TEST(StaticVectorTest, push_get) {
	StaticVector<int> sVect;

	auto ref1 = sVect.push_back(23);
	auto ref2 = sVect.push_back(24);
	auto ref3 = sVect.push_back(25);

	ASSERT_EQ(23, ref1.get());
	ASSERT_EQ(24, ref2.get());
	ASSERT_EQ(25, ref3.get());

	ASSERT_EQ(size_t(3), sVect.activeSize());

	sVect.remove(ref2);

	ASSERT_EQ(size_t(2), sVect.activeSize());

	auto ref4 = sVect.push_back(45);
	ASSERT_EQ(45, ref4.get());
	ASSERT_EQ(size_t(3), sVect.activeSize());

	auto findInsert = [] ( int const& it ) -> bool {return it > 30;};
	auto ref5 = sVect.push(55, findInsert);
	ASSERT_EQ(55, ref5.get());

	// we expect it at positon 2
	ASSERT_EQ(55, sVect.get(2));
	ASSERT_EQ(45, sVect.get(3));

}
Exemple #2
0
    void completeGame(GoState& s, StaticVector<GoMove, MAX_GAME_LENGTH>& move_seq, RNG &rng) {
        bool game_over = false;

        unsigned int moves = 0;

        while (!game_over) {
            moves++;
            GoMove move = selectMove(s, rng);
            assert(s.isValidMove(move));

            if (move.isPass() && s.getPreviousMoveWasPass()) {
                game_over = true;
            }

            s.makeMove(move);
            move_seq.push_back(move);
        }
    }
Exemple #3
0
static void FindHubAreas()
{
    if (!hubAreas.empty())
        return;

    AiAasWorld *aasWorld = AiAasWorld::Instance();
    if (!aasWorld->IsLoaded())
        return;

    // Select not more than hubAreas.capacity() grounded areas that have highest connectivity to other areas.

    struct AreaAndReachCount
    {
        int area, reachCount;
        AreaAndReachCount(int area_, int reachCount_): area(area_), reachCount(reachCount_) {}
        // Ensure that area with lowest reachCount will be evicted in pop_heap(), so use >
        bool operator<(const AreaAndReachCount &that) const { return reachCount > that.reachCount; }
    };

    StaticVector<AreaAndReachCount, hubAreas.capacity() + 1> bestAreasHeap;
    for (int i = 1; i < aasWorld->NumAreas(); ++i)
    {
        const auto &areaSettings = aasWorld->AreaSettings()[i];
        if (!(areaSettings.areaflags & AREA_GROUNDED))
            continue;
        if (areaSettings.areaflags & AREA_DISABLED)
            continue;
        if (areaSettings.contents & (AREACONTENTS_DONOTENTER|AREACONTENTS_LAVA|AREACONTENTS_SLIME|AREACONTENTS_WATER))
            continue;

        // Reject degenerate areas, pass only relatively large areas
        const auto &area = aasWorld->Areas()[i];
        if (area.maxs[0] - area.mins[0] < 128.0f)
            continue;
        if (area.maxs[1] - area.mins[1] < 128.0f)
            continue;

        // Count as useful only several kinds of reachabilities
        int usefulReachCount = 0;
        int reachNum = areaSettings.firstreachablearea;
        int lastReachNum = areaSettings.firstreachablearea + areaSettings.numreachableareas - 1;
        while (reachNum <= lastReachNum)
        {
            const auto &reach = aasWorld->Reachabilities()[reachNum];
            if (reach.traveltype == TRAVEL_WALK || reach.traveltype == TRAVEL_WALKOFFLEDGE)
                usefulReachCount++;
            ++reachNum;
        }

        // Reject early to avoid more expensive call to push_heap()
        if (!usefulReachCount)
            continue;

        bestAreasHeap.push_back(AreaAndReachCount(i, usefulReachCount));
        std::push_heap(bestAreasHeap.begin(), bestAreasHeap.end());

