virtual void blitRect(int x, int y, int width, int height) { SkASSERT(width > 0 && height > 0); SK_RESTRICT SkPMColor* dst = fDevice->getAddr32(x, y); const SK_RESTRICT SkPMColor16* src = fSource->getAddr16(x - fLeft, y - fTop); unsigned dstRB = fDevice->rowBytes(); unsigned srcRB = fSource->rowBytes(); SK_RESTRICT SkPMColor* buffer = fBuffer; SkColorFilter* colorFilter = fColorFilter; SkXfermode* xfermode = fXfermode; do { fillbuffer(buffer, src, width); if (NULL != colorFilter) { colorFilter->filterSpan(buffer, width, buffer); } if (NULL != xfermode) { xfermode->xfer32(dst, buffer, width, NULL); } else { fProc32(dst, buffer, width, fAlpha); } dst = (SK_RESTRICT SkPMColor*)((char*)dst + dstRB); src = (const SK_RESTRICT SkPMColor16*)((const char*)src + srcRB); } while (--height != 0); }
void SkComposeShader::ComposeShaderContext::shadeSpan(int x, int y, SkPMColor result[], int count) { SkShader::Context* shaderContextA = fShaderContextA; SkShader::Context* shaderContextB = fShaderContextB; SkBlendMode mode = static_cast<const SkComposeShader&>(fShader).fMode; unsigned scale = SkAlpha255To256(this->getPaintAlpha()); SkPMColor tmp[TMP_COLOR_COUNT]; SkXfermode* xfer = SkXfermode::Peek(mode); if (nullptr == xfer) { // implied SRC_OVER // TODO: when we have a good test-case, should use SkBlitRow::Proc32 // for these loops do { int n = count; if (n > TMP_COLOR_COUNT) { n = TMP_COLOR_COUNT; } shaderContextA->shadeSpan(x, y, result, n); shaderContextB->shadeSpan(x, y, tmp, n); if (256 == scale) { for (int i = 0; i < n; i++) { result[i] = SkPMSrcOver(tmp[i], result[i]); } } else { for (int i = 0; i < n; i++) { result[i] = SkAlphaMulQ(SkPMSrcOver(tmp[i], result[i]), scale); } } result += n; x += n; count -= n; } while (count > 0); } else { // use mode for the composition do { int n = count; if (n > TMP_COLOR_COUNT) { n = TMP_COLOR_COUNT; } shaderContextA->shadeSpan(x, y, result, n); shaderContextB->shadeSpan(x, y, tmp, n); xfer->xfer32(result, tmp, n, nullptr); if (256 != scale) { for (int i = 0; i < n; i++) { result[i] = SkAlphaMulQ(result[i], scale); } } result += n; x += n; count -= n; } while (count > 0); } }
void SkComposeShader::shadeSpan(int x, int y, SkPMColor result[], int count) { SkShader* shaderA = fShaderA; SkShader* shaderB = fShaderB; SkXfermode* mode = fMode; unsigned scale = SkAlpha255To256(this->getPaintAlpha()); SkPMColor tmp[TMP_COLOR_COUNT]; if (NULL == mode) { // implied SRC_OVER // TODO: when we have a good test-case, should use SkBlitRow::Proc32 // for these loops do { int n = count; if (n > TMP_COLOR_COUNT) { n = TMP_COLOR_COUNT; } shaderA->shadeSpan(x, y, result, n); shaderB->shadeSpan(x, y, tmp, n); if (256 == scale) { for (int i = 0; i < n; i++) { result[i] = SkPMSrcOver(tmp[i], result[i]); } } else { for (int i = 0; i < n; i++) { result[i] = SkAlphaMulQ(SkPMSrcOver(tmp[i], result[i]), scale); } } result += n; x += n; count -= n; } while (count > 0); } else { // use mode for the composition do { int n = count; if (n > TMP_COLOR_COUNT) { n = TMP_COLOR_COUNT; } shaderA->shadeSpan(x, y, result, n); shaderB->shadeSpan(x, y, tmp, n); mode->xfer32(result, tmp, n, NULL); if (256 == scale) { for (int i = 0; i < n; i++) { result[i] = SkAlphaMulQ(result[i], scale); } } result += n; x += n; count -= n; } while (count > 0); } }
