Exemple #1
0
void CheckValue(const ValuePtr testValue, const size_t dimension, const vector<vector<size_t>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i])
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                i, seqLenList[i], expectedData[i].size());
        }
    }

    // Check shape
    NDShape shape = testValue->Shape();
    size_t valueRank = shape.Rank();
    if (valueRank < 2 || valueRank > 3 || shape[0] != dimension)
    {
        ReportFailure("The shape of the value does not match\n");
    }
    size_t numOfSequences = valueRank == 2 ? 1 : shape[2]; 
    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value
    vector<ElementType> outputData(shape.TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(shape, outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sample = 0; sample < seqLen; sample++)
        {
            for (size_t c = 0; c < dimension; c++, oIndex++)
            {
                if (outputData[oIndex] != 0)
                {
                    if (outputData[oIndex] != 1)
                    {
                        ReportFailure("OneHot vector contains value other than 0 and 1 at seqNo=%" PRIu64 " sampleNo=%" PRIu64 " position=%" PRIu64 "\n", seq, sample, c);
                    }
                    if (c != expectedData[seq][sample])
                    {
                        ReportFailure("OneHot Index does match at seqNo=%" PRIu64 ", sampleNo=%" PRIu64 ", expected: %" PRIu64 ", actual: %" PRIu64 "\n", seq, sample, expectedData[seq][sample], c);
                    }
                }
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * dimension;
    }
}
Exemple #2
0
    size_t Evaluator::GetSampleCount(const Variable& var, const ValuePtr& value)
    {
        auto valueDataShape = value->Shape();
        size_t numMaskedSamples = value->MaskedCount();
        size_t numSamplesInDataArrayView = valueDataShape.SubShape(var.Shape().Rank()).TotalSize();
        if (numMaskedSamples > numSamplesInDataArrayView)
            LogicError("Number (%d) of masked values cannot exceed the number (%d) of samples that the Value object's Data NDArrayView can hold.",
            (int)numMaskedSamples, (int)numSamplesInDataArrayView);

        return (numSamplesInDataArrayView - numMaskedSamples);
    }
Exemple #3
0
void TestReduceSum(size_t sampleRank, const DeviceDescriptor& device)
{
    size_t numSequences = 7;
    size_t maxAllowedSequenceLength = 11;
    size_t maxDimSize = 23;
    NDShape inputShape(sampleRank);
    for (size_t i = 0; i < sampleRank; ++i)
        inputShape[i] = (rand() % maxDimSize) + 1;

    auto sequenceLengths = GenerateSequenceLengths(numSequences, maxAllowedSequenceLength);
    auto sequences = GenerateSequences<float>(sequenceLengths, inputShape);
    ValuePtr sequencesValue = Value::Create(inputShape, sequences, device, true);

    // Test ReduceSum along a static axis
    {
        auto testReduceSum = [&sequences, &sequenceLengths, inputShape, sequencesValue, device, sampleRank](int reductionAxis, bool useNegativeAxisIndex)
        {
            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            auto inputVar = InputVariable(inputShape, DataType::Float, L"input");
            FunctionPtr reduceSumFunc;

            bool reduceAll = (reductionAxis < 0);
            if (reduceAll)
                reduceSumFunc = ReduceSum(inputVar);
            else
                reduceSumFunc = ReduceSum(inputVar, Axis(useNegativeAxisIndex ? (reductionAxis - (int)sampleRank) : reductionAxis));

            NDShape outputShape = reduceSumFunc->Output().Shape();
            NDShape outputDataShape = outputShape;
            if (!reduceAll)
                outputDataShape = outputDataShape.AppendShape({ maxActualSequenceLength, numSequences });

            std::vector<float> outputData(outputDataShape.TotalSize());
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputDataShape, outputData, false), reduceAll ? nullptr : sequencesValue->Mask()->DeepClone());

            std::unordered_map<Variable, ValuePtr> outputs = { { reduceSumFunc->Output(), outputValue } };
            reduceSumFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            std::vector<size_t> inputShapeStrides = GetStrides(inputShape);
            std::vector<size_t> outputShapeStrides = GetStrides(outputShape);

            std::vector<float> expectedPerFrameTotals(outputShape.TotalSize() * maxActualSequenceLength * numSequences, 0.0f);
            float expectedTotal = 0.0f;
            for (size_t i = 0; i < numSequences; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                for (size_t j = 0; j < currentSequenceLength; ++j)
                {
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                    {
                        auto inputIdx = UnflattenedShape(k, inputShapeStrides);
                        auto outputIdx = inputIdx;
                        if (!reduceAll)
                            outputIdx[reductionAxis] = 0;
                        else
                            outputIdx = {};