        // bestAreasHeap size should be always less than its capacity:
        // 1) to ensure that there is a free room for next area;
        // 2) to ensure that hubAreas capacity will not be exceeded.
        if (bestAreasHeap.size() == bestAreasHeap.capacity())
        {
            std::pop_heap(bestAreasHeap.begin(), bestAreasHeap.end());
            bestAreasHeap.pop_back();
        }
    }
    static_assert(bestAreasHeap.capacity() == hubAreas.capacity() + 1, "");
    for (const auto &areaAndReachCount: bestAreasHeap)
        hubAreas.push_back(areaAndReachCount.area);
}
Exemple #4
0
void Bot::RegisterVisibleEnemies()
{
    if(G_ISGHOSTING(self) || GS_MatchState() == MATCH_STATE_COUNTDOWN || GS_ShootingDisabled())
        return;

    CheckIsInThinkFrame(__FUNCTION__);

    // Compute look dir before loop
    vec3_t lookDir;
    AngleVectors(self->s.angles, lookDir, nullptr, nullptr);

    float fov = 110.0f + 69.0f * Skill();
    float dotFactor = cosf((float)DEG2RAD(fov / 2));

    struct EntAndDistance
    {
        int entNum;
        float distance;

        EntAndDistance(int entNum_, float distance_): entNum(entNum_), distance(distance_) {}
        bool operator<(const EntAndDistance &that) const { return distance < that.distance; }
    };

    // Do not call inPVS() and G_Visible() for potential targets inside a loop for all clients.
    // In worst case when all bots may see each other we get N^2 traces and PVS tests
    // First, select all candidate targets along with distance to a bot.
    // Then choose not more than BotBrain::maxTrackedEnemies nearest enemies for calling OnEnemyViewed()
    // It may cause data loss (far enemies may have higher logical priority),
    // but in a common good case (when there are few visible enemies) it preserves data,
    // and in the worst case mentioned above it does not act weird from player POV and prevents server hang up.
    // Note: non-client entities also may be candidate targets.
    StaticVector<EntAndDistance, MAX_EDICTS> candidateTargets;

    for (int i = 1; i < game.numentities; ++i)
    {
        edict_t *ent = game.edicts + i;
        if (botBrain.MayNotBeFeasibleEnemy(ent))
            continue;

        // Reject targets quickly by fov
        Vec3 toTarget(ent->s.origin);
        toTarget -= self->s.origin;
        float squareDistance = toTarget.SquaredLength();
        if (squareDistance < 1)
            continue;
        float invDistance = Q_RSqrt(squareDistance);
        toTarget *= invDistance;
        if (toTarget.Dot(lookDir) < dotFactor)
            continue;

        // It seams to be more instruction cache-friendly to just add an entity to a plain array
        // and sort it once after the loop instead of pushing an entity in a heap on each iteration
        candidateTargets.emplace_back(EntAndDistance(ENTNUM(ent), 1.0f / invDistance));
    }

    std::sort(candidateTargets.begin(), candidateTargets.end());

    // Select inPVS/visible targets first to aid instruction cache, do not call callbacks in loop
    StaticVector<edict_t *, MAX_CLIENTS> targetsInPVS;
    StaticVector<edict_t *, MAX_CLIENTS> visibleTargets;

    static_assert(AiBaseEnemyPool::MAX_TRACKED_ENEMIES <= MAX_CLIENTS, "targetsInPVS capacity may be exceeded");

    for (int i = 0, end = std::min(candidateTargets.size(), botBrain.MaxTrackedEnemies()); i < end; ++i)
    {
        edict_t *ent = game.edicts + candidateTargets[i].entNum;
        if (trap_inPVS(self->s.origin, ent->s.origin))
            targetsInPVS.push_back(ent);
    }

    for (auto ent: targetsInPVS)
        if (G_Visible(self, ent))
            visibleTargets.push_back(ent);

    // Call bot brain callbacks on visible targets
    for (auto ent: visibleTargets)
        botBrain.OnEnemyViewed(ent);

    botBrain.AfterAllEnemiesViewed();

