void simplifyMesh(TriangleMesh &src, TriangleMesh &dst){
	namespace SMS = CGAL::Surface_mesh_simplification; 

	Surface surface;
  PolyhedronBuilder<HalfedgeDS> builder(src.points, src.facets);
	surface.delegate(builder);


	// --- before mesh simplification, to maintain mesh quality high poisson surface reconstruction is applied ---


	// This is a stop predicate (defines when the algorithm terminates).
	// In this example, the simplification stops when the number of undirected edges
	// left in the surface drops below the specified number (1000) 
	// SMS::Count_stop_predicate<Surface> stop(3000);
   //SMS::Count_ratio_stop_predicate<Surface> stop(0.1);
	SMS::Count_stop_predicate<Surface> stop(100);	
  // This the actual call to the simplification algorithm.
  // The surface and stop conditions are mandatory arguments. 
  // The index maps are needed because the vertices and edges 
  // of this surface lack an "id()" field.
  int r = SMS::edge_collapse
             (surface
             ,stop
             ,CGAL::vertex_index_map(boost::get(CGAL::vertex_external_index, surface))
             .edge_index_map(boost::get(CGAL::edge_external_index, surface))
             .get_cost(CGAL::Surface_mesh_simplification::Edge_length_cost<Polyhedron>())
             .get_placement(CGAL::Surface_mesh_simplification::Midpoint_placement<Polyhedron>())
             //.get_cost(CGAL::Surface_mesh_simplification::LindstromTurk_cost<Polyhedron>())            
             //.get_placement(CGAL::Surface_mesh_simplification::LindstromTurk_placement<Polyhedron>())
             );
  std::cout << "\nFinished...\n" << r << " edges removed.\n"
           << (surface.size_of_halfedges()/2) << " final edges.\n" ;

	std::vector<Eigen::Vector3d> points;
	std::vector<std::vector<int> > faces;
	points.resize(surface.size_of_vertices());
	faces.resize(surface.size_of_facets());

	Polyhedron::Point_iterator pit;
	int index = 0;
	for(pit=surface.points_begin(); pit!=surface.points_end(); ++pit){
		points[index][0] = pit->x();
		points[index][1] = pit->y();
		points[index][2] = pit->z();				
		index ++;
	}
	index = 0;
	Polyhedron::Face_iterator fit;
	for(fit=surface.facets_begin(); fit!=surface.facets_end(); ++fit){
		std::vector<int > face(3);
		Halfedge_facet_circulator j = fit->facet_begin();
		int f_index = 0;
		do {
			face[f_index] = std::distance(surface.vertices_begin(), j->vertex());
			f_index++;
    } while ( ++j != fit->facet_begin());    

    faces[index] = face;
		index++;
	}

	dst.createFromFaceVertex(points, faces);
}
void PoissonSurfaceReconstruction::reconstruct(std::vector<Eigen::Vector3d> &points, std::vector<Eigen::Vector3d> &normals, TriangleMesh &mesh){

	assert(points.size() == normals.size());

  std::cout << "creating points with normal..." << std::endl;
  std::vector<Point_with_normal> points_with_normal;
  points_with_normal.resize((int)points.size());
  for(int i=0; i<(int)points.size(); i++){
    Vector vec(normals[i][0], normals[i][1], normals[i][2]);
    //Point_with_normal pwn(points[i][0], points[i][1], points[i][2], vec);
    //points_with_normal[i]  = pwn;
    points_with_normal[i] = Point_with_normal(points[i][0], points[i][1], points[i][2], vec);
  }

  std::cout << "constructing poisson reconstruction function..." << std::endl;
  Poisson_reconstruction_function function(points_with_normal.begin(), points_with_normal.end(),
                                           CGAL::make_normal_of_point_with_normal_pmap(PointList::value_type()));

  std::cout << "computing implicit function..." << std::endl;
  if( ! function.compute_implicit_function() ) {
  	std::cout << "compute implicit function is failure" << std::endl;
  	return;
  }
  	//return EXIT_FAILURE;

  // Computes average spacing
  std::cout << "compute average spacing..." << std::endl;
  FT average_spacing = CGAL::compute_average_spacing(points_with_normal.begin(), points_with_normal.end(),
                                                       6 /* knn = 1 ring */);
  // Gets one point inside the implicit surface
  // and computes implicit function bounding sphere radius.
  Point inner_point = function.get_inner_point();
  Sphere bsphere = function.bounding_sphere();
  FT radius = std::sqrt(bsphere.squared_radius());

  // Defines the implicit surface: requires defining a
  // conservative bounding sphere centered at inner point.
  FT sm_sphere_radius = 5.0 * radius;
  FT sm_dichotomy_error = distance_criteria*average_spacing/1000.0; // Dichotomy error must be << sm_distance
  //FT sm_dichotomy_error = distance_criteria*average_spacing/10.0; // Dichotomy error must be << sm_distance
  std::cout << "reconstructed surface" << std::endl;
  Surface_3 reconstructed_surface(function,
                    Sphere(inner_point,sm_sphere_radius*sm_sphere_radius),
                    sm_dichotomy_error/sm_sphere_radius);

  // Defines surface mesh generation criteria    
  CGAL::Surface_mesh_default_criteria_3<STr> criteria(angle_criteria,  // Min triangle angle (degrees)
                                                        radius_criteria*average_spacing,  // Max triangle size
                                                        distance_criteria*average_spacing); // Approximation error
  
  std::cout << "generating surface mesh..." << std::endl;
  // Generates surface mesh with manifold option
  STr tr; // 3D Delaunay triangulation for surface mesh generation
  C2t3 c2t3(tr); // 2D complex in 3D Delaunay triangulation
  CGAL::make_surface_mesh(c2t3,                                 // reconstructed mesh
                            reconstructed_surface,                              // implicit surface
                            criteria,                             // meshing criteria
                            CGAL::Manifold_tag());  // require manifold mesh

  if(tr.number_of_vertices() == 0){
  	std::cout << "surface mesh generation is failed" << std::endl;
  	return;
  }

  Polyhedron surface;
  CGAL::output_surface_facets_to_polyhedron(c2t3, surface);

  // convert CGAL::surface to TriangleMesh //
  std::cout << "converting CGA::surface to TriangleMesh..." << std::endl;
	std::vector<Eigen::Vector3d> pts;
	std::vector<std::vector<int> > faces;
	pts.resize(surface.size_of_vertices());
	faces.resize(surface.size_of_facets());

	Polyhedron::Point_iterator pit;
	int index = 0;
	for(pit=surface.points_begin(); pit!=surface.points_end(); ++pit){
		pts[index][0] = pit->x();
		pts[index][1] = pit->y();
		pts[index][2] = pit->z();				
		index ++;
	}
	index = 0;
	Polyhedron::Face_iterator fit;
	for(fit=surface.facets_begin(); fit!=surface.facets_end(); ++fit){
		std::vector<int > face(3);
		Halfedge_facet_circulator j = fit->facet_begin();
		int f_index = 0;
		do {
			face[f_index] = std::distance(surface.vertices_begin(), j->vertex());
			f_index++;
    } while ( ++j != fit->facet_begin());    

    faces[index] = face;
		index++;
	}

	mesh.createFromFaceVertex(pts, faces);  
}