.getTextAlign() ? SK_ScalarHalf : SK_Scalar1; while (text < stop) { const char* lastText = text; // the last 2 parameters are ignored const SkGlyph& glyph = glyphCacheProc(cache, &text, 0, 0); if (glyph.fWidth) { SkScalar x = offset.x() + pos[0]; SkScalar y = offset.y() + (2 == scalarsPerPosition ? pos[1] : 0); SkScalar advanceX = SkFixedToScalar(glyph.fAdvanceX)*alignMul*fTextRatio; SkScalar advanceY = SkFixedToScalar(glyph.fAdvanceY)*alignMul*fTextRatio; if (!this->appendGlyph(GrGlyph::Pack(glyph.getGlyphID(), glyph.getSubXFixed(), glyph.getSubYFixed(), GrGlyph::kDistance_MaskStyle), x - advanceX, y - advanceY, fontScaler)) { // couldn't append, send to fallback fallbackTxt.push_back_n(SkToInt(text-lastText), lastText); fallbackPos.push_back(pos[0]); if (2 == scalarsPerPosition) { fallbackPos.push_back(pos[1]); } } } pos += scalarsPerPosition; } } this->finish(); if (fallbackTxt.count() > 0) { fFallbackTextContext->drawPosText(rt, clip, paint, skPaint, viewMatrix, fallbackTxt.begin(), fallbackTxt.count(), fallbackPos.begin(), scalarsPerPosition, offset, regionClipBounds); } }
void GrDistanceFieldTextContext::onDrawText(GrRenderTarget* rt, const GrClip& clip, const GrPaint& paint, const SkPaint& skPaint, const SkMatrix& viewMatrix, const char text[], size_t byteLength, SkScalar x, SkScalar y, const SkIRect& regionClipBounds) { SkASSERT(byteLength == 0 || text != NULL); // nothing to draw if (text == NULL || byteLength == 0) { return; } fViewMatrix = viewMatrix; SkDrawCacheProc glyphCacheProc = skPaint.getDrawCacheProc(); SkAutoGlyphCache autoCache(skPaint, &fDeviceProperties, NULL); SkGlyphCache* cache = autoCache.getCache(); SkTArray<SkScalar> positions; const char* textPtr = text; SkFixed stopX = 0; SkFixed stopY = 0; SkFixed origin; switch (skPaint.getTextAlign()) { case SkPaint::kRight_Align: origin = SK_Fixed1; break; case SkPaint::kCenter_Align: origin = SK_FixedHalf; break; case SkPaint::kLeft_Align: origin = 0; break; default: SkFAIL("Invalid paint origin"); return; } SkAutoKern autokern; const char* stop = text + byteLength; while (textPtr < stop) { // don't need x, y here, since all subpixel variants will have the // same advance const SkGlyph& glyph = glyphCacheProc(cache, &textPtr, 0, 0); SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph); positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width))); SkFixed height = glyph.fAdvanceY; positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height))); stopX += width; stopY += height; } SkASSERT(textPtr == stop); // now adjust starting point depending on alignment SkScalar alignX = SkFixedToScalar(stopX); SkScalar alignY = SkFixedToScalar(stopY); if (skPaint.getTextAlign() == SkPaint::kCenter_Align) { alignX = SkScalarHalf(alignX); alignY = SkScalarHalf(alignY); } else if (skPaint.getTextAlign() == SkPaint::kLeft_Align) { alignX = 0; alignY = 0; } x -= alignX; y -= alignY; SkPoint offset = SkPoint::Make(x, y); this->onDrawPosText(rt, clip, paint, skPaint, viewMatrix, text, byteLength, positions.begin(), 2, offset, regionClipBounds); }
