bool TGeometryFx::doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info) { TRasterFxPort *input = dynamic_cast<TRasterFxPort *>(getInputPort(0)); assert(input); if (input->isConnected()) { TRasterFxP fx = input->getFx(); assert(fx); bool ret = fx->doGetBBox(frame, bBox, info); if (getActiveTimeRegion().contains(frame)) bBox = getPlacement(frame) * bBox; return ret; } else { bBox = TRectD(); return false; } return true; };
void FreeDistortBaseFx::doDryCompute(TRectD &rect, double frame, const TRenderSettings &info) { if (!m_input.isConnected()) return; if (m_deactivate->getValue()) { m_input->dryCompute(rect, frame, info); return; } TRectD rectOnInput; TRenderSettings infoOnInput; TRectD inBBox; safeTransform(frame, 0, rect, info, rectOnInput, infoOnInput, inBBox); rectOnInput *= inBBox; if (!myIsEmpty(rectOnInput)) m_input->dryCompute(rectOnInput, frame, infoOnInput); }
int FreeDistortBaseFx::getMemoryRequirement(const TRectD &rect, double frame, const TRenderSettings &info) { if (!m_input.isConnected()) return 0; TRectD inRect; TRenderSettings riNew; TRectD inBBox; safeTransform(frame, 0, rect, info, inRect, riNew, inBBox); inRect *= inBBox; return TRasterFx::memorySize(inRect, riNew.m_bpp); }
void TGeometryFx::doCompute(TTile &tile, double frame, const TRenderSettings &ri) { TRasterFxPort *input = dynamic_cast<TRasterFxPort *>(getInputPort(0)); assert(input); if (!input->isConnected()) return; if (!getActiveTimeRegion().contains(frame)) { TRasterFxP(input->getFx())->compute(tile, frame, ri); return; } if (!TRaster32P(tile.getRaster()) && !TRaster64P(tile.getRaster())) throw TException("AffineFx unsupported pixel type"); TAffine aff1 = getPlacement(frame); TRenderSettings ri2(ri); ri2.m_affine = ri2.m_affine * aff1; TRasterFxP src = getInputPort("source")->getFx(); src->compute(tile, frame, ri2); return; }
bool TExternalProgramFx::doGetBBox(double frame, TRectD &bBox, const TRenderSettings &info) { // bBox = TRectD(-30,-30,30,30); // return true; std::map<std::string, Port>::const_iterator portIt; for (portIt = m_ports.begin(); portIt != m_ports.end(); ++portIt) { if (portIt->second.m_port != 0) { TRasterFxPort *tmp; tmp = portIt->second.m_port; if (tmp->isConnected()) { TRectD tmpbBox; (*tmp)->doGetBBox(frame, tmpbBox, info); bBox += tmpbBox; } } } if (bBox.isEmpty()) { bBox = TRectD(); return false; } else return true; /* if(m_input1.isConnected() || m_input2.isConnected()) { bool ret = m_input1->doGetBBox(frame, bBox) || m_input1->doGetBBox(frame, bBox); return ret; } else { bBox = TRectD(); return false; } */ }
void Iwa_TiledParticlesFx::doCompute(TTile &tile, double frame, const TRenderSettings &ri) { std::vector<int> lastframe; std::vector<TLevelP> partLevel; TPointD p_offset; TDimension p_size(0, 0); /*- 参照画像ポートの取得 -*/ std::vector<TRasterFxPort *> part_ports; /*- テクスチャ素材画像のポート -*/ std::map<int, TRasterFxPort *> ctrl_ports; /*- コントロール画像のポート番号/ポート -*/ int portsCount = this->getInputPortCount(); for (int i = 0; i < portsCount; ++i) { std::string tmpName = this->getInputPortName(i); QString portName = QString::fromStdString(tmpName); if (portName.startsWith("T")) { TRasterFxPort *tmpPart = (TRasterFxPort *)this->getInputPort(tmpName); if (tmpPart->isConnected()) part_ports.push_back((TRasterFxPort *)this->getInputPort(tmpName)); } else { portName.replace(QString("Control"), QString("")); TRasterFxPort *tmpCtrl = (TRasterFxPort *)this->getInputPort(tmpName); if (tmpCtrl->isConnected()) ctrl_ports[portName.toInt()] = (TRasterFxPort *)this->getInputPort(tmpName); } } /*- テクスチャ素材のバウンディングボックスを足し合わせる ←この工程、いらないかも?