Exemple #1
0
// Intersect ray r with the triangle abc.  If it hits returns true,
// and puts the t parameter, barycentric coordinates, normal, object id,
// and object material in the isect object
bool TrimeshFace::intersectLocal( const ray& r, isect& i ) const
{
  const Vec3d& a = parent->vertices[ids[0]];
  const Vec3d& b = parent->vertices[ids[1]];
  const Vec3d& c = parent->vertices[ids[2]];

  // tangent vectors
  Vec3d t1 = b - a;
  Vec3d t2 = c - a;
  
  Vec3d n = crossProd(t1,t2);

  double D = -n*a;

  // if the surface is parallel to the ray there is no intersection
  if(r.getDirection()*n == 0)
  {
    return false;
  }  

  double t = -(n*r.getPosition() + D)/(n*r.getDirection() );
  if (t <= RAY_EPSILON)
    return false;

  // point of intersection with the same plane (doesn't mean intersection with triangle) p(t)=p+t*d
  Vec3d p = r.at(t);

  // triangle area
  double A = n.length()/2.0;

  // barycentric coords
  double wa = crossProd(c-b, p-b).length() / (2.0*A);
  double wb = crossProd(a-c, p-c).length() / (2.0*A);
  double wc = crossProd(b-a, p-a).length() / (2.0*A);

  if((wa >= 0.0) && (wb >= 0.0) && (wc >= 0.0) && (wa+wb+wc-1.0 <= 0.00001)) {
    i.setT(t);
    i.setBary(wa, wb, wc);
    if (parent->normals.size() == 0) {
      i.setN(n);
    } else {
      Vec3d inter_n = wa*parent->normals[ids[0]] + wb*parent->normals[ids[1]]
                    + wc*parent->normals[ids[2]];
      inter_n.normalize();
      i.setN(inter_n);
    }
    i.setObject(this);
    if (parent->materials.size() == 0) {
      i.setMaterial(this->getMaterial() );
    } else {
      Material inter_m = wa*(*parent->materials[ids[0]]);
      inter_m += wb*(*parent->materials[ids[1]]);
      inter_m += wc*(*parent->materials[ids[2]]);
      i.setMaterial(inter_m);
    }
    return true;
  }

  return false;
}
Exemple #2
0
bool Sphere::intersectLocal(ray& r, isect& i) const
{
    Vec3d v = -r.getPosition();
    double b = v * r.getDirection();
    double discriminant = b*b - v*v + 1;

    if( discriminant < 0.0 ) {
        return false;
    }

    discriminant = sqrt( discriminant );
    double t2 = b + discriminant;

    if( t2 <= RAY_EPSILON ) {
        return false;
    }

    i.obj = this;
    i.setMaterial(this->getMaterial());

    double t1 = b - discriminant;

    if( t1 > RAY_EPSILON ) {
        i.t = t1;
        i.N = r.at( t1 );
        i.N.normalize();
    } else {
        i.t = t2;
        i.N = r.at( t2 );
        i.N.normalize();
    }

    return true;
}
Exemple #3
0
//Test
bool Square::intersectLocal(ray& r, isect& i) const
{
	Vec3d p = r.getPosition();
	Vec3d d = r.getDirection();

	if( d[2] == 0.0 ) {
		return false;
	}

	double t = -p[2]/d[2];

	if( t <= RAY_EPSILON ) {
		return false;
	}

	Vec3d P = r.at( t );

	if( P[0] < -0.5 || P[0] > 0.5 ) {	
		return false;
	}

	if( P[1] < -0.5 || P[1] > 0.5 ) {	
		return false;
	}

	i.obj = this;
	i.setMaterial(this->getMaterial());
	i.t = t;
	if( d[2] > 0.0 ) {
		i.N = Vec3d( 0.0, 0.0, -1.0 );
	} else {
		i.N = Vec3d( 0.0, 0.0, 1.0 );
	}

    i.setUVCoordinates( Vec2d(P[0] + 0.5, P[1] + 0.5) );
	return true;
}
Exemple #4
0
bool Cone::intersectLocal(ray& r, isect& i) const
{
	bool ret = false;
	const int x = 0, y = 1, z = 2;	// For the dumb array indexes for the vectors

