Exemple #1
0
/*
 * Returns true iff `block' ends the IR unit after finishing execution
 * of the bytecode instruction at `sk'.
 */
static bool endsUnitAtSrcKey(const Block* block, SrcKey sk) {
  if (!block->isExitNoThrow()) return false;

  const auto& inst = block->back();
  const auto  instSk = inst.marker().sk();

  switch (inst.op()) {
    // These instructions end a unit after executing the bytecode
    // instruction they correspond to.
    case InterpOneCF:
    case JmpSSwitchDest:
    case JmpSwitchDest:
    case RaiseError:
      return instSk == sk;;

    // The RetCtrl is generally ending a bytecode instruction, with the
    // exception being in an Await bytecode instruction, where we consider the
    // end of the bytecode instruction to be the non-suspending path.
    case RetCtrl:
    case AsyncRetCtrl:
      return inst.marker().sk().op() != Op::Await;

    // A ReqBindJmp ends a unit and it jumps to the next instruction
    // to execute.
    case ReqBindJmp: {
      auto destOffset = inst.extra<ReqBindJmp>()->dest.offset();
      return sk.succOffsets().count(destOffset);
    }

    default:
      return false;
  }
}
Exemple #2
0
/*
 * Returns true iff `block' ends the IR unit after finishing execution
 * of the bytecode instruction at `sk'.
 */
static bool endsUnitAtSrcKey(const Block* block, SrcKey sk) {
  if (!block->isExitNoThrow()) return false;

  const auto& inst = block->back();
  const auto  instSk = inst.marker().sk();

  switch (inst.op()) {
    // These instructions end a unit after executing the bytecode
    // instruction they correspond to.
    case InterpOneCF:
    case JmpSSwitchDest:
    case JmpSwitchDest:
    case RaiseError:
    case ThrowOutOfBounds:
    case ThrowInvalidArrayKey:
    case ThrowInvalidOperation:
    case ThrowArithmeticError:
    case ThrowDivisionByZeroError:
    case VerifyParamFailHard:
    case VerifyRetFailHard:
    case Unreachable:
    case EndBlock:
    case FatalMissingThis:
      return instSk == sk;

    // The RetCtrl is generally ending a bytecode instruction, with the
    // exception being in an Await bytecode instruction, where we consider the
    // end of the bytecode instruction to be the non-suspending path.
    case RetCtrl:
    case AsyncRetCtrl:
    case AsyncRetFast:
    case AsyncSwitchFast:
      return inst.marker().sk().op() != Op::Await;

    // A ReqBindJmp ends a unit and it jumps to the next instruction to
    // execute.
    case ReqBindJmp: {
      auto destOffset = inst.extra<ReqBindJmp>()->target.offset();
      return sk.succOffsets().count(destOffset);
    }

    default:
      return false;
  }
}
/*
 * Checks if the given region is well-formed, which entails the
 * following properties:
 *
 *   1) The region has at least one block.
 *
 *   2) Each block in the region has a different id.
 *
 *   3) All arcs involve blocks within the region.
 *
 *   4) For each arc, the bytecode offset of the dst block must
 *      possibly follow the execution of the src block.
 *
 *   5) Each block contains at most one successor corresponding to a
 *      given SrcKey.
 *
 *   6) The region doesn't contain any loops, unless JitLoops is
 *      enabled.
 *
 *   7) All blocks are reachable from the entry block.
 *
 *   8) For each block, there must be a path from the entry to it that
 *      includes only earlier blocks in the region.
 *
 *   9) The region is topologically sorted unless loops are enabled.
 *
 *  10) The block-retranslation chains cannot have cycles.
 *
 */
bool check(const RegionDesc& region, std::string& error) {

  auto bad = [&](const std::string& errorMsg) {
    error = errorMsg;
    return false;
  };

  // 1) The region has at least one block.
  if (region.empty()) return bad("empty region");

  RegionDesc::BlockIdSet blockSet;
  for (auto b : region.blocks()) {
    auto bid = b->id();
    // 2) Each block in the region has a different id.
    if (blockSet.count(bid)) {
      return bad(folly::sformat("many blocks with id {}", bid));
    }
    blockSet.insert(bid);
  }

  for (auto b : region.blocks()) {
    auto bid = b->id();
    SrcKey    lastSk = region.block(bid)->last();
    OffsetSet validSuccOffsets = lastSk.succOffsets();
    OffsetSet succOffsets;

    for (auto succ : region.succs(bid)) {
      SrcKey succSk = region.block(succ)->start();
      Offset succOffset = succSk.offset();

      // 3) All arcs involve blocks within the region.
      if (blockSet.count(succ) == 0) {
        return bad(folly::sformat("arc with dst not in the region: {} -> {}",
                                  bid, succ));
      }

      // Checks 4) and 5) below don't make sense for arcs corresponding
      // to inlined calls and returns, so skip them in such cases.
      // This won't be possible once task #4076399 is done.
      if (lastSk.func() != succSk.func()) continue;

      // 4) For each arc, the bytecode offset of the dst block must
      //    possibly follow the execution of the src block.
      if (validSuccOffsets.count(succOffset) == 0) {
        return bad(folly::sformat("arc with impossible control flow: {} -> {}",
                                  bid, succ));
      }

      // 5) Each block contains at most one successor corresponding to a
      //    given SrcKey.
      if (succOffsets.count(succOffset) > 0) {
        return bad(folly::sformat("block {} has multiple successors with SK {}",
                                  bid, show(succSk)));
      }
      succOffsets.insert(succOffset);
    }
    for (auto pred : region.preds(bid)) {
      if (blockSet.count(pred) == 0) {
        return bad(folly::sformat("arc with src not in the region: {} -> {}",
                                  pred, bid));
      }
    }
  }

  // 6) is checked by dfsCheck.
  DFSChecker dfsCheck(region);
  if (!dfsCheck.check(region.entry()->id())) {
    return bad("region is cyclic");
  }

  // 7) All blocks are reachable from the entry (first) block.
  if (dfsCheck.numVisited() != blockSet.size()) {
    return bad("region has unreachable blocks");
  }

  // 8) and 9) are checked below.
  RegionDesc::BlockIdSet visited;
  auto& blocks = region.blocks();
  for (unsigned i = 0; i < blocks.size(); i++) {
    auto bid = blocks[i]->id();
    unsigned nVisited = 0;
    for (auto pred : region.preds(bid)) {
      nVisited += visited.count(pred);
    }
    // 8) For each block, there must be a path from the entry to it that
    //    includes only earlier blocks in the region.
    if (nVisited == 0 && i != 0) {
      return bad(folly::sformat("block {} appears before all its predecessors",
                                bid));
    }
    // 9) The region is topologically sorted unless loops are enabled.
    if (!RuntimeOption::EvalJitLoops && nVisited != region.preds(bid).size()) {
      return bad(folly::sformat("non-topological order (bid: {})", bid));
    }
    visited.insert(bid);
  }

  // 10) The block-retranslation chains cannot have cycles.
  for (auto b : blocks) {
    auto bid = b->id();
    RegionDesc::BlockIdSet chainSet;
    chainSet.insert(bid);
    while (auto next = region.nextRetrans(bid)) {
      auto nextId = next.value();
      if (chainSet.count(nextId)) {
        return bad(folly::sformat("cyclic retranslation chain for block {}",
                                  bid));
      }
      chainSet.insert(nextId);
      bid = nextId;
    }
  }

  return true;
}