-*/ if (!part_ports.empty()) { TRectD outTileBBox(tile.m_pos, TDimensionD(tile.getRaster()->getLx(), tile.getRaster()->getLy())); TRectD bbox; for (unsigned int i = 0; i < (int)part_ports.size(); ++i) { const TFxTimeRegion &tr = (*part_ports[i])->getTimeRegion(); lastframe.push_back(tr.getLastFrame() + 1); partLevel.push_back(new TLevel()); partLevel[i]->setName((*part_ports[i])->getAlias(0, ri)); // The particles offset must be calculated without considering the affine's translational // component TRenderSettings riZero(ri); riZero.m_affine.a13 = riZero.m_affine.a23 = 0; // Calculate the bboxes union for (int t = 0; t <= tr.getLastFrame(); ++t) { TRectD inputBox; (*part_ports[i])->getBBox(t, inputBox, riZero); bbox += inputBox; } } if (bbox == TConsts::infiniteRectD) bbox *= outTileBBox; p_size.lx = (int)bbox.getLx() + 1; p_size.ly = (int)bbox.getLy() + 1; p_offset = TPointD(0.5 * (bbox.x0 + bbox.x1), 0.5 * (bbox.y0 + bbox.y1)); } else { partLevel.push_back(new TLevel()); partLevel[0]->setName("particles"); TDimension vecsize(10, 10); TOfflineGL *offlineGlContext = new TOfflineGL(vecsize); offlineGlContext->clear(TPixel32(0, 0, 0, 0)); TStroke *stroke; stroke = makeEllipticStroke(0.07, TPointD((vecsize.lx - 1) * .5, (vecsize.ly - 1) * .5), 2.0, 2.0); TVectorImageP vectmp = new TVectorImage(); TPalette *plt = new TPalette(); vectmp->setPalette(plt); vectmp->addStroke(stroke); TVectorRenderData rd(AffI, TRect(vecsize), plt, 0, true, true); offlineGlContext->makeCurrent(); offlineGlContext->draw(vectmp, rd); partLevel[0]->setFrame(0, TRasterImageP(offlineGlContext->getRaster()->clone())); p_size.lx = vecsize.lx + 1; p_size.ly = vecsize.ly + 1; lastframe.push_back(1); delete offlineGlContext; } Iwa_Particles_Engine myEngine(this, frame); // Retrieving the dpi multiplier from the accumulated affine (which is isotropic). That is, // the affine will be applied *before* this effect - and we'll multiply geometrical parameters // by this dpi mult. in order to compensate. float dpi = sqrt(fabs(ri.m_affine.det())) * 100; TTile tileIn; if (TRaster32P raster32 = tile.getRaster()) { TFlash *flash = 0; myEngine.render_particles(flash, &tile, part_ports, ri, p_size, p_offset, ctrl_ports, partLevel, 1, (int)frame, 1, 0, 0, 0, 0, lastframe, getIdentifier()); } else if (TRaster64P raster64 = tile.getRaster()) { TFlash *flash = 0; myEngine.render_particles(flash, &tile, part_ports, ri, p_size, p_offset, ctrl_ports, partLevel, 1, (int)frame, 1, 0, 0, 0, 0, lastframe, getIdentifier()); } else throw TException("ParticlesFx: unsupported Pixel Type"); }
void subCompute(TRasterFxPort &m_input, TTile &tile, double frame, const TRenderSettings &ri, TPointD p00, TPointD p01, TPointD p11, TPointD p10, int details, bool wireframe, TDimension m_offScreenSize, bool isCast) { TPixel32 bgColor; TRectD outBBox, inBBox; outBBox = inBBox = TRectD(tile.m_pos, TDimensionD(tile.getRaster()->getLx(), tile.getRaster()->getLy())); m_input->getBBox(frame, inBBox, ri); if (inBBox == TConsts::infiniteRectD) // e' uno zerario inBBox = outBBox; int inBBoxLx = (int)inBBox.getLx() / ri.m_shrinkX; int inBBoxLy = (int)inBBox.getLy() / ri.m_shrinkY; if (inBBox.isEmpty()) return; if (p00 == p01 && p00 == p10 && p00 == p11 && !isCast) // significa che non c'e' deformazione { m_input->compute(tile, frame, ri); return; } TRaster32P rasIn; TPointD rasInPos; if (!wireframe) { if (ri.m_bpp == 64 || ri.m_bpp == 48) { TRaster64P aux = TRaster64P(inBBoxLx, inBBoxLy); rasInPos = TPointD(inBBox.x0 / ri.m_shrinkX, inBBox.y0 / ri.m_shrinkY); TTile tmp(aux, rasInPos); m_input->compute(tmp, frame, ri); rasIn = TRaster32P(inBBoxLx, inBBoxLy); TRop::convert(rasIn, aux); } else { rasInPos = TPointD(inBBox.x0 / ri.m_shrinkX, inBBox.y0 / ri.m_shrinkY); TTile tmp(TRaster32P(inBBoxLx, inBBoxLy), rasInPos); m_input->allocateAndCompute(tmp, rasInPos, TDimension(inBBoxLx, inBBoxLy), TRaster32P(), frame, ri); rasIn = tmp.getRaster(); } } unsigned int texWidth = 2; unsigned int texHeight = 2; while (texWidth < (unsigned int)inBBoxLx) texWidth = texWidth << 1; while (texHeight < (unsigned int)inBBoxLy) texHeight = texHeight << 1; while (texWidth > 1024 || texHeight > 1024) // avevo usato la costante // GL_MAX_TEXTURE_SIZE invece di // 1024, ma non funzionava! { inBBoxLx = inBBoxLx >> 1; inBBoxLy = inBBoxLy >> 1; texWidth = texWidth >> 1; texHeight = texHeight >> 1; } if (rasIn->getLx() != inBBoxLx || rasIn->getLy() != inBBoxLy) { TRaster32P rasOut = TRaster32P(inBBoxLx, inBBoxLy); TRop::resample(rasOut, rasIn, TScale((double)rasOut->getLx() / rasIn->getLx(), (double)rasOut->getLy() / rasIn->getLy())); rasIn = rasOut; } int rasterWidth = tile.getRaster()->getLx() + 2; int rasterHeight = tile.getRaster()->getLy() + 2; assert(rasterWidth > 0); assert(rasterHeight > 0); TRectD clippingRect = TRectD(tile.m_pos, TDimensionD(tile.getRaster()->getLx(), tile.getRaster()->getLy())); #if CREATE_GL_CONTEXT_ONE_TIME int ret = wglMakeCurrent(m_offScreenGL.m_offDC, m_offScreenGL.m_hglRC); assert(ret == TRUE); #else TOfflineGL offScreenRendering(TDimension(rasterWidth, rasterHeight)); //#ifdef _WIN32 offScreenRendering.makeCurrent(); //#else //#if defined(LINUX) || defined(MACOSX) // offScreenRendering.m_offlineGL->makeCurrent(); //#endif #endif checkErrorsByGL // disabilito quello che non mi serve per le texture glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_FASTEST); glDisable(GL_DITHER); glDisable(GL_DEPTH_TEST); glCullFace(GL_FRONT); glDisable(GL_STENCIL_TEST); glDisable(GL_LOGIC_OP); // creo la texture in base all'immagine originale glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE); checkErrorsByGL #if !CREATE_GL_CONTEXT_ONE_TIME TRaster32P rasaux; if (!wireframe) { TRaster32P texture(texWidth, texHeight); texture->clear(); rasaux = texture; rasaux->lock(); texture->copy(rasIn); glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); glTexImage2D(GL_TEXTURE_2D, 0, 4, texWidth, texHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, texture->getRawData()); } #else unsigned int texWidth = 1024; unsigned int texHeight = 1024; rasaux = rasIn; rasaux->lock(); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, rasIn->getLx(), rasIn->getLy(), GL_RGBA, GL_UNSIGNED_BYTE, rasIn->getRawData()); #endif checkErrorsByGL glEnable(GL_TEXTURE_2D); // cfr. help: OpenGL/Programming tip/OpenGL Correctness Tips glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(-rasterWidth * 0.5, rasterWidth * 0.5, -rasterHeight * 0.5, rasterHeight * 0.5, -1, 1); glViewport(0, 0, rasterWidth, rasterHeight); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glClearColor(0.0f, 