int main() { double euc_noise = 0.01; // noise in position, m // double outlier_ratio = 0.1; SparseOptimizer optimizer; optimizer.setMethod(SparseOptimizer::LevenbergMarquardt); optimizer.setVerbose(false); // variable-size block solver BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCholmod<g2o ::BlockSolverX::PoseMatrixType>(); BlockSolverX * solver_ptr = new BlockSolverX(&optimizer,linearSolver); optimizer.setSolver(solver_ptr); vector<Vector3d> true_points; for (size_t i=0;i<1000; ++i) { true_points.push_back(Vector3d((Sample::uniform()-0.5)*3, Sample::uniform()-0.5, Sample::uniform()+10)); } // set up two poses int vertex_id = 0; for (size_t i=0; i<2; ++i) { // set up rotation and translation for this node Vector3d t(0,0,i); Quaterniond q; q.setIdentity(); SE3Quat cam(q,t); // camera pose // set up node VertexSE3 *vc = new VertexSE3(); vc->estimate() = cam; vc->setId(vertex_id); // vertex id cerr << t.transpose() << " | " << q.coeffs().transpose() << endl; // set first cam pose fixed if (i==0) vc->setFixed(true); // add to optimizer optimizer.addVertex(vc); vertex_id++; } // set up point matches for (size_t i=0; i<true_points.size(); ++i) { // get two poses VertexSE3* vp0 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second); VertexSE3* vp1 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); // calculate the relative 3D position of the point Vector3d pt0,pt1; pt0 = vp0->estimate().inverse().map(true_points[i]); pt1 = vp1->estimate().inverse().map(true_points[i]); // add in noise pt0 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); pt1 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); // form edge, with normals in varioius positions Vector3d nm0, nm1; nm0 << 0, i, 1; nm1 << 0, i, 1; nm0.normalize(); nm1.normalize(); Edge_V_V_GICP * e // new edge with correct cohort for caching = new Edge_V_V_GICP(); e->vertices()[0] // first viewpoint = dynamic_cast<OptimizableGraph::Vertex*>(vp0); e->vertices()[1] // second viewpoint = dynamic_cast<OptimizableGraph::Vertex*>(vp1); e->measurement().pos0 = pt0; e->measurement().pos1 = pt1; e->measurement().normal0 = nm0; e->measurement().normal1 = nm1; // e->inverseMeasurement().pos() = -kp; // use this for point-plane e->information() = e->measurement().prec0(0.01); // use this for point-point // e->information().setIdentity(); // e->setRobustKernel(true); e->setHuberWidth(0.01); optimizer.addEdge(e); } // move second cam off of its true position VertexSE3* vc = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); SE3Quat &cam = vc->estimate(); cam.translation() = Vector3d(0,0,0.2); optimizer.initializeOptimization(); optimizer.computeActiveErrors(); cout << "Initial chi2 = " << FIXED(optimizer.chi2()) << endl; optimizer.setVerbose(true); optimizer.optimize(5); cout << endl << "Second vertex should be near 0,0,1" << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second) ->estimate().translation().transpose() << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second) ->estimate().translation().transpose() << endl; }
int main(int argc, char **argv) { int num_points = 0; // check for arg, # of points to use in projection SBA if (argc > 1) num_points = atoi(argv[1]); double euc_noise = 0.1; // noise in position, m double pix_noise = 1.0; // pixel noise // double outlier_ratio = 0.1; SparseOptimizer optimizer; optimizer.setMethod(SparseOptimizer::LevenbergMarquardt); optimizer.setVerbose(false); // variable-size block solver BlockSolverX::LinearSolverType * linearSolver = new LinearSolverCholmod<g2o ::BlockSolverX::PoseMatrixType>(); BlockSolverX * solver_ptr = new BlockSolverX(&optimizer,linearSolver); optimizer.setSolver(solver_ptr); vector<Vector3d> true_points; for (size_t i=0;i<1000; ++i) { true_points.push_back(Vector3d((Sample::uniform()-0.5)*3, Sample::uniform()-0.5, Sample::uniform()+10)); } // set up camera params Vector2d focal_length(500,500); // pixels Vector2d principal_point(320,240); // 640x480 image double baseline = 0.075; // 7.5 cm baseline // set up