Exemple #1
0
        /// After simulation compare the positions of points to the theoretical positions.
        bool compareSimulatedToTheoreticalPositions(double convergenceAccuracy, double diffMaxBetweenSimulatedAndTheoreticalPosition)
        {
            // Init simulation
            sofa::simulation::getSimulation()->init(root.get());

            // Compute the theoretical final positions    
            VecCoord finalPos;
            typename PatchTestMovementConstraint::SPtr bilinearConstraint  = root->get<PatchTestMovementConstraint>(root->SearchDown);
            typename MechanicalObject::SPtr dofs = root->get<MechanicalObject>(root->SearchDown);
            typename MechanicalObject::ReadVecCoord x0 = dofs->readPositions();
            bilinearConstraint->getFinalPositions( finalPos,*dofs->write(core::VecCoordId::position()) );

            // Initialize
            size_t numNodes = finalPos.size();
            VecCoord xprev(numNodes);
            VecDeriv dx(numNodes); 
            bool hasConverged = true;
            
            for (size_t i=0; i<numNodes; i++)
            {
                xprev[i] = CPos(0,0,0);
            }

            // Animate
            do
            {
                hasConverged = true;
                sofa::simulation::getSimulation()->animate(root.get(),0.5);
                typename MechanicalObject::ReadVecCoord x = dofs->readPositions();

                // Compute dx
                for (size_t i=0; i<x.size(); i++)
                {
                    dx[i] = x[i]-xprev[i];
                    // Test convergence
                    if(dx[i].norm()>convergenceAccuracy) hasConverged = false;
                }
               
                // xprev = x
                for (size_t i=0; i<numNodes; i++)
                {
                    xprev[i]=x[i];
                }
            }
            while(!hasConverged); // not converged

            // Compare the theoretical positions and the simulated positions   
            bool succeed=true;
            for(size_t i=0; i<finalPos.size(); i++ )
            {
                if((finalPos[i]-x0[i]).norm()>diffMaxBetweenSimulatedAndTheoreticalPosition)
                {   
                    succeed = false;
                    ADD_FAILURE() << "final Position of point " << i << " is wrong: " << x0[i] << std::endl <<"the expected Position is " << finalPos[i] << std::endl
                        << "difference = " <<(finalPos[i]-x0[i]).norm() << std::endl;
                }
            }
            return succeed;
        }
void ClosestPointRegistrationForceFieldCam<DataTypes, DepthTypes>::initTarget()
{

 //pcl::PointCloud<pcl::PointXYZRGB>::Ptr target (new pcl::PointCloud<pcl::PointXYZRGB>);
 pcl::PointCloud<pcl::PointXYZRGB> target;
 pcl::io::loadPCDFile ("/home/apetit/soft/catkin_ws/test_pcd12.pcd", target);
 VecCoord targetpos;
 targetpos.resize(target.size());
            Vector3 pos;
            Vector3 col;

        for (unsigned int i=0; i<targetpos.size(); i++)
	{
            pos[0] = target[i].x;
            pos[1] = target[i].y;
            pos[2] = target[i].z;
            targetpos[i]=pos;
	}
//targetPositions.setValue(targetpos);
    // build k-d tree
    //const VecCoord&  p = targetPositions.getValue();
    const VecCoord&  p = targetpos;
targetPositions.setValue(p);

    targetKdTree.build(p);

    // detect border
    if(targetBorder.size()!=p.size()) { targetBorder.resize(p.size()); detectBorder(targetBorder,targetTriangles.getValue()); }

}
Exemple #3
0
    /// After simulation compare the positions of points to the theoretical positions.
    bool compareSimulatedToTheoreticalPositions(double convergenceAccuracy, double diffMaxBetweenSimulatedAndTheoreticalPosition)
    {
        // Init simulation
        sofa::simulation::getSimulation()->init(root.get());

        // Compute the theoretical final positions
        VecCoord finalPos;
        patchStruct.affineConstraint->getFinalPositions( finalPos,*patchStruct.dofs->write(core::VecCoordId::position()) );


        // Initialize
        size_t numNodes = finalPos.size();
        VecCoord xprev(numNodes);
        VecDeriv dx(numNodes);
        bool hasConverged = true;

        for (size_t i=0; i<numNodes; i++)
        {
            xprev[i] = CPos(0,0,0);
        }

        // Animate
        do
        {
            hasConverged = true;
            sofa::simulation::getSimulation()->animate(root.get(),0.5);
            typename MechanicalObject::ReadVecCoord x = patchStruct.dofs->readPositions();

            // Compute dx
            for (size_t i=0; i<x.size(); i++)
            {
                dx[i] = x[i]-xprev[i];
                // Test convergence
                if(dx[i].norm()>convergenceAccuracy) hasConverged = false;
            }

            // xprev = x
            for (size_t i=0; i<numNodes; i++)
            {
                xprev[i]=x[i];
            }
        }
        while(!hasConverged); // not converged

        // Get simulated positions
        typename MechanicalObject::WriteVecCoord x = patchStruct.dofs->writePositions();

        // Compare the theoretical positions and the simulated positions
        bool succeed=true;
        for(size_t i=0; i<finalPos.size(); i++ )
        {
            if((finalPos[i]-x[i]).norm()>diffMaxBetweenSimulatedAndTheoreticalPosition)
            {
                succeed = false;
                ADD_FAILURE() << "final Position of point " << i << " is wrong: " << x[i] << std::endl <<"the expected Position is " << finalPos[i] << std::endl
                    << "difference = " <<(finalPos[i]-x[i]).norm() << std::endl <<"rotation = " << testedRotation << std::endl << " translation = " << testedTranslation << std::endl
                    << "Failed seed number =" << BaseSofa_test::seed;

            }
        }
        return succeed;
    }