0.0f, 0.0f, 0.0f); glClear(GL_COLOR_BUFFER_BIT); // do OpenGL draw double lwTex = (double)(inBBoxLx - 1) / (double)(texWidth - 1); double lhTex = (double)(inBBoxLy - 1) / (double)(texHeight - 1); TPointD tex00 = TPointD(0.0, 0.0); TPointD tex10 = TPointD(lwTex, 0.0); TPointD tex11 = TPointD(lwTex, lhTex); TPointD tex01 = TPointD(0.0, lhTex); GLenum polygonStyle; if (wireframe) { polygonStyle = GL_LINE; glDisable(GL_TEXTURE_2D); } else polygonStyle = GL_FILL; checkErrorsByGL p00.x /= ri.m_shrinkX; p00.y /= ri.m_shrinkY; p10.x /= ri.m_shrinkX; p10.y /= ri.m_shrinkY; p11.x /= ri.m_shrinkX; p11.y /= ri.m_shrinkY; p01.x /= ri.m_shrinkX; p01.y /= ri.m_shrinkY; TPointD translate = TPointD(tile.m_pos.x + tile.getRaster()->getLx() * 0.5, tile.m_pos.y + tile.getRaster()->getLy() * 0.5); glTranslated(-translate.x, -translate.y, 0.0); // disegno il poligono double dist_p00_p01 = tdistance2(p00, p01); double dist_p10_p11 = tdistance2(p10, p11); double dist_p01_p11 = tdistance2(p01, p11); double dist_p00_p10 = tdistance2(p00, p10); bool vertical = (dist_p00_p01 == dist_p10_p11); bool horizontal = (dist_p00_p10 == dist_p01_p11); if (vertical && horizontal) details = 1; glPolygonMode(GL_FRONT_AND_BACK, polygonStyle); subdivision(p00, p10, p11, p01, tex00, tex10, tex11, tex01, clippingRect, details); if (!wireframe) { // abilito l'antialiasing delle linee glEnable(GL_LINE_SMOOTH); glEnable(GL_BLEND); glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA); glHint(GL_LINE_SMOOTH_HINT, GL_NICEST); // disegno il bordo del poligono glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glBegin(GL_QUADS); glTexCoord2d(tex00.x, tex00.y); tglVertex(p00); glTexCoord2d(tex10.x, tex10.y); tglVertex(p10); glTexCoord2d(tex11.x, tex11.y); tglVertex(p11); glTexCoord2d(tex01.x, tex01.y); tglVertex(p01); glEnd(); // disabilito l'antialiasing per le linee glDisable(GL_LINE_SMOOTH); glDisable(GL_BLEND); glDisableClientState(GL_VERTEX_ARRAY); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glDisable(GL_TEXTURE_2D); } // force to finish glFlush(); // rimetto il disegno dei poligoni a GL_FILL glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // metto il frame buffer nel raster del tile glPixelStorei(GL_UNPACK_ROW_LENGTH, rasterWidth); glPixelStorei(GL_UNPACK_ALIGNMENT, 4); TRaster32P newRas(tile.getRaster()->getLx(), tile.getRaster()->getLy()); newRas->lock(); glReadPixels(1, 1, newRas->getLx(), newRas->getLy(), GL_RGBA, GL_UNSIGNED_BYTE, (void *)newRas->getRawData()); newRas->unlock(); checkErrorsByGL rasaux->unlock(); tile.getRaster()->copy(newRas); }
void TExternalProgramFx::doCompute(TTile &tile, double frame, const TRenderSettings &ri) { TRaster32P ras = tile.getRaster(); if (!ras) return; std::string args = m_args; std::string executablePath = ::to_string(m_executablePath); std::map<std::string, TFilePath> tmpFiles; // portname --> file TFilePath outputTmpFile; std::map<std::string, Port>::const_iterator portIt; for (portIt = m_ports.begin(); portIt != m_ports.end(); ++portIt) { TFilePath fp = TSystem::getUniqueFile("externfx"); fp = fp.withType(portIt->second.m_ext); tmpFiles[portIt->first] = fp; if (portIt->second.m_port == 0) // solo una porta e' di output outputTmpFile = fp; else { TRasterFxPort *tmp; tmp = portIt->second.m_port; if (tmp->isConnected()) { (*tmp)->compute(tile, frame, ri); TImageWriter::save(fp, ras); } } } // args