Exemple #1
0
int SubStructure(TPZAutoPointer<TPZCompMesh> cmesh, REAL height)
{
	int nelem = cmesh->NElements();
	TPZManVector<int> subindex(nelem,-1);
	int iel;
	int nsub = 0;
	for (iel=0; iel<nelem; iel++) 
	{
		TPZCompEl *cel = cmesh->ElementVec()[iel];
		if (!cel) {
			continue;
		}
		TPZGeoEl *gel = cel->Reference();
		if (!gel) {
			continue;
		}
		int nsides = gel->NSides();
		TPZManVector<REAL> center(gel->Dimension(),0.), xco(3,0.);
		gel->CenterPoint(nsides-1,center);
		gel->X(center,xco);
		REAL z = xco[2];
		int floor = (int) z/height;
		nsub = (floor+1) > nsub ? (floor+1) : nsub;
		subindex[iel] = floor;
	}
	
#ifdef DEBUG 
	{
		TPZGeoMesh *gmesh = cmesh->Reference();
		int nelgeo = gmesh->NElements();
		TPZVec<int> domaincolor(nelgeo,-999);
		int cel;
		int nel = cmesh->NElements();
		for (cel=0; cel<nel; cel++) {
			TPZCompEl *compel = cmesh->ElementVec()[cel];
			if(!compel) continue;
			TPZGeoEl *gel = compel->Reference();
			if (!gel) {
				continue;
			}
			domaincolor[gel->Index()] = subindex[cel];
		}
		ofstream vtkfile("partition.vtk");
		TPZVTKGeoMesh::PrintGMeshVTK(gmesh, vtkfile, domaincolor);
	}
#endif
	
	int isub;
	TPZManVector<TPZSubCompMesh *> submeshes(nsub,0);
	for (isub=0; isub<nsub; isub++) 
	{
		int index;
		std::cout << '^'; std::cout.flush();
		submeshes[isub] = new TPZSubCompMesh(cmesh,index);
		
		if (index < subindex.NElements()) 
		{
			subindex[index] = -1;
		}
	}
	for (iel=0; iel<nelem; iel++) 
	{
		int domindex = subindex[iel];
		if (domindex >= 0) 
		{
			TPZCompEl *cel = cmesh->ElementVec()[iel];
			if (!cel) 
			{
				continue;
			}
			submeshes[domindex]->TransferElement(cmesh.operator->(),iel);
		}
	}
	cmesh->ComputeNodElCon();
	for (isub=0; isub<nsub; isub++) 
	{
		submeshes[isub]->MakeAllInternal();
		std::cout << '*'; std::cout.flush();
	}
	
	cmesh->ComputeNodElCon();
	cmesh->CleanUpUnconnectedNodes();
	return nsub;
}
Exemple #2
0
// Output as Mathematica format
void OutputMathematica(std::ofstream &outMath,int var,int pointsByElement,TPZCompMesh *cmesh) {
	int i, j, k, nnodes;
	int nelem = cmesh->ElementVec().NElements();
	int dim = cmesh->Dimension();   // Dimension of the model
	REAL w;
	if(var-1 < 0) var = 1;
	// Map to store the points and values 
	map<REAL,TPZVec<REAL> > Graph;
	TPZVec<REAL> tograph(4,0.);
	map<TPZVec<REAL>,REAL> Graphics;
	
	for(i=0;i<nelem;i++) {
		TPZCompEl *cel = cmesh->ElementVec()[i];
		TPZGeoEl *gel = cel->Reference();
		TPZInterpolationSpace * sp = dynamic_cast <TPZInterpolationSpace*>(cel);
		int nstates = cel->Material()->NStateVariables();
		// If var is higher than nstates of the element, go to next element
		if(var > nstates)
			continue;
		TPZVec<REAL> qsi(3,0.), sol(nstates,0.), outfem(3,0.);
		nnodes = gel->NNodes();
		if(pointsByElement < nnodes) pointsByElement = nnodes;
		for(j=0;j<gel->NNodes();j++) {
			// Get corners points to compute solution on
			gel->CenterPoint(j,qsi);
			sp->Solution(qsi,0,sol);
			cel->Reference()->X(qsi,outfem);
			// Jointed point coordinates and solution value on			
			for(k=0;k<3;k++) tograph[k] = outfem[k];
			tograph[k] = sol[var-1];
			Graph.insert(pair<REAL,TPZVec<REAL> >(outfem[0],tograph));
			Graphics.insert(pair<TPZVec<REAL>,REAL>(outfem,sol[var-1]));
			// If cel is point gets one point value
			if(cel->Type() == EPoint) {
				break;
			}
		}
		// If cel is point gets one point value
		if(cel->Type() == EPoint) continue;
		// Print another points using integration points
		TPZIntPoints *rule = NULL;
		int order = 1, npoints = 0;
		while(pointsByElement-(npoints+nnodes) > 0) {
			if(rule) delete rule;   // Cleaning unnecessary allocation
			int nsides = gel->NSides();
			// Get the integration rule to compute internal points to print, not to print
			rule = gel->CreateSideIntegrationRule(nsides-1,order);
			if(!rule) break;
			npoints = rule->NPoints();
			order += 2;
		}
		for(j=0;j<npoints;j++) {
			// Get integration points to get internal points
			rule->Point(j,qsi,w);
			sp->Solution(qsi,0,sol);
			cel->Reference()->X(qsi,outfem);
			// Jointed point coordinates and solution value on
			for(k=0;k<3;k++) tograph[k] = outfem[k];
			tograph[k] = sol[var-1];
			Graph.insert(pair<REAL,TPZVec<REAL> >(outfem[0],tograph));
			Graphics.insert(pair<TPZVec<REAL>,REAL>(outfem,sol[var-1]));
		}
	}
	
	// Printing the points and values into the Mathematica file
	outMath << "Saida = { ";
	// Formatting output
	outMath << fixed << setprecision(10);
	if(dim<2) {
		map<REAL,TPZVec<REAL> >::iterator it;
		for(it=Graph.begin();it!=Graph.end();it++) {
			if(it!=Graph.begin()) outMath << ",";
			outMath << "{";
			for(j=0;j<dim;j++)
				outMath << (*it).second[j] << ",";
			outMath << (*it).second[3] << "}";
		}
		outMath << "};" << std::endl;
		// Choose Mathematica command depending on model dimension
		outMath << "ListPlot[Saida,Joined->True]"<< endl;
	}
	else {
		map<TPZVec<REAL>,REAL>::iterator it;
		for(it=Graphics.begin();it!=Graphics.end();it++) {
			if(it!=Graphics.begin()) outMath << ",";
			outMath << "{";
			for(j=0;j<dim;j++)
				outMath << (*it).first[j] << ",";
			outMath << (*it).second << "}";
		}
		outMath << "};" << std::endl;
		outMath << "ListPlot3D[Saida]"<< endl;
	}
}