                        auto flatOutputIdx = FlattenedIndex(outputIdx, outputShapeStrides);
                        float value = sequences[i][(j * inputShape.TotalSize()) + k];
                        expectedPerFrameTotals[(((i * maxActualSequenceLength) + j) * outputShape.TotalSize()) + flatOutputIdx] += value;
                        expectedTotal += value;
                    }
                }
            }

            if (reduceAll)
                FloatingPointVectorCompare(outputData, std::vector<float>({ expectedTotal }), "testReduceSum: Forward prop results do not match expected results");
            else
                FloatingPointVectorCompare(outputData, expectedPerFrameTotals, "testReduceSum: Forward prop results do not match expected results");
        };

        // Reduce over all axes
        testReduceSum(-1, false);

        int reductionAxis = 0;
        testReduceSum(reductionAxis, true);

        if (reductionAxis < (inputShape.Rank() - 1))
            reductionAxis++;

        testReduceSum(reductionAxis, false);

        if (reductionAxis < (inputShape.Rank() - 1))
            reductionAxis++;

        testReduceSum(reductionAxis, true);
    }

    // Test ReduceSum along a dynamic axis
    {
        auto testReduceSum = [&sequences, &sequenceLengths, inputShape, sequencesValue, device](const Axis& axis)
        {
            if (!axis.IsDynamicAxis())
                RuntimeError("Called the dynamic axis ReduceSum test with a static axis");

            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            auto inputVar = InputVariable({ inputShape }, DataType::Float, L"input");
            FunctionPtr reduceSumFunc = ReduceSum(inputVar, axis);

            NDShape maskShape = { ((axis == Axis::DefaultBatchAxis()) ? maxActualSequenceLength : 1), ((axis == Axis::DefaultBatchAxis()) ? 1 : numSequences) };
            NDShape outputShape = reduceSumFunc->Output().Shape();
            auto outputDataShape = outputShape.AppendShape(maskShape);

            std::vector<float> outputData(outputDataShape.TotalSize());
            auto maskPtr = MakeSharedObject<NDMask>(maskShape, device);
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputDataShape, outputData, false), maskPtr);

            std::unordered_map<Variable, ValuePtr> outputs = { { reduceSumFunc->Output(), outputValue } };
            reduceSumFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            std::vector<float> expectedTotals(outputDataShape.TotalSize(), 0.0f);
            for (size_t i = 0; i < numSequences; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                for (size_t j = 0; j < currentSequenceLength; ++j)
                {
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                    {
                        float value = sequences[i][(j * inputShape.TotalSize()) + k];
                        if (axis == Axis::DefaultBatchAxis())
                            expectedTotals[(j * inputShape.TotalSize()) + k] += value;
                        else
                            expectedTotals[(i * inputShape.TotalSize()) + k] += value;
                    }
                }
            }

            FloatingPointVectorCompare(outputData, expectedTotals, "testReduceSum: Forward prop results do not match expected results");
        };

        testReduceSum(Axis::DefaultDynamicAxis());
    }
}
Exemple #4
0
void TestSlice(size_t sampleRank, const DeviceDescriptor& device)
{
    size_t numSequences = 7;
    size_t maxAllowedSequenceLength = 11;
    size_t maxDimSize = 23;
    size_t minDimSize = 5;
    NDShape inputShape(sampleRank);
    for (size_t i = 0; i < sampleRank; ++i)
        inputShape[i] = (rand() % maxDimSize) + minDimSize;

    auto sequenceLengths = GenerateSequenceLengths(numSequences, maxAllowedSequenceLength);
    auto sequences = GenerateSequences<float>(sequenceLengths, inputShape);
    ValuePtr sequencesValue = Value::Create(inputShape, sequences, device, true);

    // Test slice along a static axis
    {
        auto testStaticAxisSlice = [&sequences, &sequenceLengths, inputShape, sequencesValue, device, sampleRank](int sliceAxis, int beginOffset, int endOffset, bool useNegativeAxisIndex)
        {
            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            auto inputVar = InputVariable(inputShape, DataType::Float, L"input");
            auto sliceFunc = Slice(inputVar, Axis(useNegativeAxisIndex ? (sliceAxis - (int)sampleRank) : sliceAxis), beginOffset, endOffset);