void SkARGB32_Shader_Blitter::blitMask(const SkMask& mask, const SkIRect& clip) { // we only handle kA8 with an xfermode if (fXfermode && (SkMask::kA8_Format != mask.fFormat)) { this->INHERITED::blitMask(mask, clip); return; } SkASSERT(mask.fBounds.contains(clip)); SkBlitMask::RowProc proc = NULL; if (!fXfermode) { unsigned flags = 0; if (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag) { flags |= SkBlitMask::kSrcIsOpaque_RowFlag; } proc = SkBlitMask::RowFactory(SkBitmap::kARGB_8888_Config, mask.fFormat, (SkBlitMask::RowFlags)flags); if (NULL == proc) { this->INHERITED::blitMask(mask, clip); return; } } const int x = clip.fLeft; const int width = clip.width(); int y = clip.fTop; int height = clip.height(); char* dstRow = (char*)fDevice.getAddr32(x, y); const size_t dstRB = fDevice.rowBytes(); const uint8_t* maskRow = (const uint8_t*)mask.getAddr(x, y); const size_t maskRB = mask.fRowBytes; SkShader* shader = fShader; SkPMColor* span = fBuffer; if (fXfermode) { SkASSERT(SkMask::kA8_Format == mask.fFormat); SkXfermode* xfer = fXfermode; do { shader->shadeSpan(x, y, span, width); xfer->xfer32((SkPMColor*)dstRow, span, width, maskRow); dstRow += dstRB; maskRow += maskRB; y += 1; } while (--height > 0); } else { do { shader->shadeSpan(x, y, span, width); proc(dstRow, maskRow, span, width); dstRow += dstRB; maskRow += maskRB; y += 1; } while (--height > 0); } }
void SkARGB32_Shader_Blitter::blitAntiH(int x, int y, const SkAlpha antialias[], const int16_t runs[]) { SkPMColor* span = fBuffer; uint32_t* device = fDevice.getAddr32(x, y); SkShader* shader = fShader; if (fXfermode) { for (;;) { SkXfermode* xfer = fXfermode; int count = *runs; if (count <= 0) break; int aa = *antialias; if (aa) { shader->shadeSpan(x, y, span, count); if (aa == 255) { xfer->xfer32(device, span, count, NULL); } else { // count is almost always 1 for (int i = count - 1; i >= 0; --i) { xfer->xfer32(&device[i], &span[i], 1, antialias); } } } device += count; runs += count; antialias += count; x += count; } } else if (fShader->getFlags() & SkShader::kOpaqueAlpha_Flag) { for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (aa) { if (aa == 255) { // cool, have the shader draw right into the device shader->shadeSpan(x, y, device, count); } else { shader->shadeSpan(x, y, span, count); fProc32Blend(device, span, count, aa); } } device += count; runs += count; antialias += count; x += count; } } else { // no xfermode but the shader not opaque for (;;) { int count = *runs; if (count <= 0) { break; } int aa = *antialias; if (aa) { fShader->shadeSpan(x, y, span, count); if (aa == 255) { fProc32(device, span, count, 255); } else { fProc32Blend(device, span, count, aa); } } device += count; runs += count; antialias += count; x += count; } } }
void SkComposeShader::ComposeShaderContext::shadeSpan(int x, int y, SkPMColor result[], int count) { SkShader::Context* shaderContextA = fShaderContextA; SkShader::Context* shaderContextB = fShaderContextB; SkXfermode* mode = static_cast<const SkComposeShader&>(fShader).fMode; unsigned scale = SkAlpha255To256(this->getPaintAlpha()); #ifdef SK_BUILD_FOR_ANDROID scale = 256; // ugh -- maintain old bug/behavior for now #endif SkPMColor tmp[TMP_COLOR_COUNT]; if (NULL == mode) { // implied SRC_OVER // TODO: when we have a good test-case, should use SkBlitRow::Proc32 // for these loops do { int n = count; if (n > TMP_COLOR_COUNT) { n = TMP_COLOR_COUNT; } shaderContextA->shadeSpan(x, y, result, n); shaderContextB->shadeSpan(x, y, tmp, n); if (256 == scale) { for (int i = 0; i < n; i++) { result[i] = SkPMSrcOver(tmp[i], result[i]); } } else { for (int i = 0; i < n; i++) { result[i] = SkAlphaMulQ(SkPMSrcOver(tmp[i], result[i]), scale); } } result += n; x += n; count -= n; } while (count > 0); } else { // use mode for the composition do { int n = count; if (n > TMP_COLOR_COUNT) { n = TMP_COLOR_COUNT; } shaderContextA->shadeSpan(x, y, result, n); shaderContextB->shadeSpan(x, y, tmp, n); mode->xfer32(result, tmp, n, NULL); if (256 != scale) { for (int i = 0; i < n; i++) { result[i] = SkAlphaMulQ(result[i], scale); } } result += n; x += n; count -= n; } while (count > 0); } }