int TreeIdSolver_RNE::CartToJnt(const KDL::JntArray &q, const KDL::JntArray &q_dot, const KDL::JntArray &q_dotdot, const Twist& base_velocity, const Twist& base_acceleration, const Wrenches& f_ext,JntArray &torques, Wrench& base_force) { if( q.rows() != undirected_tree.getNrOfDOFs() || q_dot.rows() != q.rows() || q_dotdot.rows() != q.rows() || f_ext.size() != undirected_tree.getNrOfLinks() || torques.rows() != q.rows() ) return -1; base_force = Wrench::Zero(); rneaKinematicLoop(undirected_tree,q,q_dot,q_dotdot,traversal,base_velocity,base_acceleration,v,a); rneaDynamicLoop(undirected_tree,q,traversal,v,a,f_ext,f,torques,base_force); return 0; }
int ChainIdSolver_RNE_FB::CartToJnt(const KDL::JntArray &q, const KDL::JntArray &q_dot, const KDL::JntArray &q_dotdot, const Twist& base_velocity, const Twist& base_acceleration, const Wrenches& f_ext, KDL::JntArray &torques, Wrench& base_force) { //Check sizes when in debug mode if(q.rows()!=nj || q_dot.rows()!=nj || q_dotdot.rows()!=nj || torques.rows()!=nj || f_ext.size()!=ns) return -1; unsigned int j=0; //Sweep from root to leaf for(unsigned int i=0;i<ns;i++){ double q_,qdot_,qdotdot_; Segment segm; segm = chain.getSegment(i); if(segm.getJoint().getType()!=Joint::None){ q_=q(j); qdot_=q_dot(j); qdotdot_=q_dotdot(j); j++; }else q_=qdot_=qdotdot_=0.0; //Calculate segment properties: X,S,vj,cj X[i]=segm.pose(q_);//Remark this is the inverse of the //frame for transformations from //the parent to the current coord frame //Transform velocity and unit velocity to segment frame Twist vj=X[i].M.Inverse(segm.twist(q_,qdot_)); S[i]=X[i].M.Inverse(segm.twist(q_,1.0)); //We can take cj=0, see remark section 3.5, page 55 since the unit velocity vector S of our joints is always time constant //calculate velocity and acceleration of the segment (in segment coordinates) if(i==0){ v[i]=X[i].Inverse(base_velocity)+vj; a[i]=X[i].Inverse(base_acceleration)+S[i]*qdotdot_+v[i]*vj; }else{ v[i]=X[i].Inverse(v[i-1])+vj; a[i]=X[i].Inverse(a[i-1])+S[i]*qdotdot_+v[i]*vj; } //Calculate the force for the joint //Collect RigidBodyInertia and external forces RigidBodyInertia Ii=segm.getInertia(); f[i]=Ii*a[i]+v[i]*(Ii*v[i])-f_ext[i]; //std::cout << "aLink " << segm.getName() << "\na= " << a[i] << "\nv= " << v[i] << "\nf= " << f[i] << "\nf_ext= " << f_ext[i] << std::endl; //std::cout << "a["<<i<<"]=" << a[i] << "\n f["<<i<<"]=" << f[i] << "\n S["<<i<<"]=" << S[i] << std::endl; } //Sweep from leaf to root j=nj-1; for(int i=ns-1;i>=0;i--){ Segment segm; segm = chain.getSegment(i); if(segm.getJoint().getType()!=Joint::None) torques(j--)=dot(S[i],f[i]); if(i!=0) f[i-1]=f[i-1]+X[i]*f[i]; } base_force = X[0]*f[0]; //debug for(int i=0; i < (int)ns; i++) { Segment segm; segm = chain.getSegment(i); //std::cout << "bLink " << segm.getName() << " a= " << a[i] << " f= " << f[i] << std::endl; } return 0; }
//#include <chainidsolver_constraint_vereshchagin.hpp> int main() { using namespace KDL; //Definition of kinematic chain //-----------------------------------------------------------------------------------------------// //Joint (const JointType &type=None, const double &scale=1, const double &offset=0, // const double &inertia=0, const double &damping=0, const double &stiffness=0) Joint rotJoint0 = Joint(Joint::RotZ, 1, 0, 0.01); Joint rotJoint1 = Joint(Joint::RotZ, 1, 0, 0.01); //Joint rotJoint1 = Joint(Joint::None,1,0,0.01); Frame refFrame(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, 0.0, 0.0)); Frame frame1(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.2, 0.0)); Frame frame2(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.2, 0.0)); //Segment (const Joint &joint=Joint(Joint::None), // const Frame &f_tip=Frame::Identity(), const RigidBodyInertia &I=RigidBodyInertia::Zero()) Segment segment1 = Segment(rotJoint0, frame1); Segment segment2 = Segment(rotJoint1, frame2); // RotationalInertia (double Ixx=0, double Iyy=0, double Izz=0, double Ixy=0, double Ixz=0, double Iyz=0) RotationalInertia rotInerSeg1(0.0, 0.0, 0.0, 0.0, 0.0, 0.0); //around symmetry axis of rotation //RigidBodyInertia (double m=0, const Vector &oc=Vector::Zero(), const RotationalInertia &Ic=RotationalInertia::Zero()) RigidBodyInertia inerSegment1(1.0, Vector(0.0, -0.2, 0.0), rotInerSeg1); RigidBodyInertia inerSegment2(1.0, Vector(0.0, -0.2, 0.0), rotInerSeg1); segment1.setInertia(inerSegment1); segment2.setInertia(inerSegment2); Chain chain; chain.addSegment(segment1); //chain.addSegment(segment2); //----------------------------------------------------------------------------------------------// //Definition of constraints and external disturbances //--------------------------------------------------------------------------------------// JntArray arrayOfJoints(chain.getNrOfJoints()); //Constraint force matrix at the end-effector //What is the convention for the spatial force matrix; is it the same as in thesis? Vector constrainXLinear(0.0, 1.0, 0.0); Vector constrainXAngular(0.0, 0.0, 0.0); Vector constrainYLinear(0.0, 0.0, 0.0); Vector constrainYAngular(0.0, 0.0, 0.0); Vector constrainZLinear(0.0, 0.0, 0.0); Vector constrainZAngular(0.0, 0.0, 0.0); const Twist constraintForcesX(constrainXLinear, constrainXAngular); const Twist constraintForcesY(constrainYLinear, constrainYAngular); const Twist constraintForcesZ(constrainZLinear, constrainZAngular); Jacobian alpha(1); alpha.setColumn(0, constraintForcesX); //alpha.setColumn(1,constraintForcesY); //alpha.setColumn(2,constraintForcesZ); //Acceleration energy at the end-effector JntArray betha(1); //set to zero betha(0) = 0.0; //betha(1) = 0.0; //betha(2) = 0.0; //arm root acceleration Vector linearAcc(0.0, 10, 0.0); //gravitational acceleration along Y Vector angularAcc(0.0, 0.0, 0.0); Twist twist1(linearAcc, angularAcc); //external forces on the arm Vector externalForce1(0.0, 0.0, 0.0); Vector externalTorque1(0.0, 0.0, 0.0); Vector externalForce2(0.0, 0.0, 0.0); Vector externalTorque2(0.0, 0.0, 0.0); Wrench externalNetForce1(externalForce1, externalTorque1); Wrench externalNetForce2(externalForce2, externalTorque2); Wrenches externalNetForce; externalNetForce.push_back(externalNetForce1); //externalNetForce.push_back(externalNetForce2); //-------------------------------------------------------------------------------------// //solvers ChainFkSolverPos_recursive fksolver(chain); //ChainFkSolverVel_recursive fksolverVel(chain); int numberOfConstraints = 1; ChainIdSolver_Vereshchagin constraintSolver(chain, twist1, numberOfConstraints); // Initial arm position configuration/constraint Frame frameInitialPose; JntArray jointInitialPose(chain.getNrOfJoints()); jointInitialPose(0) = M_PI/6.0; // initial joint0 pose //jointInitialPose(1) = M_PI/6.0; //initial joint1 pose, negative in clockwise //cartesian space/link accelerations Twist accLink0; Twist accLink1; Twists cartAcc; cartAcc.push_back(accLink0); //cartAcc.push_back(accLink1); //arm joint rate configuration and initial values are zero JntArray qDot(chain.getNrOfJoints()); //arm joint accelerations returned by the solver JntArray qDotDot(chain.getNrOfJoints()); //arm joint torques returned by the solver JntArray qTorque(chain.getNrOfJoints()); arrayOfJoints(0) = jointInitialPose(0); //arrayOfJoints(1) = jointInitialPose(1); //Calculate joint values for each cartesian position Frame frameEEPose; Twist frameEEVel; double TimeConstant = 1; //Time required to complete the task move(frameinitialPose, framefinalPose) default T=10.0 double timeDelta = 0.002; bool status; Frame cartX1; Frame cartX2; Frames cartX; cartX.push_back(cartX1); cartX.push_back(cartX2); Twists cartXDot; cartXDot.push_back(accLink0); cartXDot.push_back(accLink1); Twists cartXDotDot; cartXDotDot.push_back(accLink0); cartXDotDot.push_back(accLink1); for (double t = 0.0; t <= 5*TimeConstant; t = t + timeDelta) { //at time t0, inputs are arrayOfjoints(0,pi/2.0), qdot(0,0) //qDot(0) = 0.5; // qDot(1) = 0.5; //printf("Inside the main loop %f %f\n",qTorque(0), qTorque(1)); //NOTE AZAMAT:what is qTorque? in implementation returned qTorque is constraint torque generated by the virtual constraint forces. // these torques are required to satify a virtual constraint and basically are real torques applied to joints to achieve // these constraint. But if additionally to the constraint generated torques we also had internal motor torques, then should not they //be added together? //qTorque(1) = qTorque(1)+internalJointTorque1; // In what frame of reference are the results expressed? status = constraintSolver.CartToJnt(arrayOfJoints, qDot, qDotDot, alpha, betha, externalNetForce, qTorque); if (status >= 0) { //For 2-dof arm //printf("%f %f %f %f %f %f %f %f %f %f %f\n",t , arrayOfJoints(0), arrayOfJoints(1), qDot(0), qDot(1), qDotDot(0), qDotDot(1), qTorque(0), qTorque(1), frameEEPose.p.x(), frameEEPose.p.y()); //printf("%f %f %f %f %f %f %f\n", t, cartAcc[0].vel.x(), cartAcc[0].vel.y(), cartAcc[0].rot.z(), cartAcc[1].vel.x(), cartAcc[1].vel.y(), cartAcc[1].rot.z()); //For 1-dof printf("Joint actual %f %f %f %f %f\n", t, arrayOfJoints(0), qDot(0), qDotDot(0), qTorque(0)); std::cout<<std::endl; } constraintSolver.getLinkCartesianPose(cartX); constraintSolver.getLinkCartesianVelocity(cartXDot); constraintSolver.getLinkCartesianAcceleration(cartXDotDot); constraintSolver.getLinkAcceleration(cartAcc); printf("Cartesian