void GrTextUtils::DrawDFText(GrAtlasTextBlob* blob, int runIndex, GrBatchFontCache* fontCache, const SkSurfaceProps& props, const SkPaint& skPaint, GrColor color, const SkMatrix& viewMatrix, const char text[], size_t byteLength, SkScalar x, SkScalar y) { SkASSERT(byteLength == 0 || text != nullptr); // nothing to draw if (text == nullptr || byteLength == 0) { return; } SkPaint::GlyphCacheProc glyphCacheProc = skPaint.getGlyphCacheProc(true); SkAutoDescriptor desc; skPaint.getScalerContextDescriptor(&desc, props, SkPaint::FakeGamma::Off, nullptr); SkGlyphCache* origPaintCache = SkGlyphCache::DetachCache(skPaint.getTypeface(), desc.getDesc()); SkTArray<SkScalar> positions; const char* textPtr = text; SkFixed stopX = 0; SkFixed stopY = 0; SkFixed origin = 0; switch (skPaint.getTextAlign()) { case SkPaint::kRight_Align: origin = SK_Fixed1; break; case SkPaint::kCenter_Align: origin = SK_FixedHalf; break; case SkPaint::kLeft_Align: origin = 0; break; } SkAutoKern autokern; const char* stop = text + byteLength; while (textPtr < stop) { // don't need x, y here, since all subpixel variants will have the // same advance const SkGlyph& glyph = glyphCacheProc(origPaintCache, &textPtr); SkFixed width = glyph.fAdvanceX + autokern.adjust(glyph); positions.push_back(SkFixedToScalar(stopX + SkFixedMul(origin, width))); SkFixed height = glyph.fAdvanceY; positions.push_back(SkFixedToScalar(stopY + SkFixedMul(origin, height))); stopX += width; stopY += height; } SkASSERT(textPtr == stop); SkGlyphCache::AttachCache(origPaintCache); // now adjust starting point depending on alignment SkScalar alignX = SkFixedToScalar(stopX); SkScalar alignY = SkFixedToScalar(stopY); if (skPaint.getTextAlign() == SkPaint::kCenter_Align) { alignX = SkScalarHalf(alignX); alignY = SkScalarHalf(alignY); } else if (skPaint.getTextAlign() == SkPaint::kLeft_Align) { alignX = 0; alignY = 0; } x -= alignX; y -= alignY; SkPoint offset = SkPoint::Make(x, y); DrawDFPosText(blob, runIndex, fontCache, props, skPaint, color, viewMatrix, text, byteLength, positions.begin(), 2, offset); }
bool Op(const SkPath& one, const SkPath& two, SkPathOp op, SkPath* result) { #if DEBUG_SHOW_TEST_NAME char* debugName = DEBUG_FILENAME_STRING; if (debugName && debugName[0]) { SkPathOpsDebug::BumpTestName(debugName); SkPathOpsDebug::ShowPath(one, two, op, debugName); } #endif op = gOpInverse[op][one.isInverseFillType()][two.isInverseFillType()]; SkPath::FillType fillType = gOutInverse[op][one.isInverseFillType()][two.isInverseFillType()] ? SkPath::kInverseEvenOdd_FillType : SkPath::kEvenOdd_FillType; const SkPath* minuend = &one; const SkPath* subtrahend = &two; if (op == kReverseDifference_PathOp) { minuend = &two; subtrahend = &one; op = kDifference_PathOp; } #if DEBUG_SORT || DEBUG_SWAP_TOP SkPathOpsDebug::gSortCount = SkPathOpsDebug::gSortCountDefault; #endif // turn path into list of segments SkTArray<SkOpContour> contours; // FIXME: add self-intersecting cubics' T values to segment SkOpEdgeBuilder builder(*minuend, contours); const int xorMask = builder.xorMask(); builder.addOperand(*subtrahend); if (!builder.finish()) { return false; } result->reset(); result->setFillType(fillType); const int xorOpMask = builder.xorMask(); SkTArray<SkOpContour*, true> contourList; MakeContourList(contours, contourList, xorMask == kEvenOdd_PathOpsMask, xorOpMask == kEvenOdd_PathOpsMask); SkOpContour** currentPtr = contourList.begin(); if (!currentPtr) { return true; } SkOpContour** listEnd = contourList.end(); // find all intersections between segments do { SkOpContour** nextPtr = currentPtr; SkOpContour* current = *currentPtr++; if (current->containsCubics()) { AddSelfIntersectTs(current); } SkOpContour* next; do { next = *nextPtr++; } while (AddIntersectTs(current, next) && nextPtr != listEnd); } while (currentPtr != listEnd); // eat through coincident edges int total = 0; int index; for (index = 0; index < contourList.count(); ++index) { total += contourList[index]->segments().count(); } HandleCoincidence(&contourList, total); // construct closed contours SkPathWriter wrapper(*result); bridgeOp(contourList, op, xorMask, xorOpMask, &wrapper); { // if some edges could not be resolved, assemble remaining fragments SkPath temp; temp.setFillType(fillType); SkPathWriter assembled(temp); Assemble(wrapper, &assembled); *result = *assembled.nativePath(); result->setFillType(fillType); } return true; }
