Exemple #1
0
inline void print_slice(std::ostream& o, const irange& i)
{
    if (i.step() == 0) {
        o << '[' << i.start() << ']';
    } else {
        o << '[';
        if (i.start() != std::numeric_limits<intptr_t>::min()) {
            o << i.start();
        }
        o << ':';
        if (i.finish() != std::numeric_limits<intptr_t>::max()) {
            o << i.finish();
        }
        if (i.step() != 1) {
            o << ':';
            o << i.step();
        }
        o << ']';
    }
}
Exemple #2
0
void dynd::apply_single_linear_index(const irange& irnge, intptr_t dimension_size, intptr_t error_i, const ndt::type* error_tp,
        bool& out_remove_dimension, intptr_t& out_start_index, intptr_t& out_index_stride, intptr_t& out_dimension_size)
{
    intptr_t step = irnge.step();
    if (step == 0) {
        // A single index
        out_remove_dimension = true;
        intptr_t idx = irnge.start();
        if (idx >= 0) {
            if (idx < dimension_size) {
                out_start_index = idx;
                out_index_stride = 1;
                out_dimension_size = 1;
            } else {
                if (error_tp) {
                    intptr_t ndim = error_tp->extended()->get_ndim();
                    dimvector shape(ndim);
                    error_tp->extended()->get_shape(ndim, 0, shape.get(), NULL, NULL);
                    throw index_out_of_bounds(idx, error_i, ndim, shape.get());
                } else {
                    throw index_out_of_bounds(idx, dimension_size);
                }
            }
        } else if (idx >= -dimension_size) {
            out_start_index = idx + dimension_size;
            out_index_stride = 1;
            out_dimension_size = 1;
        } else {
            if (error_tp) {
                intptr_t ndim = error_tp->get_ndim();
                dimvector shape(ndim);
                error_tp->extended()->get_shape(ndim, 0, shape.get(), NULL, NULL);
                throw index_out_of_bounds(idx, error_i, ndim, shape.get());
            } else {
                throw index_out_of_bounds(idx, dimension_size);
            }
        }
    } else if (step > 0) {
        // A range with a positive step
        intptr_t start = irnge.start();
        if (start >= 0) {
            if (start < dimension_size) {
                // Starts with a positive index
            } else {
                if (error_tp) {
                    intptr_t ndim = error_tp->get_ndim();
                    dimvector shape(ndim);
                    // check that we get here
                    error_tp->extended()->get_shape(ndim, 0, shape.get(), NULL, NULL);
                    throw irange_out_of_bounds(irnge, error_i, ndim, shape.get());
                } else {
                    throw irange_out_of_bounds(irnge, dimension_size);
                }
            }
        } else if (start >= -dimension_size) {
            // Starts with Python style negative index
            start += dimension_size;
        } else {
            // Signal for "from the beginning" whenever the index
            // is more negative
            start = 0;
        }

        intptr_t end = irnge.finish();
        if (end >= 0) {
            if (end <= dimension_size) {
                // Ends with a positive index, or the end of the array
            } else {
                // Any end value greater or equal to the dimension size
                // signals to slice to the end
                end = dimension_size;
            }
        } else if (end >= -dimension_size) {
            // Ends with a Python style negative index
            end += dimension_size;
        } else {
            if (error_tp) {
                intptr_t ndim = error_tp->get_ndim();
                dimvector shape(ndim);
                error_tp->extended()->get_shape(ndim, 0, shape.get(), NULL, NULL);
                throw irange_out_of_bounds(irnge, error_i, ndim, shape.get());
            } else {
                throw irange_out_of_bounds(irnge, dimension_size);
            }
        }

        intptr_t size = end - start;
        out_remove_dimension = false;
        if (size > 0) {
            if (step == 1) {
                // Simple range
                out_start_index = start;
                out_index_stride = 1;
                out_dimension_size = size;
            } else {
                // Range with a stride
                out_start_index = start;
                out_index_stride = step;
                out_dimension_size = (size + step - 1) / step;
            }
        } else {
            // Empty slice
            out_start_index = 0;
            out_index_stride = 1;
            out_dimension_size = 0;
        }
    } else {
        // A range with a negative step
        intptr_t start = irnge.start();
        if (start >= 0) {
            if (start < dimension_size) {
                // Starts with a positive index
            } else {
                if (error_tp) {
                    intptr_t ndim = error_tp->get_ndim();
                    dimvector shape(ndim);
                    error_tp->extended()->get_shape(ndim, 0, shape.get(), NULL, NULL);
                    throw irange_out_of_bounds(irnge, error_i, ndim, shape.get());
                } else {
                    throw irange_out_of_bounds(irnge, dimension_size);
                }
            }
        } else if (start >= -dimension_size) {
            // Starts with Python style negative index
            start += dimension_size;
        } else if (start == std::numeric_limits<intptr_t>::min()) {
            // Signal for "from the beginning" (which means the last element)
            start = dimension_size - 1;
        } else {
            if (error_tp) {
                intptr_t ndim = error_tp->get_ndim();
                dimvector shape(ndim);
                error_tp->extended()->get_shape(ndim, 0, shape.get(), NULL, NULL);
                throw irange_out_of_bounds(irnge, error_i, ndim, shape.get());
            } else {
                throw irange_out_of_bounds(irnge, dimension_size);
            }
        }

        intptr_t end = irnge.finish();
        if (end >= 0) {
            if (end < dimension_size) {
                // Ends with a positive index, or the end of the array
            } else if (end == std::numeric_limits<intptr_t>::max()) {
                // Signal for "until the end" (which means towards index 0 of the data)
                end = -1;
            } else {
                if (error_tp) {
                    intptr_t ndim = error_tp->get_ndim();
                    dimvector shape(ndim);
                    error_tp->extended()->get_shape(ndim, 0, shape.get(), NULL, NULL);
                    throw irange_out_of_bounds(irnge, error_i, ndim, shape.get());
                } else {
                    throw irange_out_of_bounds(irnge, dimension_size);
                }
            }
        } else if (end >= -dimension_size) {
            // Ends with a Python style negative index
            end += dimension_size;
        } else {
            // If the value is too negative, -1 means to go all the
            // way to the beginning (with the negative step)
            end = -1;
        }

        intptr_t size = start - end;
        out_remove_dimension = false;
        if (size > 0) {
            if (step == -1) {
                // Simple range
                out_start_index = start;
                out_index_stride = -1;
                out_dimension_size = size;
            } else {
                // Range with a stride
                out_start_index = start;
                out_index_stride = step;
                out_dimension_size = (size + (-step) - 1) / (-step);
            }
        } else {
            // Empty slice
            out_start_index = 0;
            out_index_stride = 1;
            out_dimension_size = 0;
        }
    }
}
    static inline size_type vector_size(const Ref& A, const irange& col_range)
    {
	using std::min;
	size_type finish= min(col_range.finish(), num_cols(A));
	return col_range.start() < finish ? finish - col_range.start() : 0;
    }
 const self  operator[]( irange r ) const { return sub_vector(*this, r.start(), r.finish());  }