acc local %f %f %f %f\n", t, cartAcc[0].vel.x(), cartAcc[0].vel.y(), cartAcc[0].rot.z()); printf("Cartesian actual %f %f %f %f %f\n", t, cartX[0].p.x(), cartX[0].p.y(), cartXDot[0].vel[0], cartXDot[0].vel[1]); std::cout<<std::endl; //printf("External torque %f\n", externalNetForce[0].torque.z()); //Integration at the given "instanteneous" interval for joint position and velocity. //These will be inputs for the next time instant //actually here it should be a time interval and not time from the beginning, that is why timeDelta; arrayOfJoints(0) = arrayOfJoints(0) + (qDot(0) + qDotDot(0) * timeDelta / 2.0) * timeDelta; qDot(0) = qDot(0) + qDotDot(0) * timeDelta; //arrayOfJoints(1) = arrayOfJoints(1) + (qDot(1) + qDotDot(1)*timeDelta/2.0)*timeDelta; //qDot(1) = qDot(1)+qDotDot(1)*timeDelta; //For cartesian space control one needs to calculate from the obtained joint space value, new cartesian space poses. //Then based on the difference of the signal (desired-actual) we define a regulation function (controller) // this difference should be compensated either by constraint forces or by joint torques. // The current version of the algorithm assumes that we don't have control over torques, thus change in constraint forces //should be a valid option. } //torque1=[(m1+m2)a1^2+m2a2^2+2m2a1a2cos2]qDotDot1+[m2a2^2+m2a1a2cos2]qDotDot2-m2a1a2(2qDot1qDot2+qDot2^2)sin2+(m1+m2)ga1cos2+m2ga2cos(1+2) //torque2=[m2a2^2+m2a1a2cos2]qDotDot1+m2a2^2qDotDot2+m2a1a2qDot1^2sin2+m2ga2cos(1+2) return 0; }
int main() { using namespace KDL; //Definition of kinematic chain //-----------------------------------------------------------------------------------------------// //Joint (const JointType &type=None, const double &scale=1, const double &offset=0, const double &inertia=0, const double &damping=0, const double &stiffness=0) Joint rotJoint0 = Joint(Joint::RotZ, 1, 0, 0.01); Joint rotJoint1 = Joint(Joint::RotZ, 1, 0, 0.01); Frame refFrame(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, 0.0, 0.0)); Frame frame1(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.4, 0.0)); Frame frame2(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.4, 0.0)); //Segment (const Joint &joint=Joint(Joint::None), const Frame &f_tip=Frame::Identity(), const RigidBodyInertia &I=RigidBodyInertia::Zero()) Segment segment1 = Segment(rotJoint0, frame1); Segment segment2 = Segment(rotJoint1, frame2); // RotationalInertia (double Ixx=0, double Iyy=0, double Izz=0, double Ixy=0, double Ixz=0, double Iyz=0) RotationalInertia rotInerSeg1(0.0, 0.0, 0.0, 0.0, 0.0, 0.0); //around symmetry axis of rotation //RigidBodyInertia (double m=0, const Vector &oc=Vector::Zero(), const RotationalInertia &Ic=RotationalInertia::Zero()) RigidBodyInertia inerSegment1(0.3, Vector(0.0, -0.4, 0.0), rotInerSeg1); RigidBodyInertia inerSegment2(0.3, Vector(0.0, -0.4, 0.0), rotInerSeg1); segment1.setInertia(inerSegment1); segment2.setInertia(inerSegment2); Chain chain; chain.addSegment(segment1); chain.addSegment(segment2); //~Definition of kinematic chain //----------------------------------------------------------------------------------------------// //Definition of constraints and external disturbances //--------------------------------------------------------------------------------------// //Constraint force matrix at the end-effector //What is the convention for the spatial force matrix; is it the same as in thesis? //NOTE AZAMAT: Constraint are also defined in local reference frame?! Vector constrainXLinear(1.0, 0.0, 0.0); Vector constrainXAngular(0.0, 0.0, 0.0); Vector constrainYLinear(0.0, 0.0, 0.0); Vector constrainYAngular(0.0, 0.0, 0.0); Vector constrainZLinear(0.0, 0.0, 0.0); Vector constrainZAngular(0.0, 0.0, 0.0); Twist constraintForcesX(constrainXLinear, constrainXAngular); Twist constraintForcesY(constrainYLinear, constrainYAngular); Twist constraintForcesZ(constrainZLinear, constrainZAngular); Jacobian alpha(3); alpha.setColumn(0, constraintForcesX); alpha.setColumn(1, constraintForcesY); alpha.setColumn(2, constraintForcesZ); //Acceleration energy at the end-effector JntArray betha(3); //set to zero betha(0) = 0.0; betha(1) = 0.0; betha(2) = 0.0; //arm root acceleration Vector linearAcc(0.0, 9.8, 0.0); //gravitational acceleration along Y Vector angularAcc(0.0, 0.0, 0.0); Twist twist1(linearAcc, angularAcc); //external forces on the arm Vector externalForce1(0.0, 0.0, 0.0); Vector externalTorque1(0.0, 0.0, 0.0); Vector externalForce2(0.0, 0.0, 0.0); Vector externalTorque2(0.0, 0.0, 0.0); Wrench externalNetForce1(externalForce1, externalTorque1); Wrench externalNetForce2(externalForce2, externalTorque2); Wrenches externalNetForce; externalNetForce.push_back(externalNetForce1); externalNetForce.push_back(externalNetForce2); //~Definition of constraints and external disturbances //-------------------------------------------------------------------------------------// //Definition of solver and initial configuration //-------------------------------------------------------------------------------------// int numberOfConstraints = 3; ChainIdSolver_Vereshchagin constraintSolver(chain, twist1, numberOfConstraints); //These arrays of joint values contains values for 3 //consequetive steps int k = 3; JntArray jointPoses[k]; JntArray jointRates[k]; JntArray jointAccelerations[k]; JntArray jointTorques[k]; JntArray biasqDotDot(chain.getNrOfJoints()); for (int i = 0; i < k; i++) { JntArray jointValues(chain.getNrOfJoints()); jointPoses[i] = jointValues; jointRates[i] = jointValues; jointAccelerations[i] = jointValues; jointTorques[i] = jointValues; } //cartesian space/link values Frames cartX[k]; Twists cartXDot[k]; Twists cartXDotDot[k]; Twist accLink; for (int i = 0; i < k; i++) //i is number of variables (actual, desired, error) { for (int j = 0; j < k - 1; j++) //j is number of links { cartX[i].push_back(frame1); cartXDot[i].push_back(accLink); cartXDotDot[i].push_back(accLink); } } //at time=0.0 positions, rates and accelerations JntArray jointInitialPose(chain.getNrOfJoints()); jointInitialPose(0) = 0.0; // initial joint0 pose jointInitialPose(1) = M_PI / 6.0; //initial joint1 pose, negative in clockwise //j0=0.0, j1=pi/6.0 correspond to x = 0.2, y = -0.7464 //j0=pi/6.0, j1=pi/6.0 correspond to x = 0.5464, y = -0.5464 //~Definition of solver and initial configuration //-------------------------------------------------------------------------------------// //First iteration to kick start integration process, because we need 0,1 iterations for the integration process //We use Euler method for the iteration 0 double timeDelta = 0.001; //sampling interval/step size double TimeConstant = 60; //Time required to complete the task double Kp = 150.0; double Kv = 10.0; //Interpolator parameters: double b0_y = -0.7464102; //should come from initial joint configuration double b1_y = 0.0; double b2_y = 0.0; //((0.5 + 0.7464)*3.0 / TimeConstant * TimeConstant); double b3_y = 0.0; //-((0.5 + 0.7464)*2.0 / TimeConstant * TimeConstant * TimeConstant); double b0_x = 0.2; //should come from initial joint configuration double b1_x = 0.0; double b2_x = 0.0; //((0.5 + 0.7464)*3.0 / TimeConstant * TimeConstant); double b3_x = 0.0; //-((0.5 + 0.7464)*2.0 / TimeConstant * TimeConstant * TimeConstant); //Desired cartX[1][1].p[0] = b0_x; cartX[1][1].p[1] = b0_y; cartXDot[1][1].vel[0] = 0.0; cartXDot[1][1].vel[1] = 0.0; cartXDotDot[1][1].vel[0] = 0.0; cartXDotDot[1][1].vel[1] = 0.0; //step 0 jointPoses[0](0) = jointInitialPose(0); jointPoses[0](1) = jointInitialPose(1); constraintSolver.CartToJnt(jointPoses[0], jointRates[0], jointAccelerations[0], cartXDotDot[0], alpha, betha, externalNetForce, jointTorques[0]); //Actual constraintSolver.getLinkCartesianPose(cartX[0]); constraintSolver.getLinkCartesianVelocity(cartXDot[0]); //Error cartX[2][1].p[0] = cartX[1][1].p[0] - cartX[0][1].p[0]; cartX[2][1].p[1] = cartX[1][1].p[1] - cartX[0][1].p[1]; cartXDot[2][1].vel[0] = cartXDot[1][1].vel[0] - cartXDot[0][1].vel[0]; cartXDot[2][1].vel[1] = cartXDot[1][1].vel[1] - cartXDot[0][1].vel[1]; cartXDotDot[2][1].vel[0] = cartXDotDot[1][1].vel[0] - cartXDotDot[0][1].vel[0]; cartXDotDot[2][1].vel[1] = cartXDotDot[1][1].vel[1] - cartXDotDot[0][1].vel[1]; printf("Iter 0: %f %f %f %f %f %f\n", cartX[2][1].p[0], cartX[2][1].p[1], cartXDot[2][1].vel[0], cartXDot[2][1].vel[1], cartXDotDot[2][1].vel[1], cartXDotDot[2][1].vel[1]); //Regulator or controller betha(0) = alpha(0, 0)*((Kp / 10000.0) * cartXDotDot[2][1].vel[0] + (Kv / 200.0) * cartXDot[2][1].vel[0] + (2 * Kp) * cartX[2][1].p[0]); betha(1) = alpha(1, 1)*((Kp / 10000.0) * cartXDotDot[2][1].vel[1] + (Kv / 250.0) * cartXDot[2][1].vel[1] + (1.5 * Kp) * cartX[2][1].p[1]); //step 1 jointRates[1](0) = jointRates[0](0) + timeDelta * jointAccelerations[0](0); jointRates[1](1) = jointRates[0](1) + timeDelta * jointAccelerations[0](1); jointPoses[1](0) = jointPoses[0](0) + timeDelta * jointRates[0](0); jointPoses[1](1) = jointPoses[0](1) + timeDelta * jointRates[0](1); constraintSolver.CartToJnt(jointPoses[1], jointRates[1], jointAccelerations[1], cartXDotDot[0], alpha, betha, externalNetForce, jointTorques[0]); //Actual