bool SkKTXFile::WriteBitmapToKTX(SkWStream* stream, const SkBitmap& bitmap) { const SkColorType ct = bitmap.colorType(); SkAutoLockPixels alp(bitmap); const int width = bitmap.width(); const int height = bitmap.width(); const uint8_t* src = reinterpret_cast<uint8_t*>(bitmap.getPixels()); if (NULL == bitmap.getPixels()) { return false; } // First thing's first, write out the magic identifier and endianness... if (!stream->write(KTX_FILE_IDENTIFIER, KTX_FILE_IDENTIFIER_SIZE) || !stream->write(&kKTX_ENDIANNESS_CODE, 4)) { return false; } // Collect our key/value pairs... SkTArray<KeyValue> kvPairs; // Next, write the header based on the bitmap's config. Header hdr; switch (ct) { case kIndex_8_SkColorType: // There is a compressed format for this, but we don't support it yet. SkDebugf("Writing indexed bitmap to KTX unsupported.\n"); // VVV fall through VVV default: case kUnknown_SkColorType: // Bitmap hasn't been configured. return false; case kAlpha_8_SkColorType: hdr.fGLType = GR_GL_UNSIGNED_BYTE; hdr.fGLTypeSize = 1; hdr.fGLFormat = GR_GL_RED; hdr.fGLInternalFormat = GR_GL_R8; hdr.fGLBaseInternalFormat = GR_GL_RED; break; case kRGB_565_SkColorType: hdr.fGLType = GR_GL_UNSIGNED_SHORT_5_6_5; hdr.fGLTypeSize = 2; hdr.fGLFormat = GR_GL_RGB; hdr.fGLInternalFormat = GR_GL_RGB; hdr.fGLBaseInternalFormat = GR_GL_RGB; break; case kARGB_4444_SkColorType: hdr.fGLType = GR_GL_UNSIGNED_SHORT_4_4_4_4; hdr.fGLTypeSize = 2; hdr.fGLFormat = GR_GL_RGBA; hdr.fGLInternalFormat = GR_GL_RGBA4; hdr.fGLBaseInternalFormat = GR_GL_RGBA; kvPairs.push_back(CreateKeyValue("KTXPremultipliedAlpha", "True")); break; case kN32_SkColorType: hdr.fGLType = GR_GL_UNSIGNED_BYTE; hdr.fGLTypeSize = 1; hdr.fGLFormat = GR_GL_RGBA; hdr.fGLInternalFormat = GR_GL_RGBA8; hdr.fGLBaseInternalFormat = GR_GL_RGBA; kvPairs.push_back(CreateKeyValue("KTXPremultipliedAlpha", "True")); break; } // Everything else in the header is shared. hdr.fPixelWidth = width; hdr.fPixelHeight = height; hdr.fNumberOfArrayElements = 0; hdr.fNumberOfFaces = 1; hdr.fNumberOfMipmapLevels = 1; // Calculate the key value data size hdr.fBytesOfKeyValueData = 0; for (KeyValue *kv = kvPairs.begin(); kv != kvPairs.end(); ++kv) { // Key value size is the size of the key value data, // four bytes for saying how big the key value size is // and then additional bytes for padding to four byte boundary size_t kvsize = kv->size(); kvsize += 4; kvsize = (kvsize + 3) & ~3; hdr.fBytesOfKeyValueData = SkToU32(hdr.fBytesOfKeyValueData + kvsize); } // Write the header if (!stream->write(&hdr, sizeof(hdr))) { return false; } // Write out each key value pair for (KeyValue *kv = kvPairs.begin(); kv != kvPairs.end(); ++kv) { if (!kv->writeKeyAndValueForKTX(stream)) { return false; } } // Calculate the size of the data int bpp = bitmap.bytesPerPixel(); uint32_t dataSz = bpp * width * height; if (0 >= bpp) { return false; } // Write it into the buffer if (!stream->write(&dataSz, 4)) { return false; } // Write the pixel data... const uint8_t* rowPtr = src; if (kN32_SkColorType == ct) { for (int j = 0; j < height; ++j) { const uint32_t* pixelsPtr = reinterpret_cast<const uint32_t*>(rowPtr); for (int i = 0; i < width; ++i) { uint32_t pixel = pixelsPtr[i]; uint8_t dstPixel[4]; dstPixel[0] = pixel >> SK_R32_SHIFT; dstPixel[1] = pixel >> SK_G32_SHIFT; dstPixel[2] = pixel >> SK_B32_SHIFT; dstPixel[3] = pixel >> SK_A32_SHIFT; if (!stream->write(dstPixel, 4)) { return false; } } rowPtr += bitmap.rowBytes(); } } else { for (int i = 0; i < height; ++i) {
