br_status reduce_app(func_decl * f, unsigned num, expr * const * args, expr_ref & result, proof_ref & result_pr) { result_pr = 0; func_decl * new_f; if (m_f2f.find(f, new_f)) { result = m().mk_app(new_f, num, args); return BR_DONE; } if (!must_remap(f)) return BR_FAILED; if (m().is_eq(f)) { result = m().mk_eq(args[0], args[1]); return BR_DONE; } if (m().is_ite(f)) { result = m().mk_ite(args[0], args[1], args[2]); return BR_DONE; } if (f->get_family_id() != null_family_id || f->get_info() != 0) { throw elim_distinct_exception("uninterpreted sort is used in interpreted function symbol"); } new_f = remap(f); result = m().mk_app(new_f, num, args); return BR_DONE; }
void mk_const(func_decl * f, expr_ref & result) { SASSERT(f->get_family_id() == null_family_id); SASSERT(f->get_arity() == 0); expr * r; if (m_const2bits.find(f, r)) { result = r; return; } sort * s = f->get_range(); SASSERT(butil().is_bv_sort(s)); unsigned bv_size = butil().get_bv_size(s); if (bv_size == 1) { result = m().mk_const(f); return; } sort * b = butil().mk_sort(1); ptr_buffer<expr> bits; for (unsigned i = 0; i < bv_size; i++) { bits.push_back(m().mk_fresh_const(0, b)); } r = butil().mk_concat(bits.size(), bits.c_ptr()); m_saved.push_back(r); m_const2bits.insert(f, r); result = r; }
void add_entry(app* term, expr* value, obj_map<func_decl, func_interp*>& interpretations) { func_interp* fi = nullptr; func_decl * const declaration = term->get_decl(); const unsigned sz = declaration->get_arity(); SASSERT(sz == term->get_num_args()); if (!interpretations.find(declaration, fi)) { fi = alloc(func_interp, m_m, sz); interpretations.insert(declaration, fi); } fi->insert_new_entry(term->get_args(), value); }
void ctx_propagate_assertions::assert_eq_core(expr * t, app * val) { if (m_assertions.contains(t)) { // This branch can only happen when m_max_depth was reached. // It can happen when m_assertions contains an entry t->val', // but (= t val) was not simplified to (= val' val) // because the simplifier stopped at depth m_max_depth return; } CTRACE("assert_eq_bug", m_assertions.contains(t), tout << "t:\n" << mk_ismt2_pp(t, m) << "\nval:\n" << mk_ismt2_pp(val, m) << "\n"; expr * old_val = 0; m_assertions.find(t, old_val); tout << "old_val:\n" << mk_ismt2_pp(old_val, m) << "\n";);
subpaving::var process(expr * t, unsigned depth, mpz & n, mpz & d) { SASSERT(is_int_real(t)); checkpoint(); if (is_cached(t)) { unsigned idx = m_cache.find(t); qm().set(n, m_cached_numerators[idx]); qm().set(d, m_cached_denominators[idx]); return m_cached_vars[idx]; } SASSERT(!is_quantifier(t)); if (::is_var(t) || !m_autil.is_arith_expr(t)) { qm().set(n, 1); qm().set(d, 1); return mk_var_for(t); } return process_arith_app(to_app(t), depth, n, d); }
void pop(unsigned num_scopes) { SASSERT(m_bounds.empty()); // bounds must be flushed before pop. if (num_scopes > 0) { SASSERT(num_scopes <= m_enum_consts_lim.size()); unsigned new_sz = m_enum_consts_lim.size() - num_scopes; unsigned lim = m_enum_consts_lim[new_sz]; for (unsigned i = m_enum_consts.size(); i > lim; ) { --i; func_decl* f = m_enum_consts[i].get(); func_decl* f_fresh = m_enum2bv.find(f); m_bv2enum.erase(f_fresh); m_enum2bv.erase(f); m_enum2def.erase(f); } m_enum_consts_lim.resize(new_sz); m_enum_consts.resize(lim); m_enum_defs.resize(lim); m_enum_bvs.resize(lim); } m_rw.reset(); }