constraintSolver.getLinkCartesianPose(cartX[0]); constraintSolver.getLinkCartesianVelocity(cartXDot[0]); //Error cartX[2][1].p[0] = cartX[1][1].p[0] - cartX[0][1].p[0]; cartX[2][1].p[1] = cartX[1][1].p[1] - cartX[0][1].p[1]; cartXDot[2][1].vel[0] = cartXDot[1][1].vel[0] - cartXDot[0][1].vel[0]; cartXDot[2][1].vel[1] = cartXDot[1][1].vel[1] - cartXDot[0][1].vel[1]; cartXDotDot[2][1].vel[0] = cartXDotDot[1][1].vel[0] - cartXDotDot[0][1].vel[0]; cartXDotDot[2][1].vel[1] = cartXDotDot[1][1].vel[1] - cartXDotDot[0][1].vel[1]; printf("Iter 0: %f %f %f %f %f %f\n", cartX[2][1].p[0], cartX[2][1].p[1], cartXDot[2][1].vel[0], cartXDot[2][1].vel[1], cartXDotDot[2][1].vel[1], cartXDotDot[2][1].vel[1]); //Regulator or controller betha(0) = alpha(0, 0)*((Kp / 10000.0) * cartXDotDot[2][1].vel[0] + (Kv / 200.0) * cartXDot[2][1].vel[0] + (2 * Kp) * cartX[2][1].p[0]); betha(1) = alpha(1, 1)*((Kp / 10000.0) * cartXDotDot[2][1].vel[1] + (Kv / 250.0) * cartXDot[2][1].vel[1] + (1.5 * Kp) * cartX[2][1].p[1]); //Definition of process main loop //-------------------------------------------------------------------------------------// for (double t = 2 * timeDelta; t <= TimeConstant; t = t + timeDelta) { //Interpolation q = a0+a1t+a2t^2+a3t^3 //Desired cartX[1][1].p[0] = b0_x + b1_x * t + b2_x * t * t + b3_x * t * t*t; cartX[1][1].p[1] = b0_y + b1_y * t + b2_y * t * t + b3_y * t * t*t; cartXDot[1][1].vel[0] = b1_x + 2 * b2_x * t + 3 * b3_x * t*t; cartXDot[1][1].vel[1] = b1_y + 2 * b2_y * t + 3 * b3_y * t*t; cartXDotDot[1][1].vel[0] = 2 * b2_x + 6 * b3_x*t; cartXDotDot[1][1].vel[1] = 2 * b2_y + 6 * b3_y*t; // AB 2 order: predictor jointRates[2](0) = jointRates[1](0) + timeDelta * (1.5 * jointAccelerations[1](0) - 0.5 * jointAccelerations[0](0)); jointRates[2](1) = jointRates[1](1) + timeDelta * (1.5 * jointAccelerations[1](1) - 0.5 * jointAccelerations[0](1)); jointPoses[2](0) = jointPoses[1](0) + timeDelta * (1.5 * jointRates[1](0) - 0.5 * jointRates[0](0)); jointPoses[2](1) = jointPoses[1](1) + timeDelta * (1.5 * jointRates[1](1) - 0.5 * jointRates[0](1)); jointTorques[1] = jointTorques[0]; //correction is done on pose,vel and acc, so we need old torques with corrected pose, vel to get corrected acc // printf("Prediction: %f %f %f %f %f %f %f %f %f\n", t, jointPoses[2](0), jointPoses[2](1), jointRates[2](0), jointRates[2](1), jointAccelerations[1](0), jointAccelerations[1](1), jointTorques[0](0), jointTorques[0](1)); //Function evaluation constraintSolver.CartToJnt(jointPoses[2], jointRates[2], jointAccelerations[2], cartXDotDot[0], alpha, betha, externalNetForce, jointTorques[0]); // printf("Evaluation 1: %f %f %f %f %f %f %f %f %f\n", t, jointPoses[2](0), jointPoses[2](1), jointRates[2](0), jointRates[2](1), jointAccelerations[2](0), jointAccelerations[2](1), jointTorques[0](0), jointTorques[0](1)); //AM 2 order: corrector jointPoses[2](0) = jointPoses[1](0) + timeDelta * ((5 / 12.0) * jointRates[2](0) + (2 / 3.0) * jointRates[1](0) - (1 / 12.0) * jointRates[0](0)); jointPoses[2](1) = jointPoses[1](1) + timeDelta * ((5 / 12.0) * jointRates[2](1) + (2 / 3.0) * jointRates[1](1) - (1 / 12.0) * jointRates[0](1)); jointPoses[0] = jointPoses[1]; jointPoses[1] = jointPoses[2]; jointRates[2](0) = jointRates[1](0) + timeDelta * ((5 / 12.0) * jointAccelerations[2](0) + (2 / 3.0) * jointAccelerations[1](0) - (1 / 12.0) * jointAccelerations[0](0)); jointRates[2](1) = jointRates[1](1) + timeDelta * ((5 / 12.0) * jointAccelerations[2](1) + (2 / 3.0) * jointAccelerations[1](1) - (1 / 12.0) * jointAccelerations[0](1)); jointRates[0] = jointRates[1]; //memorize n+1 jointRates[1] = jointRates[2]; //memorize n+2 // printf("Correction : %f %f %f %f %f %f %f %f %f\n", t, jointPoses[2](0), jointPoses[2](1), jointRates[2](0), jointRates[2](1), jointAccelerations[2](0), jointAccelerations[2](1), jointTorques[0](0), jointTorques[0](1)); //Function evaluation give final corrected acc n+2 constraintSolver.CartToJnt(jointPoses[2], jointRates[2], jointAccelerations[2], cartXDotDot[0], alpha, betha, externalNetForce, jointTorques[1]); //printf("%f %f %f %f %f %f %f %f %f\n", t, jointPoses[2](0), jointPoses[2](1), jointRates[2](0), jointRates[2](1), jointAccelerations[2](0), jointAccelerations[2](1), jointTorques[1](0), jointTorques[1](1)); jointAccelerations[0] = jointAccelerations[1]; //memorize n+1 jointAccelerations[1] = jointAccelerations[2]; //memoze n+2 jointTorques[0] = jointTorques[1]; constraintSolver.initial_upwards_sweep(jointPoses[1], jointRates[1], jointAccelerations[1], externalNetForce); //Actual constraintSolver.getLinkCartesianPose(cartX[0]); constraintSolver.getLinkCartesianVelocity(cartXDot[0]); //Error cartX[2][1].p[0] = cartX[1][1].p[0] - cartX[0][1].p[0]; cartX[2][1].p[1] = cartX[1][1].p[1] - cartX[0][1].p[1]; cartXDot[2][1].vel[0] = cartXDot[1][1].vel[0] - cartXDot[0][1].vel[0]; cartXDot[2][1].vel[1] = cartXDot[1][1].vel[1] - cartXDot[0][1].vel[1]; cartXDotDot[2][1].vel[0] = cartXDotDot[1][1].vel[0] - cartXDotDot[0][1].vel[0]; cartXDotDot[2][1].vel[1] = cartXDotDot[1][1].vel[1] - cartXDotDot[0][1].vel[1]; printf("%f %f %f %f %f %f %f\n", t, cartX[2][1].p[0], cartX[2][1].p[1], cartXDot[2][1].vel[0], cartXDot[2][1].vel[1], cartXDotDot[2][1].vel[1], cartXDotDot[2][1].vel[1]); //Regulator or controller betha(0) = alpha(0, 0)*((Kp / 40000.0) * cartXDotDot[2][1].vel[0] + (Kv / 4000.0) * cartXDot[2][1].vel[0] + (Kp) * cartX[2][1].p[0]); betha(1) = alpha(1, 1)*((Kp / 20000.0) * cartXDotDot[2][1].vel[1] + (Kv / 500.0) * cartXDot[2][1].vel[1] + (0.75 * Kp) * cartX[2][1].p[1]); } return 0; }
int main() { using namespace KDL; //Definition of kinematic chain //-----------------------------------------------------------------------------------------------// //Joint (const JointType &type=None, const double &scale=1, const double &offset=0, const double &inertia=0, const double &damping=0, const double &stiffness=0) Joint rotJoint0 = Joint(Joint::RotZ, 1, 0, 0.01); Joint rotJoint1 = Joint(Joint::RotZ, 1, 0, 0.01); Frame refFrame(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, 0.0, 0.0)); Frame frame1(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.4, 0.0)); Frame frame2(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.4, 0.0)); //Segment (const Joint &joint=Joint(Joint::None), const Frame &f_tip=Frame::Identity(), const RigidBodyInertia &I=RigidBodyInertia::Zero()) Segment segment1 = Segment(rotJoint0, frame1); Segment segment2 = Segment(rotJoint1, frame2); // RotationalInertia (double Ixx=0, double Iyy=0, double Izz=0, double Ixy=0, double Ixz=0, double Iyz=0) RotationalInertia rotInerSeg1(0.0, 0.0, 0.0, 0.0, 0.0, 0.0); //around symmetry axis of rotation //RigidBodyInertia (double m=0, const Vector &oc=Vector::Zero(), const RotationalInertia &Ic=RotationalInertia::Zero()) RigidBodyInertia inerSegment1(0.3, Vector(0.0, -0.4, 0.0), rotInerSeg1); RigidBodyInertia inerSegment2(0.3, Vector(0.0, -0.4, 0.0), rotInerSeg1); segment1.setInertia(inerSegment1); segment2.setInertia(inerSegment2); Chain chain; chain.addSegment(segment1); chain.addSegment(segment2); //~Definition of kinematic chain //----------------------------------------------------------------------------------------------// //Definition of constraints and external disturbances //--------------------------------------------------------------------------------------// //Constraint force matrix at the end-effector //What is the convention for the spatial force matrix; is it the same as in thesis? //NOTE AZAMAT: Constraint are also defined in local reference frame?! Vector constrainXLinear(0.0, 0.0, 0.0); Vector constrainXAngular(0.0, 0.0, 0.0); Vector constrainYLinear(0.0, 1.0, 0.0); Vector constrainYAngular(0.0, 0.0, 0.0); Vector constrainZLinear(0.0, 0.0, 0.0); Vector constrainZAngular(0.0, 0.0, 0.0); Twist constraintForcesX(constrainXLinear, constrainXAngular); Twist constraintForcesY(constrainYLinear, constrainYAngular); //Twist constraintForcesZ(constrainZLinear, constrainZAngular); Jacobian alpha(1); //alpha.setColumn(0, constraintForcesX); alpha.setColumn(0, constraintForcesY); //Acceleration energy at the end-effector JntArray betha(1); //set to zero betha(0) = 0.0; //betha(1) = 0.0; //betha(2) = 0.0; //arm root acceleration Vector linearAcc(0.0, 10, 0.0); //gravitational acceleration along Y Vector angularAcc(0.0, 0.0, 0.0); Twist twist1(linearAcc, angularAcc); //external forces on the arm Vector externalForce1(0.0, 0.0, 0.0); Vector externalTorque1(0.0, 0.0, 0.0); Vector externalForce2(0.0, 0.0, 0.0); Vector externalTorque2(0.0, 0.0, 0.0); Wrench externalNetForce1(externalForce1, externalTorque1); Wrench externalNetForce2(externalForce2, externalTorque2); Wrenches externalNetForce; externalNetForce.push_back(externalNetForce1); externalNetForce.push_back(externalNetForce2); //~Definition of constraints and external disturbances //-------------------------------------------------------------------------------------// //Definition of solver and initial configuration //-------------------------------------------------------------------------------------// int numberOfConstraints = 1; ChainIdSolver_Vereshchagin constraintSolver(chain, twist1, numberOfConstraints); //These