    CheckAlertSpots(visibleTargets);
}
SelectedNavEntity BotItemsSelector::SuggestGoalNavEntity( const SelectedNavEntity &currSelectedNavEntity ) {
	UpdateInternalItemAndGoalWeights();

	StaticVector<NavEntityAndWeight, MAX_NAVENTS> rawWeightCandidates;
	const auto levelTime = level.time;
	auto *navEntitiesRegistry = NavEntitiesRegistry::Instance();
	for( auto it = navEntitiesRegistry->begin(), end = navEntitiesRegistry->end(); it != end; ++it ) {
		const NavEntity *navEnt = *it;
		if( navEnt->IsDisabled() ) {
			continue;
		}

		// We cannot just set a zero internal weight for a temporarily disabled nav entity
		// (it might be overridden by an external weight, and we should not modify external weights
		// as script users expect them remaining the same unless explicitly changed via script API)
		if( disabledForSelectionUntil[navEnt->Id()] >= levelTime ) {
			continue;
		}

		// Since movable goals have been introduced (and clients qualify as movable goals), prevent picking itself as a goal.
		if( navEnt->Id() == ENTNUM( self ) ) {
			continue;
		}

		if( navEnt->Item() && !G_Gametype_CanPickUpItem( navEnt->Item() ) ) {
			continue;
		}

		// Reject an entity quickly if it looks like blocked by an enemy that is close to the entity.
		// Note than passing this test does not guarantee that entire path to the entity is not blocked by enemies.
		if( self->ai->botRef->routeCache->AreaDisabled( navEnt->AasAreaNum() ) ) {
			continue;
		}

		// This is a coarse and cheap test, helps to reject recently picked armors and powerups
		unsigned spawnTime = navEnt->SpawnTime();
		// A feasible spawn time (non-zero) always >= level.time.
		if( !spawnTime || level.time - spawnTime > 15000 ) {
			continue;
		}

		float weight = GetEntityWeight( navEnt->Id() );
		if( weight > 0 ) {
			rawWeightCandidates.push_back( NavEntityAndWeight( navEnt, weight ) );
		}
	}

	// Sort all pre-selected candidates by their raw weights
	std::sort( rawWeightCandidates.begin(), rawWeightCandidates.end() );

	// Try checking whether the bot is in some floor cluster to give a greater weight for items in the same cluster
	int currFloorClusterNum = 0;
	const auto &entityPhysicsState = self->ai->botRef->EntityPhysicsState();
	const auto *aasFloorClusterNums = AiAasWorld::Instance()->AreaFloorClusterNums();
	if( aasFloorClusterNums[entityPhysicsState->CurrAasAreaNum()] ) {
		currFloorClusterNum = aasFloorClusterNums[entityPhysicsState->CurrAasAreaNum()];
	} else if( aasFloorClusterNums[entityPhysicsState->DroppedToFloorAasAreaNum()] ) {
		currFloorClusterNum = aasFloorClusterNums[entityPhysicsState->DroppedToFloorAasAreaNum()];
	}

	const NavEntity *currGoalNavEntity = currSelectedNavEntity.navEntity;
	float currGoalEntWeight = 0.0f;
	float currGoalEntCost = 0.0f;
	const NavEntity *bestNavEnt = nullptr;
	float bestWeight = 0.000001f;
	float bestNavEntCost = 0.0f;
	// Test not more than 16 best pre-selected by raw weight candidates.
	// (We try to avoid too many expensive FindTravelTimeToGoalArea() calls,
	// thats why we start from the best item to avoid wasting these calls for low-priority items)
	for( unsigned i = 0, end = std::min( rawWeightCandidates.size(), 16U ); i < end; ++i ) {
		const NavEntity *navEnt = rawWeightCandidates[i].goal;
		float weight = rawWeightCandidates[i].weight;

		unsigned moveDuration = 1;
		unsigned waitDuration = 1;