void reduce(proof* pf, proof_ref &out) { proof *res = nullptr; m_todo.reset(); m_todo.push_back(pf); ptr_buffer<proof> args; bool dirty = false; while (!m_todo.empty()) { proof *p, *tmp, *pp; unsigned todo_sz; p = m_todo.back(); if (m_cache.find(p, tmp)) { res = tmp; m_todo.pop_back(); continue; } dirty = false; args.reset(); todo_sz = m_todo.size(); for (unsigned i = 0, sz = m.get_num_parents(p); i < sz; ++i) { pp = m.get_parent(p, i); if (m_cache.find(pp, tmp)) { args.push_back(tmp); dirty = dirty || pp != tmp; } else { m_todo.push_back(pp); } } if (todo_sz < m_todo.size()) { continue; } else { m_todo.pop_back(); } if (m.is_hypothesis(p)) { // hyp: replace by a corresponding unit if (m_units.find(m.get_fact(p), tmp)) { res = tmp; } else { res = p; } } else if (!dirty) { res = p; } else if (m.is_lemma(p)) { //lemma: reduce the premise; remove reduced consequences from conclusion SASSERT(args.size() == 1); res = mk_lemma_core(args.get(0), m.get_fact(p)); compute_mark1(res); } else if (m.is_unit_resolution(p)) { // unit: reduce units; reduce the first premise; rebuild unit resolution res = mk_unit_resolution_core(args.size(), args.c_ptr()); compute_mark1(res); } else { // other: reduce all premises; reapply if (m.has_fact(p)) { args.push_back(to_app(m.get_fact(p))); } SASSERT(p->get_decl()->get_arity() == args.size()); res = m.mk_app(p->get_decl(), args.size(), (expr * const*)args.c_ptr()); m_pinned.push_back(res); compute_mark1(res); } SASSERT(res); m_cache.insert(p, res); if (m.has_fact(res) && m.is_false(m.get_fact(res))) { break; } } out = res; }
expr* find(expr* e) { expr* result = 0; VERIFY(m_mem.find(e, result)); return result; }
virtual void operator()( goal_ref const & g, goal_ref_buffer & result, model_converter_ref & mc, proof_converter_ref & pc, expr_dependency_ref & core) { SASSERT(g->is_well_sorted()); mc = 0; pc = 0; core = 0; m_trail.reset(); m_fd.reset(); m_max.reset(); m_nonfd.reset(); m_bounds.reset(); ref<bvmc> mc1 = alloc(bvmc); tactic_report report("eq2bv", *g); m_bounds(*g); for (unsigned i = 0; i < g->size(); i++) { collect_fd(g->form(i)); } cleanup_fd(mc1); if (m_max.empty()) { result.push_back(g.get()); return; } for (unsigned i = 0; i < g->size(); i++) { expr_ref new_curr(m); proof_ref new_pr(m); if (is_bound(g->form(i))) { g->update(i, m.mk_true(), 0, 0); continue; } m_rw(g->form(i), new_curr, new_pr); if (m.proofs_enabled() && !new_pr) { new_pr = m.mk_rewrite(g->form(i), new_curr); new_pr = m.mk_modus_ponens(g->pr(i), new_pr); } g->update(i, new_curr, new_pr, g->dep(i)); } obj_map<expr, unsigned>::iterator it = m_max.begin(), end = m_max.end(); for (; it != end; ++it) { expr* c = it->m_key; bool strict; rational r; if (m_bounds.has_lower(c, r, strict)) { SASSERT(!strict); expr* d = m_fd.find(c); g->assert_expr(bv.mk_ule(bv.mk_numeral(r, m.get_sort(d)), d), m_bounds.lower_dep(c)); } if (m_bounds.has_upper(c, r, strict)) { SASSERT(!strict); expr* d = m_fd.find(c); g->assert_expr(bv.mk_ule(d, bv.mk_numeral(r, m.get_sort(d))), m_bounds.upper_dep(c)); } } g->inc_depth(); mc = mc1.get(); result.push_back(g.get()); TRACE("pb", g->display(tout););