arrays of joint values contain actual and desired values //actual is generated by a solver and integrator //desired is given by an interpolator //error is the difference between desired-actual int k = 3; JntArray jointPoses[k]; JntArray jointRates[k]; JntArray jointAccelerations[k]; JntArray jointTorques[k]; JntArray biasqDotDot(chain.getNrOfJoints()); for (int i = 0; i < k; i++) { JntArray jointValues(chain.getNrOfJoints()); jointPoses[i] = jointValues; jointRates[i] = jointValues; jointAccelerations[i] = jointValues; jointTorques[i] = jointValues; } //cartesian space/link values k = 4; Frames cartX[k]; Twists cartXDot[k]; Twists cartXDotDot[k]; Twist accLink; for (int i = 0; i < k; i++) //i is number of variables (actual, desired, error) { for (int j = 0; j < k-1; j++) //j is number of links { cartX[i].push_back(frame1); cartXDot[i].push_back(accLink); cartXDotDot[i].push_back(accLink); } } // Initial arm position configuration/constraint JntArray jointInitialPose(chain.getNrOfJoints()); jointInitialPose(0) = 0.0; // initial joint0 pose jointInitialPose(1) = M_PI/6.0; //initial joint1 pose, negative in clockwise //j0=0.0, j1=pi/6.0 correspond to x = 0.2, y = -0.7464 //j0=2*pi/3.0, j1=pi/4.0 correspond to x = 0.44992, y = 0.58636 //actual jointPoses[0](0) = jointInitialPose(0); jointPoses[0](1) = jointInitialPose(1); //desired jointPoses[1](0) = jointInitialPose(0); jointPoses[1](1) = jointInitialPose(1); //~Definition of solver and initial configuration //-------------------------------------------------------------------------------------// //Definition of process main loop //-------------------------------------------------------------------------------------// double taskTimeConstant = 2; //Time required to complete the task move(frameinitialPose, framefinalPose) default T=10.0 double simulationTime = 2.5*taskTimeConstant; double timeDelta = 0.001; bool status; double ksi = 1; //damping factor double Kp = 0.02/(taskTimeConstant*taskTimeConstant); double Kv = 1*ksi/taskTimeConstant; double Ki = 1.0; double Ka = 0.0; //Interpolator parameters: double b0_y = -0.7464102; //should come from initial joint configuration double b1_y = 0.0; double b2_y = 0.0;//((0.5 + 0.7464)*3.0 / TimeConstant * TimeConstant); double b3_y = 0.0;//-((0.5 + 0.7464)*2.0 / TimeConstant * TimeConstant * TimeConstant); double b0_x = 0.2; //should come from initial joint configuration double b1_x = 0.0; double b2_x = 0.0;//((0.5 + 0.7464)*3.0 / TimeConstant * TimeConstant); double b3_x = 0.0;//-((0.5 + 0.7464)*2.0 / TimeConstant * TimeConstant * TimeConstant); /* double a0_q0 = jointPoses[1](0); double a1_q0 = 0.0; double a2_q0 = ((qFinalPose(0) - jointPoses[1](0))*3.0 / TimeConstant * TimeConstant); double a3_q0 = -((qFinalPose(0) - jointPoses[1](0))*2.0 / TimeConstant * TimeConstant * TimeConstant); double a0_q1 = jointPoses[1](1); double a1_q1 = 0.0; double a2_q1 = ((qFinalPose(1) - jointPoses[1](1))*3.0 / TimeConstant * TimeConstant); double a3_q1 = -((qFinalPose(1) - jointPoses[1](1))*2.0 / TimeConstant * TimeConstant * TimeConstant); */ for (double t = 0.0; t <=simulationTime; t = t + timeDelta) { //Interpolation (Desired) q = a0+a1t+a2t^2+a3t^3 //Do we feed these values? then jointPoses[0] = jointPoses[1]; jointRates[0] = jointRates[1]; // But I don't think so, in control desired trajectory plays role of the reference that the controller should strive for from its actual (previous, current) state. cartX[1][1].p[0] = b0_x + b1_x * t + b2_x * t * t + b3_x * t * t*t; cartX[1][1].p[1] = b0_y + b1_y * t + b2_y * t * t + b3_y * t * t*t; cartXDot[1][1].vel[0] = b1_x + 2 * b2_x * t + 3 * b3_x * t*t; cartXDot[1][1].vel[1] = b1_y + 2 * b2_y * t + 3 * b3_y * t*t; cartXDotDot[1][1].vel[0] = 2 * b2_x + 6 * b3_x*t; cartXDotDot[1][1].vel[1] = 2 * b2_y + 6 * b3_y*t; // printf("Desired Cartesian values: %f %f %f %f %f %f %f\n", t, cartX[1][1].p[0], cartX[1][1].p[1], cartXDot[1][1].vel[0], cartXDot[1][1].vel[1], cartXDotDot[1][1].vel[0], cartXDotDot[1][1].vel[1]); status = constraintSolver.CartToJnt(jointPoses[0], jointRates[0], jointAccelerations[0], alpha, betha, externalNetForce, jointTorques[0]); /* constraintSolver.initial_upwards_sweep(jointPoses[0], jointRates[0], jointAccelerations[0], externalNetForce); constraintSolver.downwards_sweep(alpha, jointTorques[0]); constraintSolver.constraint_calculation(betha); constraintSolver.final_upwards_sweep(jointAccelerations[0], cartXDotDot[0], jointTorques[0]); */ //Integration(robot joint values for rates and poses; actual) at the given "instanteneous" interval for joint position and velocity. jointRates[0](0) = jointRates[0](0) + jointAccelerations[0](0) * timeDelta; //Euler Forward jointPoses[0](0) = jointPoses[0](0) + (jointRates[0](0) - jointAccelerations[0](0) * timeDelta / 2.0) * timeDelta; //Trapezoidal rule jointRates[0](1) = jointRates[0](1) + jointAccelerations[0](1) * timeDelta; //Euler Forward jointPoses[0](1) = jointPoses[0](1) + (jointRates[0](1) - jointAccelerations[0](1) * timeDelta / 2.0) * timeDelta; //printf("Joint %f %f %f %f %f %f %f %f %f\n", t, jointPoses[0](0), jointPoses[0](1), jointRates[0](0), jointRates[0](1), jointAccelerations[0](0), jointAccelerations[0](1), jointTorques[0](0), jointTorques[0](1)); constraintSolver.initial_upwards_sweep(jointPoses[0], jointRates[0], jointAccelerations[0], externalNetForce); constraintSolver.getLinkCartesianPose(cartX[0]); constraintSolver.getLinkCartesianVelocity(cartXDot[0]); constraintSolver.getLinkCartesianAcceleration(cartXDotDot[0]); //printf("Cartesian actual %f %f %f %f %f %f %f %f\n", t, cartX[0][1].p.x(), cartX[0][1].p.y(), cartXDot[0][1].vel[0], cartXDot[0][1].vel[1], cartXDotDot[0][1].vel[0], cartXDotDot[0][1].vel[1], cartXDotDot[0][1].rot[2]); //Error /* jointPoses[2](0) = jointPoses[1](0) - jointPoses[0](0); jointPoses[2](1) = jointPoses[1](1) - jointPoses[0](1); jointRates[2](0) = jointRates[1](0) - jointRates[0](0); jointRates[2](1) = jointRates[1](1) - jointRates[0](1); jointAccelerations[2](0) = jointAccelerations[1](0) - jointAccelerations[0](0); jointAccelerations[2](1) = jointAccelerations[1](1) - jointAccelerations[0](1); printf("Errors: %f %f %f %f %f %f %f\n", t, jointPoses[2](0), jointPoses[2](1), jointRates[2](0), jointRates[2](1), jointAccelerations[2](0), jointAccelerations[2](1)); */ //e = d - a cartX[2][1].p[0] = cartX[1][1].p[0] - cartX[0][1].p[0]; cartX[2][1].p[1] = cartX[1][1].p[1] - cartX[0][1].p[1]; cartXDot[2][1].vel[0] = cartXDot[1][1].vel[0] - cartXDot[0][1].vel[0]; cartXDot[2][1].vel[1] = cartXDot[1][1].vel[1] - cartXDot[0][1].vel[1]; cartXDotDot[2][1].vel[0] = cartXDotDot[1][1].vel[0] - cartXDotDot[0][1].vel[0]; cartXDotDot[2][1].vel[1] = cartXDotDot[1][1].vel[1] - cartXDotDot[0][1].vel[1]; cartXDotDot[2][1].rot[2] = cartXDotDot[1][1].rot[2] - cartXDotDot[0][1].rot[2]; cartX[3][1].p[0] += timeDelta*cartX[2][1].p[0]; //for integral term; cartX[3][1].p[1] += timeDelta*cartX[2][1].p[1]; printf("Cartesian error %f %f %f %f %f %f %f %f\n", t, cartX[2][1].p[0], cartX[2][1].p[1], cartXDot[2][1].vel[0], cartXDot[2][1].vel[1], cartXDotDot[2][1].vel[1], cartXDotDot[2][1].vel[1], cartXDotDot[2][1].rot[2]); //Regulator or controller //externalNetForce[1].force[0] = ( (Kv)*cartXDot[2][1].vel[0] + (Kp)*cartX[2][1].p[0] + Ki*cartX[3][1].p[0]); betha(0) = ( (Kv)*cartXDot[2][1].vel[1] - (Ka)*cartXDot[2][1].rot[2] + (Kp)*cartX[2][1].p[1]);// + Ki*cartX[3][1].p[0]); //betha(1) = betha(1) +( (Kv)*cartXDot[2][1].vel[1] + (Kp)*cartX[2][1].p[1]);// + Ki*cartX[3][1].p[0]); //printf("betha %f %f\n", betha(0), betha(1)); } //~Definition of process main loop //-------------------------------------------------------------------------------------// return 0; }
void SolverTest::VereshchaginTest() { Vector constrainXLinear(1.0, 0.0, 0.0); Vector constrainXAngular(0.0, 0.0, 0.0); Vector constrainYLinear(0.0, 0.0, 0.0); Vector constrainYAngular(0.0, 0.0, 0.0); // Vector constrainZLinear(0.0, 0.0, 0.0); //Vector constrainZAngular(0.0, 0.0, 0.0); Twist constraintForcesX(constrainXLinear, constrainXAngular); Twist constraintForcesY(constrainYLinear, constrainYAngular); //Twist constraintForcesZ(constrainZLinear, constrainZAngular); Jacobian alpha(1); //alpha.setColumn(0, constraintForcesX); alpha.setColumn(0, constraintForcesX); //alpha.setColumn(0, constraintForcesZ); //Acceleration energy at the end-effector JntArray betha(1); //set to zero betha(0) = 0.0; //betha(1) = 0.0; //betha(2) = 0.0; //arm root acceleration Vector linearAcc(0.0, 10, 0.0); //gravitational acceleration along Y Vector angularAcc(0.0, 0.0, 0.0); Twist twist1(linearAcc, angularAcc); //external forces on the arm Vector externalForce1(0.0, 0.0, 0.0); Vector externalTorque1(0.0, 0.0, 0.0); Vector externalForce2(0.0, 0.0, 0.0); Vector externalTorque2(0.0, 0.0, 0.0); Wrench externalNetForce1(externalForce1, externalTorque1); Wrench externalNetForce2(externalForce2, externalTorque2); Wrenches externalNetForce; externalNetForce.push_back(externalNetForce1); externalNetForce.push_back(externalNetForce2); //~Definition of constraints and external disturbances //-------------------------------------------------------------------------------------// //Definition of