std::unique_ptr<GrFragmentProcessor> GrFragmentProcessor::RunInSeries( std::unique_ptr<GrFragmentProcessor>* series, int cnt) { class SeriesFragmentProcessor : public GrFragmentProcessor { public: static std::unique_ptr<GrFragmentProcessor> Make( std::unique_ptr<GrFragmentProcessor>* children, int cnt) { return std::unique_ptr<GrFragmentProcessor>(new SeriesFragmentProcessor(children, cnt)); } const char* name() const override { return "Series"; } std::unique_ptr<GrFragmentProcessor> clone() const override { SkSTArray<4, std::unique_ptr<GrFragmentProcessor>> children(this->numChildProcessors()); for (int i = 0; i < this->numChildProcessors(); ++i) { if (!children.push_back(this->childProcessor(i).clone())) { return nullptr; } } return Make(children.begin(), this->numChildProcessors()); } private: GrGLSLFragmentProcessor* onCreateGLSLInstance() const override { class GLFP : public GrGLSLFragmentProcessor { public: void emitCode(EmitArgs& args) override { // First guy's input might be nil. SkString temp("out0"); this->emitChild(0, args.fInputColor, &temp, args); SkString input = temp; for (int i = 1; i < this->numChildProcessors() - 1; ++i) { temp.printf("out%d", i); this->emitChild(i, input.c_str(), &temp, args); input = temp; } // Last guy writes to our output variable. this->emitChild(this->numChildProcessors() - 1, input.c_str(), args); } }; return new GLFP; } SeriesFragmentProcessor(std::unique_ptr<GrFragmentProcessor>* children, int cnt) : INHERITED(kSeriesFragmentProcessor_ClassID, OptFlags(children, cnt)) { SkASSERT(cnt > 1); for (int i = 0; i < cnt; ++i) { this->registerChildProcessor(std::move(children[i])); } } static OptimizationFlags OptFlags(std::unique_ptr<GrFragmentProcessor>* children, int cnt) { OptimizationFlags flags = kAll_OptimizationFlags; for (int i = 0; i < cnt && flags != kNone_OptimizationFlags; ++i) { flags &= children[i]->optimizationFlags(); } return flags; } void onGetGLSLProcessorKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override {} bool onIsEqual(const GrFragmentProcessor&) const override { return true; } GrColor4f constantOutputForConstantInput(GrColor4f color) const override { int childCnt = this->numChildProcessors(); for (int i = 0; i < childCnt; ++i) { color = ConstantOutputForConstantInput(this->childProcessor(i), color); } return color; } typedef GrFragmentProcessor INHERITED; }; if (!cnt) { return nullptr; } if (1 == cnt) { return std::move(series[0]); } // Run the through the series, do the invariant output processing, and look for eliminations. GrProcessorAnalysisColor inputColor; inputColor.setToUnknown(); GrColorFragmentProcessorAnalysis info(inputColor, unique_ptr_address_as_pointer_address(series), cnt); SkTArray<std::unique_ptr<GrFragmentProcessor>> replacementSeries; GrColor4f knownColor; int leadingFPsToEliminate = info.initialProcessorsToEliminate(&knownColor); if (leadingFPsToEliminate) { std::unique_ptr<GrFragmentProcessor> colorFP( GrConstColorProcessor::Make(knownColor, GrConstColorProcessor::InputMode::kIgnore)); if (leadingFPsToEliminate == cnt) { return colorFP; } cnt = cnt - leadingFPsToEliminate + 1; replacementSeries.reserve(cnt); replacementSeries.emplace_back(std::move(colorFP)); for (int i = 0; i < cnt - 1; ++i) { replacementSeries.emplace_back(std::move(series[leadingFPsToEliminate + i])); } series = replacementSeries.begin(); } return SeriesFragmentProcessor::Make(series, cnt); }