		if( self->ai->botRef->CurrAreaNum() != navEnt->AasAreaNum() ) {
			// We ignore cost of traveling in goal area, since:
			// 1) to estimate it we have to retrieve reachability to goal area from last area before the goal area
			// 2) it is relative low compared to overall travel cost, and movement in areas is cheap anyway
			moveDuration = self->ai->botRef->botBrain.FindTravelTimeToGoalArea( navEnt->AasAreaNum() ) * 10U;
			// AAS functions return 0 as a "none" value, 1 as a lowest feasible value
			if( !moveDuration ) {
				continue;
			}

			if( navEnt->IsDroppedEntity() ) {
				// Do not pick an entity that is likely to dispose before it may be reached
				if( navEnt->Timeout() <= level.time + moveDuration ) {
					continue;
				}
			}
		}

		unsigned spawnTime = navEnt->SpawnTime();
		// The entity is not spawned and respawn time is unknown
		if( !spawnTime ) {
			continue;
		}

		// Entity origin may be reached at this time
		unsigned reachTime = level.time + moveDuration;
		if( reachTime < spawnTime ) {
			waitDuration = spawnTime - reachTime;
		}

		if( waitDuration > navEnt->MaxWaitDuration() ) {
			continue;
		}

		float moveCost = MOVE_TIME_WEIGHT * moveDuration * navEnt->CostInfluence();
		float cost = 0.0001f + moveCost + WAIT_TIME_WEIGHT * waitDuration * navEnt->CostInfluence();

		weight = ( 1000 * weight ) / cost;

		// If the bot is inside a floor cluster
		if( currFloorClusterNum ) {
			// Greatly increase weight for items in the same floor cluster
			if( currFloorClusterNum == aasFloorClusterNums[navEnt->AasAreaNum()] ) {
				weight *= 4.0f;
			}
		}

		// Store current weight of the current goal entity
		if( currGoalNavEntity == navEnt ) {
			currGoalEntWeight = weight;
			// Waiting time is handled by the planner for wait actions separately.
			currGoalEntCost = moveCost;
		}

		if( weight > bestWeight ) {
			bestNavEnt = navEnt;
			bestWeight = weight;
			// Waiting time is handled by the planner for wait actions separately.
			bestNavEntCost = moveCost;
		}
	}

	if( !bestNavEnt ) {
		Debug( "Can't find a feasible long-term goal nav. entity\n" );
		return SelectedNavEntity( nullptr, std::numeric_limits<float>::max(), 0.0f, level.time + 200 );
	}

	// If it is time to pick a new goal (not just re-evaluate current one), do not be too sticky to the current goal
	const float currToBestWeightThreshold = currGoalNavEntity != nullptr ? 0.6f : 0.8f;

	if( currGoalNavEntity && currGoalNavEntity == bestNavEnt ) {
		constexpr const char *format = "current goal entity %s is kept as still having best weight %.3f\n";
		Debug( format, currGoalNavEntity->Name(), bestWeight );
		return SelectedNavEntity( bestNavEnt, bestNavEntCost, GetGoalWeight( bestNavEnt->Id() ), level.time + 4000 );
	} else if( currGoalEntWeight > 0 && currGoalEntWeight / bestWeight > currToBestWeightThreshold ) {
		constexpr const char *format =
			"current goal entity %s is kept as having weight %.3f good enough to not consider picking another one\n";
		// If currGoalEntWeight > 0, currLongTermGoalEnt is guaranteed to be non-null
		Debug( format, currGoalNavEntity->Name(), currGoalEntWeight );
		return SelectedNavEntity( currGoalNavEntity, currGoalEntCost, GetGoalWeight( bestNavEnt->Id() ), level.time + 2500 );
	} else {
		if( currGoalNavEntity ) {
			const char *format = "suggested %s weighted %.3f as a long-term goal instead of %s weighted now as %.3f\n";
			Debug( format, bestNavEnt->Name(), bestWeight, currGoalNavEntity->Name(), currGoalEntWeight );
		} else {
			Debug( "suggested %s weighted %.3f as a new long-term goal\n", bestNavEnt->Name(), bestWeight );
		}
		return SelectedNavEntity( bestNavEnt, bestNavEntCost, GetGoalWeight( bestNavEnt->Id() ), level.time + 2500 );
	}
}