solver and initial configuration //-------------------------------------------------------------------------------------// int numberOfConstraints = 1; ChainIdSolver_Vereshchagin constraintSolver(chaindyn, twist1, numberOfConstraints); //These arrays of joint values contain actual and desired values //actual is generated by a solver and integrator //desired is given by an interpolator //error is the difference between desired-actual //in this test only the actual values are printed. const int k = 1; JntArray jointPoses[k]; JntArray jointRates[k]; JntArray jointAccelerations[k]; JntArray jointTorques[k]; for (int i = 0; i < k; i++) { JntArray jointValues(chaindyn.getNrOfJoints()); jointPoses[i] = jointValues; jointRates[i] = jointValues; jointAccelerations[i] = jointValues; jointTorques[i] = jointValues; } // Initial arm position configuration/constraint JntArray jointInitialPose(chaindyn.getNrOfJoints()); jointInitialPose(0) = 0.0; // initial joint0 pose jointInitialPose(1) = M_PI/6.0; //initial joint1 pose, negative in clockwise //j0=0.0, j1=pi/6.0 correspond to x = 0.2, y = -0.7464 //j0=2*pi/3.0, j1=pi/4.0 correspond to x = 0.44992, y = 0.58636 //actual jointPoses[0](0) = jointInitialPose(0); jointPoses[0](1) = jointInitialPose(1); //~Definition of solver and initial configuration //-------------------------------------------------------------------------------------// //Definition of process main loop //-------------------------------------------------------------------------------------// //Time required to complete the task move(frameinitialPose, framefinalPose) double taskTimeConstant = 0.1; double simulationTime = 1*taskTimeConstant; double timeDelta = 0.01; int status; const std::string msg = "Assertion failed, check matrix and array sizes"; for (double t = 0.0; t <=simulationTime; t = t + timeDelta) { status = constraintSolver.CartToJnt(jointPoses[0], jointRates[0], jointAccelerations[0], alpha, betha, externalNetForce, jointTorques[0]); CPPUNIT_ASSERT((status == 0)); if (status != 0) { std::cout << "Check matrix and array sizes. Something does not match " << std::endl; exit(1); } else { //Integration(robot joint values for rates and poses; actual) at the given "instanteneous" interval for joint position and velocity. jointRates[0](0) = jointRates[0](0) + jointAccelerations[0](0) * timeDelta; //Euler Forward jointPoses[0](0) = jointPoses[0](0) + (jointRates[0](0) - jointAccelerations[0](0) * timeDelta / 2.0) * timeDelta; //Trapezoidal rule jointRates[0](1) = jointRates[0](1) + jointAccelerations[0](1) * timeDelta; //Euler Forward jointPoses[0](1) = jointPoses[0](1) + (jointRates[0](1) - jointAccelerations[0](1) * timeDelta / 2.0) * timeDelta; //printf("time, j0_pose, j1_pose, j0_rate, j1_rate, j0_acc, j1_acc, j0_constraintTau, j1_constraintTau \n"); printf("%f %f %f %f %f %f %f %f %f\n", t, jointPoses[0](0), jointPoses[0](1), jointRates[0](0), jointRates[0](1), jointAccelerations[0](0), jointAccelerations[0](1), jointTorques[0](0), jointTorques[0](1)); } } }
int main() { using namespace KDL; //Definition of kinematic chain KDL::Tree youBotTree; //note that it seems youbot_arm.urdf and youbot.urdf use different values. //parser's assumption is that it return joints which are not of type None. if (!kdl_parser::treeFromFile("/home/azamat/programming/ros-diamondback/youbot-ros-pkg/youbot_common/youbot_description/robots/youbot.urdf", youBotTree)) { std::cout << "Failed to construct kdl tree" << std::endl; return false; } // else // { // std::cout << "succeeded " << youBotTree.getNrOfJoints()<< std::endl; // std::cout << "succeeded " << youBotTree.getNrOfSegments()<< std::endl; // } KDL::Chain chain; youBotTree.getChain("arm_link_0","arm_link_5",chain); unsigned int numberOfJoints = chain.getNrOfJoints(); unsigned int numberOfLinks = chain.getNrOfSegments(); // std::cout << "number of chain links " << numberOfLinks << std::endl; // std::cout << "number of chain joints " << numberOfJoints << std::endl; //~Definition of kinematic chain //Definition of constraints and external disturbances //--------------------------------------------------------------------------------------// //Constraint force matrix at the end-effector //What is the convention for the spatial force matrix; is it the same as in thesis? //NOTE AZAMAT: Constraint are also defined in local reference frame?! unsigned int numberOfConstraints = 2; Twist constraintForce; Twists constraintForces; for (unsigned int i = 0; i < numberOfJoints; i++) { SetToZero(constraintForce); constraintForces.push_back(constraintForce); } constraintForces[0].vel[0] = 0; constraintForces[1].vel[1] = 0; constraintForces[2].vel[2] = 0; #ifdef X_CONSTRAINT_SET constraintForces[0].vel[0] = 1; #endif //~X_CONSTRAINT_SET #ifdef Y_CONSTRAINT_SET constraintForces[1].vel[1] = 1; #endif //~Y_CONSTRAINT_SET #ifdef Z_CONSTRAINT_SET constraintForces[2].vel[2] = 1; #endif //~Z_CONSTRAINT_SET //Acceleration energy and constraint matrix at the end-effector Jacobian alpha(numberOfConstraints); JntArray betha(numberOfConstraints); //set to zero JntArray bethaControl(numberOfConstraints); for (unsigned int i = 0; i < numberOfConstraints; i++) { alpha.setColumn(i, constraintForces[i]); betha(i) = 0.0; bethaControl(i) = 0.0; } //arm root acceleration Vector linearAcc(0.0, 0.0, 9.8); //gravitational acceleration along Z Vector angularAcc(0.0, 0.0, 0.0); Twist twist0(linearAcc, angularAcc); //external forces on the arm Wrench externalNetForce; Wrenches externalNetForces; for (unsigned int i = 0; i < numberOfLinks; i++) { externalNetForces.push_back(externalNetForce); } //~Definition of constraints and external disturbances //Definition of solver and initial configuration //-------------------------------------------------------------------------------------// ChainIdSolver_Vereshchagin constraintSolver(chain, twist0, numberOfConstraints); //These arrays of joint values contain actual and desired values //actual is generated by a solver and integrator //desired is given by an interpolator //error is the difference between desired-actual //0-actual, 1-desired, 2-error, 3-sum of error unsigned int k = 4; JntArray jointPoses[k]; JntArray jointRates[k]; JntArray jointAccelerations[k]; JntArray jointTorques[k]; JntArray jointControlTorques[k]; for (unsigned int i = 0; i < k; i++) { JntArray jointValues(numberOfJoints); jointPoses[i] = jointValues; jointRates[i] = jointValues; jointAccelerations[i] = jointValues; jointTorques[i] = jointValues; jointControlTorques[i] = jointValues; } //cartesian space/link values //0-actual, 1-desire, 2-error, 3-errorsum Frames cartX[k]; Twists cartXDot[k]; Twists cartXDotDot[k]; Twist accLink; KDL::Frame frameTemp; for (unsigned int i = 0; i < k; i++) //i is number of variables (actual, desired, error) { for (unsigned int j = 0; j < numberOfLinks; j++) //j is number of links { cartX[i].push_back(frameTemp); cartXDot[i].push_back(accLink); cartXDotDot[i].push_back(accLink); } } // Initial arm position configuration/constraint, negative in clockwise JntArray jointInitialPose(numberOfJoints); jointInitialPose(0) = -M_PI/4.0; jointInitialPose(1) = M_PI / 6.0; jointInitialPose(2) = M_PI / 12.0; jointInitialPose(3) = -M_PI / 3.0; jointInitialPose(4) = M_PI / 18.0; //corresponds to x=0.031827 y = -0.007827 z = 0.472972 JntArray jointFinalPose(numberOfJoints); jointFinalPose(0) = M_PI / 2.0; jointFinalPose(1) = M_PI / 2.5; jointFinalPose(2) = 0.0; jointFinalPose(3) = 0.0; jointFinalPose(4) = 0.0; // corresponds to 0.024000 -0.367062 0.242885 for (unsigned int i = 0; i < numberOfJoints; i++) { //actual initial jointPoses[0](i) = jointInitialPose(i); //desired initial jointPoses[1](i) = jointInitialPose(i); } //test #ifdef FKPOSE_TEST ChainFkSolverPos_recursive fksolver(chain); Frame tempEE; fksolver.JntToCart(jointPoses[0], tempEE, 5); std::cout << tempEE << std::endl; fksolver.JntToCart(jointFinalPose, tempEE, 5); std::cout << tempEE << std::endl; #endif //~FKPOSE_TEST //~Definition of solver and initial configuration //-------------------------------------------------------------------------------------// //Definition of process main loop //-------------------------------------------------------------------------------------// double taskTimeConstant = 2; //Time required to complete the task move(frameinitialPose, framefinalPose) default T=10.0 double simulationTime = 2.5 * taskTimeConstant; double timeDelta = 0.001; double timeToSettle = 0.5; int status; double alfa(0.0), beta(0.0), gamma(0.0); //Controller gain configurations double ksi[3] = {1.0, 1.0, 1.0}; //damping factor double Kp[3]; Kp[0] = 240.1475/(timeToSettle*timeToSettle);//0.1475 Kp[1] = 140.0/(timeToSettle*timeToSettle); Kp[2] = 240.0/(timeToSettle*timeToSettle); double Kv[3]; Kv[0] = 55.2245*ksi[0]/timeToSettle;//2.2245 Kv[1] = 30.6*ksi[1]/timeToSettle; Kv[2] = 30.6*ksi[1]/timeToSettle; double Ki[3] = {0.0, 0.0, 0.0}; double K = 0.005; //For joint space control without constraints using computed torque // double ksi[2] = {1.0, 1.0}; //damping factor double Kpq[numberOfJoints]; Kpq[0] = 2.5/(timeToSettle*timeToSettle); Kpq[1] = 2.2/(timeToSettle*timeToSettle); Kpq[2] = 20.1/(timeToSettle*timeToSettle); Kpq[3] = 