	Vec3d normal;
	
	Vec3d R0 = r.getPosition();
	Vec3d Rd = r.getDirection();
	double pz = R0[2];
	double dz = Rd[2];
	
	double a = Rd[x]*Rd[x] + Rd[y]*Rd[y] - beta_squared * Rd[z]*Rd[z];

	if( a == 0.0) return false;		// We're in the x-y plane, no intersection

	double b = 2 * (R0[x]*Rd[x] + R0[y]*Rd[y] - beta_squared * ((R0[z] + gamma) * Rd[z]));
	double c = -beta_squared*(gamma + R0[z])*(gamma + R0[z]) + R0[x] * R0[x] + R0[y] * R0[y];

	double discriminant = b * b - 4 * a * c;
	
	double farRoot, nearRoot, theRoot = RAY_EPSILON;
	bool farGood, nearGood;
	
	if(discriminant <= 0) return false;		// No intersection

	discriminant = sqrt(discriminant);

	// We have two roots, so calculate them
	nearRoot = (-b + discriminant) / ( 2 * a );
	farRoot = (-b - discriminant) / ( 2 * a );
	
	// This is confusing, but it figures out which
	// root is closer and puts into theRoot
	nearGood = isGoodRoot(r.at(nearRoot));
	if(nearGood && (nearRoot > theRoot))
	{
		theRoot = nearRoot;
		normal = Vec3d((r.at(theRoot))[x], (r.at(theRoot))[y], -2.0 * beta_squared * (r.at(theRoot)[z] + gamma));
	}
	farGood = isGoodRoot(r.at(farRoot));
	if(farGood && ( (nearGood && farRoot < theRoot) || farRoot > RAY_EPSILON) ) 
	{
		theRoot = farRoot;
		normal = Vec3d((r.at(theRoot))[x], (r.at(theRoot))[y], -2.0 * beta_squared * (r.at(theRoot)[z] + gamma));
	}

	// In case we are _inside_ the _uncapped_ cone, we need to flip the normal.
	// Essentially, the cone in this case is a double-sided surface
	// and has _2_ normals
	if( !capped && (normal * r.getDirection()) > 0 )
		normal = -normal;

	// These are to help with finding caps
	double t1 = (-pz)/dz;
	double t2 = (height-pz)/dz;
	
	Vec3d p( r.at( t1 ) );
	
	if(capped) {
		if( p[0]*p[0] + p[1]*p[1] <=  b_radius*b_radius)
		{
			if(t1 < theRoot && t1 > RAY_EPSILON)
			{
				theRoot = t1;
				if( dz > 0.0 ) {
					// Intersection with cap at z = 0.
					normal = Vec3d( 0.0, 0.0, -1.0 );
				} else {
					normal = Vec3d( 0.0, 0.0, 1.0 );
				}
			}
		}
		Vec3d q( r.at( t2 ) );
		if( q[0]*q[0] + q[1]*q[1] <=  t_radius*t_radius)
		{
			if(t2 < theRoot && t2 > RAY_EPSILON)
			{
				theRoot = t2;
				if( dz > 0.0 ) {
					// Intersection with interior of cap at z = 1.
					normal = Vec3d( 0.0, 0.0, 1.0 );
				} else {
					normal = Vec3d( 0.0, 0.0, -1.0 );
				}
			}
		}
	}
	
	if(theRoot <= RAY_EPSILON) return false;
	
	i.setT(theRoot);
	normal.normalize();
	i.setN(normal);
	i.obj = this;
	i.setMaterial(this->getMaterial());
	return true;
	
	return ret;
}