            NDShape outputShape = sliceFunc->Output().Shape();
            auto outputDataShape = outputShape.AppendShape({ maxActualSequenceLength, numSequences });
            std::vector<float> outputData(outputDataShape.TotalSize());
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputDataShape, outputData, false), sequencesValue->Mask()->DeepClone());

            std::unordered_map<Variable, ValuePtr> outputs = { { sliceFunc->Output(), outputValue } };
            sliceFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            std::vector<size_t> inputShapeStrides = GetStrides(inputShape);
            std::vector<size_t> outputShapeStrides = GetStrides(outputShape);

            size_t sliceStartOffset = (beginOffset >= 0) ? beginOffset : (inputShape[sliceAxis] + beginOffset);
            std::vector<float> expectedOutputValues(outputShape.TotalSize() * maxActualSequenceLength * numSequences);
            for (size_t i = 0; i < numSequences; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                for (size_t j = 0; j < currentSequenceLength; ++j)
                {
                    for (size_t k = 0; k < outputShape.TotalSize(); ++k)
                    {
                        auto outputIdx = UnflattenedShape(k, outputShapeStrides);
                        auto inputIdx = outputIdx;
                        inputIdx[sliceAxis] += sliceStartOffset;
                        auto flatInputIdx = FlattenedIndex(inputIdx, inputShapeStrides);
                        expectedOutputValues[(((i * maxActualSequenceLength) + j) * outputShape.TotalSize()) + k] = sequences[i][(j * inputShape.TotalSize()) + flatInputIdx];
                    }
                }
            }

            FloatingPointVectorCompare(outputData, expectedOutputValues, "testStaticAxisSlice: Forward prop results do not match expected results");
        };

        int sliceAxis = 0;
        testStaticAxisSlice(sliceAxis, 3, 5, true);

        if (sliceAxis < (inputShape.Rank() - 1))
            sliceAxis++;

        testStaticAxisSlice(sliceAxis, -1, 0, false);

        if (sliceAxis < (inputShape.Rank() - 1))
            sliceAxis++;

        testStaticAxisSlice(sliceAxis, -3, -1, true);
    }

    // Test slice along a dynamic axis
    {
        auto testDynamicAxisSlice = [&sequences, &sequenceLengths, inputShape, sequencesValue, device](const Axis& axis, int beginOffset, int endOffset)
        {
            if (!axis.IsDynamicAxis())
                RuntimeError("Called the dynamic axis slice test with a static axis");

            size_t maxActualSequenceLength = sequencesValue->Shape()[inputShape.Rank()];
            size_t numSequences = sequencesValue->Shape()[inputShape.Rank() + 1];

            int endAndBeginOffsetDiff = endOffset - beginOffset;
            size_t maxSliceLength = (endAndBeginOffsetDiff > 0) ? endAndBeginOffsetDiff : maxActualSequenceLength + endAndBeginOffsetDiff;

            auto inputVar = InputVariable(inputShape, DataType::Float, L"input");
            auto sliceFunc = Slice(inputVar, axis, beginOffset, endOffset);
            sliceFunc = sliceFunc + sliceFunc;

            size_t outputSequenceAxisLength = (axis == Axis::DefaultDynamicAxis()) ? maxSliceLength : maxActualSequenceLength;
            size_t outputBatchAxisLength = (axis == Axis::DefaultBatchAxis()) ? maxSliceLength : numSequences;
            NDShape outputShape = sliceFunc->Output().Shape().AppendShape({ outputSequenceAxisLength, outputBatchAxisLength });
            std::vector<float> outputData(outputShape.TotalSize(), 0);
            NDMaskPtr mask;
            if (endAndBeginOffsetDiff < 0)
            {
                ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData, false));
                mask = MakeSharedObject<NDMask>(std::initializer_list<size_t>({ outputSequenceAxisLength, outputBatchAxisLength }), device);
            }
            ValuePtr outputValue = MakeSharedObject<Value>(MakeSharedObject<NDArrayView>(outputShape, outputData, false), mask);

            std::unordered_map<Variable, ValuePtr> outputs = { { sliceFunc->Output(), outputValue } };
            sliceFunc->Forward({ { inputVar, sequencesValue } }, outputs, device);

            size_t startSequenceIdx = (axis == Axis::DefaultBatchAxis()) ? ((beginOffset >= 0) ? beginOffset : (numSequences + beginOffset)) : 0;
            size_t endSequenceIdx = (axis == Axis::DefaultBatchAxis()) ? ((endOffset > 0) ? endOffset : (numSequences + endOffset)) : numSequences;