40.1/(timeToSettle*timeToSettle); Kpq[4] = 40.1/(timeToSettle*timeToSettle); double Kvq[numberOfJoints]; Kvq[0] = .5*ksi[0]/timeToSettle; Kvq[1] = 1.0*ksi[1]/timeToSettle; Kvq[2] = 3.0*ksi[1]/timeToSettle; Kvq[3] = 3.0*ksi[1]/timeToSettle; Kvq[4] = 3.0*ksi[1]/timeToSettle; //Interpolator parameters: // Initial x=0.031827 y = -0.007827 z = 0.472972 // Final 0.024000 -0.367062 0.242885 //cartesian space double b0_x = 0.031827; //should come from initial joint configuration double b1_x = 0.0; double b2_x = ((0.031827 - b0_x)*3.0 / (simulationTime * simulationTime)); double b3_x = -((0.031827 - b0_x)*2.0 / (simulationTime * simulationTime * simulationTime)); double b0_y = -0.007827; //should come from initial joint configuration double b1_y = 0.0; double b2_y = ((-0.007827 - b0_y)*3.0 / (simulationTime * simulationTime)); double b3_y = -((-0.007827 - b0_y)*2.0 / (simulationTime * simulationTime * simulationTime)); double b0_z = 0.472972; //should come from initial joint configuration double b1_z = 0.0; double b2_z = ((0.242885 - b0_z)*3.0 / (simulationTime * simulationTime)); double b3_z = -((0.242885 - b0_z)*2.0 / (simulationTime * simulationTime * simulationTime)); //joint space double a0_q0 = jointInitialPose(0); double a1_q0 = 0.0; double a2_q0 = ((jointFinalPose(0) - jointInitialPose(0))*3.0 / (simulationTime * simulationTime)); double a3_q0 = -((jointFinalPose(0) - jointInitialPose(0))*2.0 / (simulationTime * simulationTime * simulationTime)); double a0_q1 = jointInitialPose(1); double a1_q1 = 0.0; double a2_q1 = ((jointFinalPose(1) - jointInitialPose(1))*3.0 / (simulationTime * simulationTime)); double a3_q1 = -((jointFinalPose(1) - jointInitialPose(1))*2.0 / (simulationTime * simulationTime * simulationTime)); double a0_q2 = jointInitialPose(2); double a1_q2 = 0.0; double a2_q2 = ((jointFinalPose(2) - jointInitialPose(2))*3.0 / (simulationTime * simulationTime)); double a3_q2 = -((jointFinalPose(2) - jointInitialPose(2))*2.0 / (simulationTime * simulationTime * simulationTime)); double a0_q3 = jointInitialPose(3); double a1_q3 = 0.0; double a2_q3 = ((jointFinalPose(3) - jointInitialPose(3))*3.0 / (simulationTime * simulationTime)); double a3_q3 = -((jointFinalPose(3) - jointInitialPose(3))*2.0 / (simulationTime * simulationTime * simulationTime)); double a0_q4 = jointInitialPose(4); double a1_q4 = 0.0; double a2_q4 = ((jointFinalPose(4) - jointInitialPose(4))*3.0 / (simulationTime * simulationTime)); double a3_q4 = -((jointFinalPose(4) - jointInitialPose(4))*2.0 / (simulationTime * simulationTime * simulationTime)); double feedforwardJointTorque0 = 0.0; double feedforwardJointTorque1 = 0.0; double feedforwardJointTorque2 = 0.0; double feedforwardJointTorque3 = 0.0; double feedforwardJointTorque4 = 0.0; //---------------------------------------------------------------------------------------// //Main simulation loop for (double t = 0.0; t <= simulationTime; t = t + timeDelta) { //Interpolation (Desired) q = a0+a1t+a2t^2+a3t^3 cartX[1][4].p[0] = b0_x + b1_x * t + b2_x * t * t + b3_x * t * t*t; cartX[1][4].p[1] = b0_y + b1_y * t + b2_y * t * t + b3_y * t * t*t; cartX[1][4].p[2] = b0_z + b1_z * t + b2_z * t * t + b3_z * t * t*t; cartXDot[1][4].vel[0] = b1_x + 2 * b2_x * t + 3 * b3_x * t*t; cartXDot[1][4].vel[1] = b1_y + 2 * b2_y * t + 3 * b3_y * t*t; cartXDot[1][4].vel[2] = b1_z + 2 * b2_z * t + 3 * b3_z * t*t; cartXDotDot[1][4].vel[0] = 2 * b2_x + 6 * b3_x*t; cartXDotDot[1][4].vel[1] = 2 * b2_y + 6 * b3_y*t; cartXDotDot[1][4].vel[2] = 2 * b2_z + 6 * b3_z*t; #ifdef DESIRED_CARTESIAN_VALUES printf("%f %f %f %f %f %f %f\n", t, cartX[1][4].p[0], cartX[1][4].p[1], cartX[1][4].p[2], cartXDot[1][4].vel[0], cartXDot[1][4].vel[1], cartXDot[1][4].vel[2]); #endif //~DESIRED_CARTESIAN_VALUES jointPoses[1](0) = a0_q0 + a1_q0 * t + a2_q0 * t * t + a3_q0 * t * t*t; jointPoses[1](1) = a0_q1 + a1_q1 * t + a2_q1 * t * t + a3_q1 * t * t*t; jointPoses[1](2) = a0_q2 + a1_q2 * t + a2_q2 * t * t + a3_q2 * t * t*t; jointPoses[1](3) = a0_q3 + a1_q3 * t + a2_q3 * t * t + a3_q3 * t * t*t; jointPoses[1](4) = a0_q4 + a1_q4 * t + a2_q4 * t * t + a3_q4 * t * t*t; jointRates[1](0) = a1_q0 + 2 * a2_q0 * t + 3 * a3_q0 * t*t; jointRates[1](1) = a1_q1 + 2 * a2_q1 * t + 3 * a3_q1 * t*t; jointRates[1](2) = a1_q2 + 2 * a2_q2 * t + 3 * a3_q2 * t*t; jointRates[1](3) = a1_q3 + 2 * a2_q3 * t + 3 * a3_q3 * t*t; jointRates[1](4) = a1_q4 + 2 * a2_q4 * t + 3 * a3_q4 * t*t; jointAccelerations[1](0) = 2 * a2_q0 + 6 * a3_q0*t; jointAccelerations[1](1) = 2 * a2_q1 + 6 * a3_q1*t; jointAccelerations[1](2) = 2 * a2_q2 + 6 * a3_q2*t; jointAccelerations[1](3) = 2 * a2_q3 + 6 * a3_q3*t; jointAccelerations[1](4) = 2 * a2_q4 + 6 * a3_q4*t; #ifdef DESIRED_JOINT_VALUES printf("%f %f %f %f %f %f %f %f %f %f %f\n", t,jointPoses[1](0), jointPoses[1](1),jointPoses[1](2), jointPoses[1](3), jointPoses[1](4), jointRates[1](0), jointRates[1](1), jointRates[1](2), jointRates[1](3), jointRates[1](4)); #endif //~DESIRED_JOINT_VALUES status = constraintSolver.CartToJnt(jointPoses[0], jointRates[0], jointAccelerations[0], alpha, betha, bethaControl, externalNetForces, jointTorques[0], jointControlTorques[0]); constraintSolver.getLinkCartesianPose(cartX[0]); constraintSolver.getLinkCartesianVelocity(cartXDot[0]); constraintSolver.getLinkCartesianAcceleration(cartXDotDot[0]); cartX[0][4].M.GetEulerZYX(alfa,beta,gamma); #ifdef ACTUAL_CARTESIAN_VALUES printf("%f %f %f %f %f %f %f\n", t, cartX[0][4].p[0], cartX[0][4].p[1], cartX[0][4].p[2], alfa, beta, gamma); #endif //~ACTUAL_CARTESIAN_VALUES //Integration(robot joint values for rates and poses; actual) at the given "instanteneous" interval for joint position and velocity. for (unsigned int i = 0; i < numberOfJoints; i++) { jointRates[0](i) = jointRates[0](i) + jointAccelerations[0](i) * timeDelta; //Euler Forward jointPoses[0](i) = jointPoses[0](i) + (jointRates[0](i) - jointAccelerations[0](i) * timeDelta / 2.0) * timeDelta; //Trapezoidal rule } #ifdef ACTUAL_JOINT_VALUES printf("%f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f\n", t,jointPoses[0](0), jointPoses[0](1),jointPoses[0](2), jointPoses[0](3), jointPoses[0](4), jointRates[0](0), jointRates[0](1), jointRates[0](2), jointRates[0](3), jointRates[0](4), jointAccelerations[0](0), jointAccelerations[0](1), jointAccelerations[0](2), jointAccelerations[0](3), jointAccelerations[0](4), jointTorques[0](0), jointTorques[0](1), jointTorques[0](2), jointTorques[0](3), jointTorques[0](4)); #endif //~ACTUAL_JOINT_VALUES //Error for (unsigned int i = 0; i < numberOfJoints; i++) { jointPoses[2](i) = jointPoses[1](i) - jointPoses[0](i); jointRates[2](i) = jointRates[1](i) - jointRates[0](i); jointAccelerations[2](i) = jointAccelerations[1](i) - jointAccelerations[0](i); // jointPoses[3](i) += timeDelta * jointPoses[2](i); } #ifdef JOINT_ERROR_VALUES printf("%f %f %f %f %f %f\n", t,jointPoses[2](0), jointPoses[2](1),jointPoses[2](2), jointPoses[2](3), jointPoses[2](4)); #endif //~JOINT_ERROR_VALUES cartX[2][4].p[0] = cartX[1][4].p[0] - cartX[0][4].p[0]; cartX[2][4].p[1] = cartX[1][4].p[1] - cartX[0][4].p[1]; cartX[2][4].p[2] = cartX[1][4].p[2] - cartX[0][4].p[2]; cartXDot[2][4].vel[0] = cartXDot[1][4].vel[0] - cartXDot[0][4].vel[0]; cartXDot[2][4].vel[1] = cartXDot[1][4].vel[1] - cartXDot[0][4].vel[1]; cartXDot[2][4].vel[2] = cartXDot[1][4].vel[2] - cartXDot[0][4].vel[2]; cartXDotDot[2][4].vel[0] = cartXDotDot[1][4].vel[0] - cartXDotDot[0][4].vel[0]; cartXDotDot[2][4].vel[1] = cartXDotDot[1][4].vel[1] - cartXDotDot[0][4].vel[1]; cartXDotDot[2][4].vel[2] = cartXDotDot[1][4].vel[2] - cartXDotDot[0][4].vel[2]; cartX[3][4].p[0] += timeDelta * cartX[2][4].p[0]; //for integral term; cartX[3][4].p[1] += timeDelta * cartX[2][4].p[1]; cartX[3][4].p[2] += timeDelta * cartX[2][4].p[2]; #ifdef CARTESIAN_ERROR_VALUES printf("%f %f %f %f %f %f %f\n", t, cartX[2][4].p[0], cartX[2][4].p[1], cartX[2][4].p[2], cartXDot[2][4].vel[0], cartXDot[2][4].vel[1], cartXDot[2][4].vel[2]); #endif //~CARTESIAN_ERROR_VALUES //Regulator or controller //acceleration energy control betha(0) = alpha(0, 0)*(K * cartXDotDot[2][numberOfLinks-1].vel[0] + (Kv[0]) * cartXDot[2][numberOfLinks-1].vel[0] + (Kp[0]) * cartX[2][numberOfLinks-1].p[0]+ Ki[1] * cartX[3][numberOfLinks-1].p[0]); betha(1) = alpha(1, 1)*(K * cartXDotDot[2][numberOfLinks-1].vel[1] + (Kv[1]) * cartXDot[2][numberOfLinks-1].vel[1] + (Kp[1]) * cartX[2][numberOfLinks-1].p[1] + Ki[1] * cartX[3][numberOfLinks-1].p[1]); // priority posture control // jointControlTorques[0](0) = jointAccelerations[1](0) + (Kpq[0])*jointPoses[2](0) + (Kvq[0])*jointRates[2](0); // jointControlTorques[0](1) = jointAccelerations[1](1) + (Kpq[1])*jointPoses[2](1) + (Kvq[1])*jointRates[2](1);//computed joint torque control // jointControlTorques[0](2) = jointAccelerations[1](2) + (Kpq[2])*jointPoses[2](2) + (Kvq[2])*jointRates[2](2); // jointControlTorques[0](3) = jointAccelerations[1](3) + (Kpq[3])*jointPoses[2](3) + (Kvq[3])*jointRates[2](3); // jointControlTorques[0](4) = jointAccelerations[1](4) + (Kpq[3])*jointPoses[2](4) + (Kvq[4])*jointRates[2](4); //priority constraint control // feedforwardJointTorque0 = jointAccelerations[1](0) + (Kpq[0])*jointPoses[2](0) + (Kvq[0])*jointRates[2](0); feedforwardJointTorque1 = jointAccelerations[1](1) + (Kpq[1])*jointPoses[2](1) + (Kvq[1])*jointRates[2](1); feedforwardJointTorque2 = jointAccelerations[1](2) + (Kpq[2])*jointPoses[2](2) + (Kvq[2])*jointRates[2](2); feedforwardJointTorque3 = jointAccelerations[1](3) + (Kpq[3])*jointPoses[2](3) + (Kvq[3])*jointRates[2](3); feedforwardJointTorque4 = jointAccelerations[1](4) + (Kpq[4])*jointPoses[2](4) + (Kvq[4])*jointRates[2](4); // jointTorques[0](0) = jointTorques[0](0) + feedforwardJointTorque0; jointTorques[0](1) = jointTorques[0](1) + feedforwardJointTorque1; jointTorques[0](2) = jointTorques[0](2) + feedforwardJointTorque2; jointTorques[0](3) = jointTorques[0](3) + feedforwardJointTorque3; jointTorques[0](4) = jointTorques[0](4) + feedforwardJointTorque4; //For cartesian space control one needs to calculate from the obtained joint space value, new cartesian space poses. //Then based on the difference of the signal (desired-actual) we define a regulation function (controller) // this difference should be compensated either by joint torques. // externalNetForces[numberOfLinks-1].force[0] = ((Kv[0]) * cartXDot[2][numberOfLinks-1].vel[0] + (Kp[0]) * cartX[2][numberOfLinks-1].p[0] ); // externalNetForces[numberOfLinks-1].force[1] = ((Kv[1]) * cartXDot[2][numberOfLinks-1].vel[1] + (Kp[1]) * cartX[2][numberOfLinks-1].p[1] ); externalNetForces[numberOfLinks-1].force[2] = ((Kv[2]) * cartXDot[2][numberOfLinks-1].vel[2] + (Kp[2]) * cartX[2][numberOfLinks-1].p[2] ); } //~Definition of process main loop //-------------------------------------------------------------------------------------// return 0; }
int main() { using namespace KDL; //Definition of kinematic chain //-----------------------------------------------------------------------------------------------// //Joint (const JointType &type=None, const double &scale=1, const double &offset=0, const double &inertia=0, const double &damping=0, const double &stiffness=0) Joint rotJoint0 = Joint(Joint::RotZ, 1, 0, 0.01); Joint rotJoint1 = Joint(Joint::RotZ, 1, 0, 0.01); Joint rotJoint2 = Joint(Joint::RotZ, 1, 0, 0.01); Joint rotJoint3 = Joint(Joint::RotZ, 1, 0, 0.01); Frame refFrame(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, 0.0, 0.0)); Frame frame1(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.2, 0.0)); Frame frame2(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.2, 0.0)); Frame frame3(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.2, 0.0)); Frame frame4(Rotation::RPY(0.0, 0.0, 0.0), Vector(0.0, -0.2, 0.0)); //Segment (const Joint &joint=Joint(Joint::None), const Frame &f_tip=Frame::Identity(), const RigidBodyInertia &I=RigidBodyInertia::Zero()) Segment segment1 = Segment(rotJoint0, frame1); Segment segment2 = Segment(rotJoint1, frame2); Segment segment3 = Segment(rotJoint2, frame3); Segment segment4 = Segment(rotJoint3, frame4); // RotationalInertia (double Ixx=0, double Iyy=0, double Izz=0, double Ixy=0, double Ixz=0, double Iyz=0) RotationalInertia rotInerSeg1(0.0, 0.0, 0.0, 0.0, 0.0, 0.0); //around symmetry axis of rotation //RigidBodyInertia (double m=0, const Vector &oc=Vector::Zero(), const RotationalInertia &Ic=RotationalInertia::Zero()) RigidBodyInertia inerSegment1(0.5, Vector(0.0, -0.2, 0.0), rotInerSeg1); RigidBodyInertia inerSegment2(0.5, Vector(0.0, -0.2, 0.0), rotInerSeg1); RigidBodyInertia inerSegment3(0.5, Vector(0.0, -0.2, 0.0), rotInerSeg1); RigidBodyInertia inerSegment4(0.5, Vector(0.0, -0.2, 0.0), rotInerSeg1); segment1.setInertia(inerSegment1); segment2.setInertia(inerSegment2); segment3.setInertia(inerSegment3); segment4.setInertia(inerSegment4); Chain chain; chain.addSegment(segment1); chain.addSegment(segment2); chain.addSegment(segment3); chain.addSegment(segment4); //~Definition of kinematic chain //Definition of constraints and external disturbances //--------------------------------------------------------------------------------------// //Constraint force matrix at the end-effector //What is the convention for the spatial force matrix; is it the same as in thesis? //NOTE AZAMAT: Constraint are also defined in local reference frame?! Vector constrainXLinear(1.0, 0.0, 0.0); Vector constrainXAngular(0.0, 0.0, 0.0); Vector constrainYLinear(0.0, 0.0, 0.0); Vector constrainYAngular(0.0, 0.0, 0.0); Vector constrainZLinear(0.0, 0.0, 0.0); Vector constrainZAngular(0.0, 0.0, 0.0); Twist constraintForcesX(constrainXLinear, constrainXAngular); Twist constraintForcesY(constrainYLinear, constrainYAngular); Twist constraintForcesZ(constrainZLinear, constrainZAngular); Jacobian alpha(1); alpha.setColumn(0, constraintForcesX); // alpha.setColumn(1, constraintForcesY); //Acceleration energy at the end-effector JntArray betha(1); //set to zero betha(0) = 0.0; // betha(1) = 0.0; //betha(2) = 0.0; //arm root acceleration Vector linearAcc(0.0, 9.8, 0.0); //gravitational acceleration along Y Vector angularAcc(0.0, 0.0, 0.0); Twist twist1(linearAcc, angularAcc); //external forces on the arm Vector externalForce1(0.0, 0.0, 0.0); Vector externalTorque1(0.0, 0.0, 0.0); Vector externalForce2(0.0, 0.0, 0.0); Vector externalTorque2(0.0, 0.0, 0.0); Wrench externalNetForce1(externalForce1, externalTorque1); Wrench externalNetForce2(externalForce2, externalTorque2); Wrenches externalNetForce; externalNetForce.push_back(externalNetForce1); externalNetForce.push_back(externalNetForce2); externalNetForce.push_back(externalNetForce1); externalNetForce.push_back(externalNetForce2); //~Definition of constraints and external disturbances //Definition of solver and initial configuration //-------------------------------------------------------------------------------------// int numberOfConstraints = 1; ChainIdSolver_Vereshchagin constraintSolver(chain, twist1, numberOfConstraints); //These arrays of joint values contain actual and desired values //actual is generated by a solver and integrator //desired is given by an interpolator //error is the difference between desired-actual //0-actual, 1-desired, 2-error int k = 4; JntArray jointPoses[k]; JntArray jointRates[k]; JntArray jointAccelerations[k]; JntArray jointTorques[k]; JntArray biasqDotDot(chain.getNrOfJoints()); for (int i = 0; i < k; i++) { JntArray jointValues(chain.getNrOfJoints()); jointPoses[i] = jointValues; jointRates[i] = jointValues; jointAccelerations[i] = jointValues; jointTorques[i] = jointValues; } //cartesian space/link values //0-actual, 1-desire, 2-error, 3-errorsum k = 4; Frames cartX[k]; Twists cartXDot[k]; Twists cartXDotDot[k]; Twist accLink; for (int i = 0; i < k; i++) //i is number of variables (actual, desired, error) { for (int j = 0; j < 4; j++) //j is number of links, in this case 4 { cartX[i].push_back(frame1); cartXDot[i].push_back(accLink); cartXDotDot[i].push_back(accLink); } } // Initial arm position configuration/constraint, negative in clockwise JntArray jointFinalPose(chain.getNrOfJoints()); jointFinalPose(0) = M_PI/2.0; jointFinalPose(1) = M_PI/24.0; jointFinalPose(2) = -M_PI/12.0; jointFinalPose(3) = M_PI/12.0; //correspond to x = 0.398289 y = 0.026105 JntArray jointInitialPose(chain.getNrOfJoints()); jointInitialPose(0) = 5*M_PI/6.0; jointInitialPose(1) = M_PI/12.0; jointInitialPose(2) = -M_PI/6.0; jointInitialPose(3) = -M_PI/3.0; //correspond to x = 0.151764 y= 0.366390 //actual initial jointPoses[0](0) = jointInitialPose(0); jointPoses[0](1) = jointInitialPose(1); jointPoses[0](2) = jointInitialPose(2); jointPoses[0](3) = jointInitialPose(3); //desired initial // jointPoses[1](0) = jointInitialPose(0); // jointPoses[1](1) = jointInitialPose(1); //~Definition of solver and initial configuration //-------------------------------------------------------------------------------------// //Definition of process main loop //-------------------------------------------------------------------------------------// //-------------------------------------------------------------------------------------// double taskTimeConstant = 2.5; //Time required to complete the task move(frameinitialPose, framefinalPose) default T=10.0 double simulationTime = 2*taskTimeConstant; double timeDelta = 0.001; double timeToSettle = 0.015; int status; double ksi[2] = {1.0, 1.0}; //damping factor double Kp[2]; Kp[0] = 5.49996/(timeToSettle*timeToSettle); Kp[1] = 1.352/(timeToSettle*timeToSettle); double Kv[2]; Kv[0] = 18.4997*ksi[0]/timeToSettle; Kv[1] = 7.5189*ksi[1]/timeToSettle; double Ki[2] = {0.0, 0.0}; double K = 0.005; /* //For cartesian space control with constraints and using external forces double ksi[2] = {1.0, 1.0}; //damping factor double Kp[2]; Kp[0] = 6000.0/(taskTimeConstant*taskTimeConstant); Kp[1] = 11000.0/(taskTimeConstant*taskTimeConstant); double Kv[2]; Kv[0] = 130*ksi[0]/taskTimeConstant; Kv[1] = 160*ksi[1]/taskTimeConstant; double Ki[2] = {-5.01, -5.1}; //For cartesian space control without constraints using external forces double ksi[2] = {1.0, 1.0}; //damping factor double Kp[2]; Kp[0] = 7000.0/(taskTimeConstant*taskTimeConstant); Kp[1] = 12000.0/(taskTimeConstant*taskTimeConstant); double Kv[2]; Kv[0] = 130*ksi[0]/taskTimeConstant; Kv[1] = 160*ksi[1]/taskTimeConstant; double Ki[2] = {-5.01, -5.1}; //For joint space control without constraints using computed torque double ksi[2] = {1.0, 1.0}; //damping factor