camera params and projection matrices on vertices g2o::VertexSCam::setKcam(focal_length[0],focal_length[1], principal_point[0],principal_point[1], baseline); // set up two poses int vertex_id = 0; for (size_t i=0; i<2; ++i) { // set up rotation and translation for this node Vector3d t(0,0,i); Quaterniond q; q.setIdentity(); SE3Quat cam(q,t); // camera pose // set up node VertexSCam *vc = new VertexSCam(); vc->estimate() = cam; vc->setId(vertex_id); // vertex id cerr << t.transpose() << " | " << q.coeffs().transpose() << endl; // set first cam pose fixed if (i==0) vc->setFixed(true); // make sure projection matrices are set vc->setAll(); // add to optimizer optimizer.addVertex(vc); vertex_id++; } // set up point matches for GICP for (size_t i=0; i<true_points.size(); ++i) { // get two poses VertexSE3* vp0 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second); VertexSE3* vp1 = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); // calculate the relative 3D position of the point Vector3d pt0,pt1; pt0 = vp0->estimate().inverse().map(true_points[i]); pt1 = vp1->estimate().inverse().map(true_points[i]); // add in noise pt0 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); pt1 += Vector3d(Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise ), Sample::gaussian(euc_noise )); // form edge, with normals in varioius positions Vector3d nm0, nm1; nm0 << 0, i, 1; nm1 << 0, i, 1; nm0.normalize(); nm1.normalize(); Edge_V_V_GICP * e // new edge with correct cohort for caching = new Edge_V_V_GICP(); e->vertices()[0] // first viewpoint = dynamic_cast<OptimizableGraph::Vertex*>(vp0); e->vertices()[1] // second viewpoint = dynamic_cast<OptimizableGraph::Vertex*>(vp1); e->measurement().pos0 = pt0; e->measurement().pos1 = pt1; e->measurement().normal0 = nm0; e->measurement().normal1 = nm1; // e->inverseMeasurement().pos() = -kp; // use this for point-plane e->information() = e->measurement().prec0(0.01); // use this for point-point // e->information().setIdentity(); // e->setRobustKernel(true); e->setHuberWidth(0.01); optimizer.addEdge(e); } // set up SBA projections with some number of points true_points.clear(); for (int i=0;i<num_points; ++i) { true_points.push_back(Vector3d((Sample::uniform()-0.5)*3, Sample::uniform()-0.5, Sample::uniform()+10)); } // add point projections to this vertex for (size_t i=0; i<true_points.size(); ++i) { g2o::VertexPointXYZ * v_p = new g2o::VertexPointXYZ(); v_p->setId(vertex_id++); v_p->setMarginalized(true); v_p->estimate() = true_points.at(i) + Vector3d(Sample::gaussian(1), Sample::gaussian(1), Sample::gaussian(1)); optimizer.addVertex(v_p); for (size_t j=0; j<2; ++j) { Vector3d z; dynamic_cast<g2o::VertexSCam*> (optimizer.vertices().find(j)->second) ->mapPoint(z,true_points.at(i)); if (z[0]>=0 && z[1]>=0 && z[0]<640 && z[1]<480) { z += Vector3d(Sample::gaussian(pix_noise), Sample::gaussian(pix_noise), Sample::gaussian(pix_noise/16.0)); g2o::Edge_XYZ_VSC * e = new g2o::Edge_XYZ_VSC(); e->vertices()[0] = dynamic_cast<g2o::OptimizableGraph::Vertex*>(v_p); e->vertices()[1] = dynamic_cast<g2o::OptimizableGraph::Vertex*> (optimizer.vertices().find(j)->second); e->measurement() = z; e->inverseMeasurement() = -z; e->information() = Matrix3d::Identity(); e->setRobustKernel(false); e->setHuberWidth(1); optimizer.addEdge(e); } } } // done with adding projection points // move second cam off of its true position VertexSE3* vc = dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second); SE3Quat &cam = vc->estimate(); cam.translation() = Vector3d(-0.1,0.1,0.2); optimizer.initializeOptimization(); optimizer.computeActiveErrors(); cout << "Initial chi2 = " << FIXED(optimizer.chi2()) << endl; optimizer.setVerbose(true); optimizer.optimize(20); cout << endl << "Second vertex should be near 0,0,1" << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(0)->second) ->estimate().translation().transpose() << endl; cout << dynamic_cast<VertexSE3*>(optimizer.vertices().find(1)->second) ->estimate().translation().transpose() << endl; }