e' della forma "$src $ctrl -o $out -v $value" // sostituisco le variabili int i = 0; for (;;) { i = args.find('$', i); if (i == (int)std::string::npos) break; int j = i + 1; int len = args.length(); while (j < len && isalnum(args[j])) j++; // un '$' non seguito da caratteri alfanumerici va ignorato if (j == i + 1) { // la sequenza '$$' diventa '$' if (j < len && args[j] == '$') args.replace(i, 2, "$"); i++; continue; } // ho trovato una variabile int m = j - i - 1; std::string name = args.substr(i + 1, m); // calcolo il valore. std::string value; std::map<std::string, TFilePath>::const_iterator it; it = tmpFiles.find(name); if (it != tmpFiles.end()) { // e' una porta. il valore e' il nome del // file temporaneo value = "\"" + ::to_string(it->second.getWideString()) + "\""; } else { // e' un parametro // se il nome non viene riconosciuto sostituisco la stringa nulla TDoubleParamP param = TParamP(getParams()->getParam(name)); if (param) value = std::to_string(param->getValue(frame)); } args.replace(i, m + 1, value); } args = " " + args; // aggiungo uno spazio per sicurezza // ofstream os("C:\\temp\\butta.txt"); // os << args << endl; // bisognerebbe calcolare le immagini dalla/e porta/e di input // scrivere il/i valore/i nei files temporanei/o // chiamare "m_executablePath args" // e leggere l'immagine scritta in outputTmpFile // poi cancellare tutto std::string expandedargs; char buffer[1024]; #ifdef _WIN32 ExpandEnvironmentStrings(args.c_str(), buffer, 1024); STARTUPINFO si; PROCESS_INFORMATION pinfo; GetStartupInfo(&si); BOOL ret = CreateProcess( (char *)executablePath.c_str(), // name of executable module buffer, // command line string NULL, // SD NULL, // SD TRUE, // handle inheritance option CREATE_NO_WINDOW, /*CREATE_NEW_CONSOLE*/ // creation flags NULL, // new environment block NULL, // current directory name &si, // startup information &pinfo // process information ); if (!ret) DWORD err = GetLastError(); // aspetta che il processo termini WaitForSingleObject(pinfo.hProcess, INFINITE); DWORD exitCode; ret = GetExitCodeProcess(pinfo.hProcess, // handle to the process &exitCode); // termination status #else std::string cmdline = executablePath + buffer; // int exitCode = system(cmdline.c_str()); #endif /* string name = m_executablePath.getName(); TPixel32 color; if(name == "saturate") color = TPixel32::Magenta; else if(name == "over") color = TPixel32::Green; else color = TPixel32::Red; for(int iy=0;iy<ras->getLy();iy++) { TPixel32 *pix = ras->pixels(iy); TPixel32 *endPix = pix + ras->getLx(); double x = tile.m_pos.x; double y = tile.m_pos.y + iy; while(pix<endPix) { if(x*x+y*y<900) *pix = color; else *pix = TPixel32(0,0,0,0); ++pix; x+=1.0; } } */ try { TRasterP ras = tile.getRaster(); TImageReader::load(outputTmpFile, ras); } catch (...) { } // butto i file temporanei creati std::map<std::string, TFilePath>::const_iterator fileIt; for (fileIt = tmpFiles.begin(); fileIt != tmpFiles.end(); ++fileIt) { if (TFileStatus(fileIt->second).doesExist() == true) try { TSystem::deleteFile(fileIt->second); } catch (...) { } } if (TFileStatus(outputTmpFile).doesExist() == true) try { TSystem::deleteFile(outputTmpFile); } catch (...) { } }