double Kp[2]; Kp[0] = 4000.0/(taskTimeConstant*taskTimeConstant); Kp[1] = 3200.0/(taskTimeConstant*taskTimeConstant); double Kv[2]; Kv[0] = 20*ksi[0]/taskTimeConstant; Kv[1] = 30*ksi[1]/taskTimeConstant; double Ki[2] = {33.5, 10.5}; double Ka[2] = {0.0, 0.0}; */ //Interpolator parameters: double b0_y = 0.366390; //should come from initial joint configuration double b1_y = 0.0; double b2_y = ((0.026105 - b0_y)*3.0 / (simulationTime * simulationTime)); //yFinal = 0.026105 x= 0.398289 double b3_y = -((0.026105 - b0_y)*2.0 / (simulationTime * simulationTime * simulationTime)); double b0_x = 0.151764; //should come from initial joint configuration double b1_x = 0.0; double b2_x = ((0.151764 - b0_x)*3.0 / (simulationTime * simulationTime)); // Xfinal= xInitial = 0.151764 double b3_x = -((0.151764 - b0_x)*2.0 / (simulationTime * simulationTime * simulationTime)); /* double a0_q0 = jointInitialPose(0); double a1_q0 = 0.0; double a2_q0 = ((jointFinalPose(0) - jointInitialPose(0))*3.0 / (simulationTime * simulationTime)); double a3_q0 = -((jointFinalPose(0) - jointInitialPose(0))*2.0 / (simulationTime * simulationTime * simulationTime)); double a0_q1 = jointInitialPose(1); double a1_q1 = 0.0; double a2_q1 = ((jointFinalPose(1) - jointInitialPose(1))*3.0 / (simulationTime * simulationTime)); double a3_q1 = -((jointFinalPose(1) - jointInitialPose(1))*2.0 / (simulationTime * simulationTime * simulationTime)); */ double feedforwardJointTorque0 = 0.0; double feedforwardJointTorque1 = 0.0; for (double t = 0.0; t <= simulationTime; t = t + timeDelta) { /* * double j1 = 0; double j2 = 0; double j3 = 0; double j4 = 0; Eigen::MatrixXd chainJacobian(6, 2); chainJacobian.setZero(); chainJacobian(5, 0) = 1; chainJacobian(5, 1) = 1; // Jacobian inverse j1 = -0.4 * sin(jointPoses[0](0)) - 0.4 * sin(jointPoses[0](1)); j2 = -0.4 * sin(jointPoses[0](0) + jointPoses[0](0)); j3 = 0.4 * cos(jointPoses[0](0)) + 0.4 * cos(jointPoses[0](0) + jointPoses[0](1)); j4 = 0.4 * cos(jointPoses[0](0) + jointPoses[0](1)); //printf("t, j1, j2, j3, j4 %f %f %f %f %f\n", t, j1, j2, j3, j4); chainJacobian(0, 0) = j1; chainJacobian(0, 1) = j2; chainJacobian(1, 0) = j3; chainJacobian(1, 1) = j4; */ //Interpolation (Desired) q = a0+a1t+a2t^2+a3t^3 //Do we feed these values? then jointPoses[0] = jointPoses[1]; jointRates[0] = jointRates[1]; // But I don't think so, in control desired trajectory plays role of the reference that the controller should strive for from its actual (previous, current) state. cartX[1][1].p[0] = b0_x + b1_x * t + b2_x * t * t + b3_x * t * t*t; cartX[1][1].p[1] = b0_y + b1_y * t + b2_y * t * t + b3_y * t * t*t; cartXDot[1][1].vel[0] = b1_x + 2 * b2_x * t + 3 * b3_x * t*t; cartXDot[1][1].vel[1] = b1_y + 2 * b2_y * t + 3 * b3_y * t*t; cartXDotDot[1][1].vel[0] = 2 * b2_x + 6 * b3_x*t; cartXDotDot[1][1].vel[1] = 2 * b2_y + 6 * b3_y*t; // printf("%f %f %f %f %f %f %f\n", t, cartX[1][1].p[0], cartX[1][1].p[1], cartXDot[1][1].vel[0], cartXDot[1][1].vel[1], cartXDotDot[1][1].vel[0], cartXDotDot[1][1].vel[1]); //printf("Desired Cartesian values: %f %f %f %f %f %f %f\n", t, cartX[1][1].p[0], cartX[1][1].p[1], cartXDot[1][1].vel[0], cartXDot[1][1].vel[1], cartXDotDot[1][1].vel[0], cartXDotDot[1][1].vel[1]); /* jointPoses[1](0) = a0_q0 + a1_q0 * t + a2_q0 * t * t + a3_q0 * t * t*t; jointPoses[1](1) = a0_q1 + a1_q1 * t + a2_q1 * t * t + a3_q1 * t * t*t; jointRates[1](0) = a1_q0 + 2 * a2_q0 * t + 3 * a3_q0 * t*t; jointRates[1](1) = a1_q1 + 2 * a2_q1 * t + 3 * a3_q1 * t*t; jointAccelerations[1](0) = 2 * a2_q0 + 6 * a3_q0*t; jointAccelerations[1](1) = 2 * a2_q1 + 6 * a3_q1*t; //printf("Desired joint values: %f %f %f %f %f %f %f\n", t, jointPoses[1](0), jointPoses[1](1), jointRates[1](0), jointRates[1](1), jointAccelerations[1](0), jointAccelerations[1](1)); //printf("%f %f %f %f %f %f %f\n", t, jointPoses[1](0), jointPoses[1](1), jointRates[1](0), jointRates[1](1), jointAccelerations[1](0), jointAccelerations[1](1)); */ status = constraintSolver.CartToJnt(jointPoses[0], jointRates[0], jointAccelerations[0],alpha, betha, externalNetForce, jointTorques[0]); constraintSolver.getLinkCartesianPose(cartX[0]); constraintSolver.getLinkCartesianVelocity(cartXDot[0]); constraintSolver.getLinkCartesianAcceleration(cartXDotDot[0]); printf("%f %f %f %f %f %f %f\n", t, cartX[0][1].p.x(), cartX[0][1].p.y(), cartXDot[0][1].vel[0], cartXDot[0][1].vel[1], cartXDotDot[0][1].vel[0], cartXDotDot[0][1].vel[1]); // printf("Actual cartesian values: %f %f %f %f %f %f %f\n", t, cartX[0][1].p.x(), cartX[0][1].p.y(), cartXDot[0][1].vel[0], cartXDot[0][1].vel[1], cartXDotDot[0][1].vel[0], cartXDotDot[0][1].vel[1]); //Integration(robot joint values for rates and poses; actual) at the given "instanteneous" interval for joint position and velocity. jointRates[0](0) = jointRates[0](0) + jointAccelerations[0](0) * timeDelta; //Euler Forward jointPoses[0](0) = jointPoses[0](0) + (jointRates[0](0) - jointAccelerations[0](0) * timeDelta / 2.0) * timeDelta; //Trapezoidal rule jointRates[0](1) = jointRates[0](1) + jointAccelerations[0](1) * timeDelta; //Euler Forward jointPoses[0](1) = jointPoses[0](1) + (jointRates[0](1) - jointAccelerations[0](1) * timeDelta / 2.0) * timeDelta; jointRates[0](2) = jointRates[0](2) + jointAccelerations[0](2) * timeDelta; //Euler Forward jointPoses[0](2) = jointPoses[0](2) + (jointRates[0](2) - jointAccelerations[0](2) * timeDelta / 2.0) * timeDelta; //Trapezoidal rule jointRates[0](3) = jointRates[0](3) + jointAccelerations[0](3) * timeDelta; //Euler Forward jointPoses[0](3) = jointPoses[0](3) + (jointRates[0](3) - jointAccelerations[0](3) * timeDelta / 2.0) * timeDelta; // printf("%f %f %f %f %f %f %f %f %f\n", t, jointPoses[0](0), jointPoses[0](1), jointPoses[0](2), jointPoses[0](3), jointAccelerations[0](0), jointAccelerations[0](1), jointAccelerations[0](2), jointAccelerations[0](3)); //printf("Actual joint values: %f %f %f %f %f %f %f %f %f\n", t, jointPoses[0](0), jointPoses[0](1), jointRates[0](0), jointRates[0](1), jointAccelerations[0](0), jointAccelerations[0](1), jointTorques[0](0), jointTorques[0](1)); //Error /* jointPoses[2](0) = jointPoses[1](0) - jointPoses[0](0); jointPoses[2](1) = jointPoses[1](1) - jointPoses[0](1); jointRates[2](0) = jointRates[1](0) - jointRates[0](0); jointRates[2](1) = jointRates[1](1) - jointRates[0](1); jointAccelerations[2](0) = jointAccelerations[1](0) - jointAccelerations[0](0); jointAccelerations[2](1) = jointAccelerations[1](1) - jointAccelerations[0](1); jointPoses[3](0) += timeDelta*jointPoses[2](0); jointPoses[3](1) += timeDelta*jointPoses[2](1); //printf("%f %f %f %f %f %f %f\n", t, jointPoses[2](0), jointPoses[2](1), jointRates[2](0), jointRates[2](1), jointAccelerations[2](0), jointAccelerations[2](1)); */ cartX[2][1].p[0] = cartX[1][1].p[0] - cartX[0][1].p[0]; cartX[2][1].p[1] = cartX[1][1].p[1] - cartX[0][1].p[1]; cartXDot[2][1].vel[0] = cartXDot[1][1].vel[0] - cartXDot[0][1].vel[0]; cartXDot[2][1].vel[1] = cartXDot[1][1].vel[1] - cartXDot[0][1].vel[1]; cartXDotDot[2][1].vel[0] = cartXDotDot[1][1].vel[0] - cartXDotDot[0][1].vel[0]; cartXDotDot[2][1].vel[1] = cartXDotDot[1][1].vel[1] - cartXDotDot[0][1].vel[1]; cartX[3][1].p[0] += timeDelta * cartX[2][1].p[0]; //for integral term; cartX[3][1].p[1] += timeDelta * cartX[2][1].p[1]; //printf("%f %f %f %f %f %f %f\n", t, cartX[2][1].p[0], cartX[2][1].p[1], cartXDot[2][1].vel[0], cartXDot[2][1].vel[1], cartXDotDot[2][1].vel[1], cartXDotDot[2][1].vel[1]); //Regulator or controller //acceleration energy control // betha(0) = alpha(0, 0)*(K * cartXDotDot[2][1].vel[0] + (Kv[0]) * cartXDot[2][1].vel[0] + (Kp[0]) * cartX[2][1].p[0]+ Ki[1] * cartX[3][1].p[0]); // 0.5xgain // betha(1) = alpha(1, 1)*(K * cartXDotDot[2][1].vel[1] + (Kv[0]) * cartXDot[2][1].vel[1] + (Kp[1]) * cartX[2][1].p[1] + Ki[1] * cartX[3][1].p[0]); /* //computed joint torque control feedforwardJointTorque0 = jointAccelerations[1](0) + (Kp[0])*jointPoses[2](0) + (Kv[0])*jointRates[2](0) + (Ki[0])*jointPoses[3](0); feedforwardJointTorque1 = jointAccelerations[1](1) + (Kp[1])*jointPoses[2](1) + (Kv[1])*jointRates[2](1)+ (Ki[1])*jointPoses[3](1); jointTorques[0](0) = jointTorques[0](0) + feedforwardJointTorque0; jointTorques[0](1) = jointTorques[0](1) + feedforwardJointTorque1; //For cartesian space control one needs to calculate from the obtained joint space value, new cartesian space poses. //Then based on the difference of the signal (desired-actual) we define a regulation function (controller) // this difference should be compensated either by joint torques. externalNetForce[1].force[0] = cartXDotDot[1][1].vel[0] + ((Kv[0]) * cartXDot[2][1].vel[0] + (Kp[0]) * cartX[2][1].p[0] + (Ki[0]) * cartX[3][1].p[0]); externalNetForce[1].force[1] = cartXDotDot[1][1].vel[1] + ((Kv[1]) * cartXDot[2][1].vel[1] + (Kp[1]) * cartX[2][1].p[1] + (Ki[1]) * cartX[3][1].p[1]); */ externalNetForce[1].force[0] = ((Kv[0]) * cartXDot[2][1].vel[0] + (Kp[0]) * cartX[2][1].p[0] ); externalNetForce[1].force[1] = ((Kv[1]) * cartXDot[2][1].vel[1] + (Kp[1]) * cartX[2][1].p[1] ); //controlling y seems to help a little } //~Definition of process main loop //-------------------------------------------------------------------------------------// return 0; }