            std::vector<float> expectedOutputValues(inputShape.TotalSize() * outputSequenceAxisLength * outputBatchAxisLength);
            for (size_t i = startSequenceIdx; i < endSequenceIdx; ++i)
            {
                size_t currentSequenceLength = sequenceLengths[i];
                size_t startFrameIdx = (axis == Axis::DefaultDynamicAxis()) ? ((beginOffset >= 0) ? beginOffset : (currentSequenceLength + beginOffset)) : 0;
                size_t endFrameIdx = (axis == Axis::DefaultDynamicAxis()) ? ((endOffset > 0) ? endOffset : (currentSequenceLength + endOffset)) : currentSequenceLength;
                size_t j = startFrameIdx;
                for (; j < endFrameIdx; ++j)
                {
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                        expectedOutputValues[((((i - startSequenceIdx) * outputSequenceAxisLength) + (j - startFrameIdx)) * inputShape.TotalSize()) + k] = 2 * sequences[i][(j * inputShape.TotalSize()) + k];
                }

                // Zero out the invalid portions of the actual output
                for (; j < (outputSequenceAxisLength + startFrameIdx); ++j)
                    for (size_t k = 0; k < inputShape.TotalSize(); ++k)
                        outputData[((((i - startSequenceIdx) * outputSequenceAxisLength) + (j - startFrameIdx)) * inputShape.TotalSize()) + k] = 0;
            }

            FloatingPointVectorCompare(outputData, expectedOutputValues, "testDynamicAxisSlice: Forward prop results do not match expected results");
        };

        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 0, 1);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 0, 2);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), -1, 0);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), -2, 0);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 0, -1);
        testDynamicAxisSlice(Axis::DefaultDynamicAxis(), 1, 0);
    }
}
Exemple #5
0
void CheckValue(const ValuePtr testValue, const NDShape& sampleShape, const vector<vector<ElementType>>& expectedData, const vector<size_t>& seqLenList, const vector<bool>& seqStartFlags = {})
{
    size_t sampleSize = sampleShape.TotalSize();
    // Check parameters
    BOOST_TEST(expectedData.size() == seqLenList.size(), "Parameter error: the sequence number in the exepected data and sequence list does not match.");
    for (size_t i = 0; i < expectedData.size(); i++)
    {
        if (expectedData[i].size() != seqLenList[i] * sampleSize)
        {
            ReportFailure("Parameter erroe: the number of data for sequence %" PRIu64 " in the expected data does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".",
                          i, seqLenList[i] * sampleSize, expectedData[i].size());
        }
    }

    // Check shape 
    auto valueRank = testValue->Shape().Rank();
    auto sampleRank = sampleShape.Rank();
    auto shapeIsCorrect = !((valueRank < sampleRank + 1) || (valueRank > sampleRank + 2) || (sampleShape != testValue->Shape().SubShape(0, sampleRank)));

    BOOST_TEST(shapeIsCorrect, "The Value does not have the expected shape.");

    size_t numOfSequences;
    if (valueRank == sampleShape.Rank() + 1)
    {
        // no batch axis, only sequence axis
        numOfSequences = 1;
    }
    else
    {
        assert(valueRank == sampleShape.Rank() + 2);
        numOfSequences = testValue->Shape()[valueRank - 1];
    }

    if (numOfSequences != expectedData.size())
    {
        ReportFailure("The sequence number in the Value does not match. Expected: %" PRIu64 ", actual: %" PRIu64 ".", expectedData.size(), numOfSequences);
    }

    CheckMask(testValue, seqLenList, seqStartFlags);

    // Get data from Value 
    vector<ElementType> outputData(testValue->Shape().TotalSize());
    NDArrayViewPtr arrayOutput = MakeSharedObject<NDArrayView>(testValue->Shape(), outputData, false);
    arrayOutput->CopyFrom(*testValue->Data());

    size_t maxSeqLen = *max_element(seqLenList.begin(), seqLenList.end());
    size_t oIndex = 0;
    for (size_t seq = 0; seq < seqLenList.size(); seq++)
    {
        size_t seqLen = seqLenList[seq];
        for (size_t sIndex = 0; sIndex < seqLen * sampleSize; sIndex++, oIndex++)
        {
            if (expectedData[seq][sIndex] != outputData[oIndex])
            {
                ReportFailure("Data does match at position %" PRIu64 ", expected: %f, actual: %f\n", oIndex, expectedData[seq][sIndex], outputData[oIndex]);
            }
        }
        // Skip mask data
        oIndex += (maxSeqLen - seqLen) * sampleSize;
    }
}