void FreeDistortBaseFx::doCompute(TTile &tile, double frame, const TRenderSettings &ri) { if (!m_input.isConnected()) return; //Upon deactivation, this fx does nothing. if (m_deactivate->getValue()) { m_input->compute(tile, frame, ri); return; } //Get the source quad TPointD p00_b = m_p00_b->getValue(frame); TPointD p10_b = m_p10_b->getValue(frame); TPointD p01_b = m_p01_b->getValue(frame); TPointD p11_b = m_p11_b->getValue(frame); //Get destination quad TPointD p00_a = m_p00_a->getValue(frame); TPointD p10_a = m_p10_a->getValue(frame); TPointD p01_a = m_p01_a->getValue(frame); TPointD p11_a = m_p11_a->getValue(frame); if (m_isCastShadow) { //Shadows are mirrored tswap(p00_a, p01_a); tswap(p10_a, p11_a); } //Get requested tile's geometry TRasterP tileRas(tile.getRaster()); TRectD tileRect(convert(tileRas->getBounds()) + tile.m_pos); //Call transform to get the minimal rectOnInput TRectD inRect; TRenderSettings riNew; TRectD inBBox; safeTransform(frame, 0, tileRect, ri, inRect, riNew, inBBox); //Intersect with the bbox inRect *= inBBox; if (myIsEmpty(inRect)) return; double scale = ri.m_affine.a11; double downBlur = m_downBlur->getValue(frame) * scale; double upBlur = m_upBlur->getValue(frame) * scale; int brad = tceil(tmax(downBlur, upBlur)); inRect = inRect.enlarge(brad); TDimension inRectSize(tceil(inRect.getLx()), tceil(inRect.getLy())); TTile inTile; m_input->allocateAndCompute(inTile, inRect.getP00(), inRectSize, tileRas, frame, riNew); TPointD inTilePosRi = inTile.m_pos; //Update quads by the scale factors p00_b = riNew.m_affine * p00_b; p10_b = riNew.m_affine * p10_b; p01_b = riNew.m_affine * p01_b; p11_b = riNew.m_affine * p11_b; p00_a = ri.m_affine * p00_a; p10_a = ri.m_affine * p10_a; p01_a = ri.m_affine * p01_a; p11_a = ri.m_affine * p11_a; PerspectiveDistorter perpDistorter( p00_b - inTile.m_pos, p10_b - inTile.m_pos, p01_b - inTile.m_pos, p11_b - inTile.m_pos, p00_a, p10_a, p01_a, p11_a); BilinearDistorter bilDistorter( p00_b - inTile.m_pos, p10_b - inTile.m_pos, p01_b - inTile.m_pos, p11_b - inTile.m_pos, p00_a, p10_a, p01_a, p11_a); TQuadDistorter *distorter; if (m_distortType->getValue() == PERSPECTIVE) distorter = &perpDistorter; else if (m_distortType->getValue() == BILINEAR) distorter = &bilDistorter; else assert(0); if (m_isCastShadow) { TRaster32P ras32 = inTile.getRaster(); TRaster64P ras64 = inTile.getRaster(); if (ras32) { if (m_fade->getValue(frame) > 0) doFade(ras32, m_color->getValue(frame), m_fade->getValue(frame) / 100.0); if (brad > 0) doBlur(ras32, upBlur, downBlur, m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0, inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y); else if (m_upTransp->getValue(frame) > 0 || m_downTransp->getValue(frame) > 0) doTransparency(ras32, m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0, inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y); } else if (ras64) { if (m_fade->getValue(frame) > 0) doFade(ras64, toPixel64(m_color->getValue(frame)), m_fade->getValue(frame) / 100.0); if (brad > 0) doBlur(ras64, upBlur, downBlur, m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0, inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y); else if (m_upTransp->getValue(frame) > 0 || m_downTransp->getValue(frame) > 0) doTransparency(ras64, m_upTransp->getValue(frame) / 100.0, m_downTransp->getValue(frame) / 100.0, inBBox.y0 - inTile.m_pos.y, inBBox.y1 - inTile.m_pos.y); } else assert(false); } distort(tileRas, inTile.getRaster(), *distorter, convert(tile.m_pos), TRop::Bilinear); }