Exemple #1
0
//--------------------------------------------------------------------------------
void ofxCvImage::warpIntoMe( ofxCvImage& mom, const ofPoint src[4], const ofPoint dst[4] ){
    
	if( !bAllocated ){
		ofLogError("ofxCvImage") << "warpIntoMe(): image not allocated";
		return;		
	}
	if( !mom.bAllocated ){
		ofLogError("ofxCvImage") << "warpIntoMe(): source image not allocated";
		return;		
	}
		
	if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth ) {

    	// compute matrix for perspectival warping (homography)
    	CvPoint2D32f cvsrc[4];
    	CvPoint2D32f cvdst[4];
    	CvMat* translate = cvCreateMat( 3, 3, CV_32FC1 );
    	cvSetZero( translate );
    	for (int i = 0; i < 4; i++ ) {
    		cvsrc[i].x = src[i].x;
    		cvsrc[i].y = src[i].y;
    		cvdst[i].x = dst[i].x;
    		cvdst[i].y = dst[i].y;
    	}
    	cvGetPerspectiveTransform( cvsrc, cvdst, translate );  // calculate homography
    	cvWarpPerspective( mom.getCvImage(), cvImage, translate);
        flagImageChanged();
    	cvReleaseMat( &translate );

    } else {
        ofLogError("ofxCvImage") << "warpIntoMe(): image type mismatch";
    }
}
//--------------------------------------------------------------------------------
void ofxCvGrayscaleImage::scaleIntoMe( ofxCvImage& mom, int interpolationMethod ){
    //for interpolation you can pass in:
    //CV_INTER_NN - nearest-neigbor interpolation,
    //CV_INTER_LINEAR - bilinear interpolation (used by default)
    //CV_INTER_AREA - resampling using pixel area relation. It is preferred method
    //                for image decimation that gives moire-free results. In case of
    //                zooming it is similar to CV_INTER_NN method.
    //CV_INTER_CUBIC - bicubic interpolation.

    if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth ) {

        if ((interpolationMethod != CV_INTER_NN) &&
            (interpolationMethod != CV_INTER_LINEAR) &&
            (interpolationMethod != CV_INTER_AREA) &&
            (interpolationMethod != CV_INTER_CUBIC) ){
            ofLog(OF_LOG_WARNING, "in scaleIntoMe, setting interpolationMethod to CV_INTER_NN");
    		interpolationMethod = CV_INTER_NN;
    	}
        cvResize( mom.getCvImage(), cvImage, interpolationMethod );
        flagImageChanged();

    } else {
        ofLog(OF_LOG_ERROR, "in scaleIntoMe: mom image type has to match");
    }
}
Exemple #3
0
//--------------------------------------------------------------------------------
void ofxCvImage::operator *= ( ofxCvImage& mom ) {
	if( !mom.bAllocated ){
		ofLogError("ofxCvImage") << "operator*=: mom needs to be allocated";	
		return;	
	}
	if( !bAllocated ){
		ofLogNotice("ofxCvImage") << "operator*=: allocating to match dimensions: "
			<< mom.getWidth() << " " << mom.getHeight();
		allocate(mom.getWidth(), mom.getHeight());
	}

	if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( matchingROI(getROI(), mom.getROI()) ) {
            float scalef = 1.0f / 255.0f;
            cvMul( cvImage, mom.getCvImage(), cvImageTemp, scalef );
            swapTemp();
            flagImageChanged();
        } else {
            ofLogError("ofxCvImage") << "operator*=: region of interest mismatch";
        }
	} else {
        ofLogError("ofxCvImage") << "operator*=: images type mismatch";
	}
}
Exemple #4
0
//--------------------------------------------------------------------------------
void ofxCvImage::operator &= ( ofxCvImage& mom ) {
	if( !mom.bAllocated ){
		ofLogError("ofxCvImage") << "operator&=: source image not allocated";	
		return;	
	}
	if( !bAllocated ){
		ofLogNotice("ofxCvImage") << "operator&=: allocating to match dimensions: "
			<< mom.getWidth() << " " << mom.getHeight();
		allocate(mom.getWidth(), mom.getHeight());
	}

	if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( matchingROI(getROI(), mom.getROI()) ) {
            cvAnd( cvImage, mom.getCvImage(), cvImageTemp );
            swapTemp();
            flagImageChanged();
        } else {
            ofLogError("ofxCvImage") << "operator&=: region of interest mismatch";
        }
	} else {
        ofLogError("ofxCvImage") << "operator&=: images need to have matching type";
	}
}
void ofxCvBrightnessContrast::setBrightnessAndContrast(ofxCvImage& img, float brightnessAmount, float contrastAmount){
	brightnessVal = MAX(-127, MIN(127, brightnessAmount));
	contrastVal = MAX(-127, MIN(127, contrastAmount));
	
	unsigned char data[ 256 ];
	CvMat * matrix;
	double delta, a, b;
	
	matrix = cvCreateMatHeader( 1, 256, CV_8UC1 );
    cvSetData( matrix, data, 0 );
	
	if ( contrastVal>0 ) {
        delta = (127.0f*contrastVal) / 128.0f;
        a = 255.0f / ( 255.0f-(delta*2.0f) );
        b = a * (brightnessVal-delta);
    }
    else {
		delta = (-128.0f*contrastVal) / 128.0f;
		a = ( 256.0f-(delta*2.0f) ) / 255.0f;
		b = ( a*brightnessVal )+delta;
    }
	
	for( int i=0; i<256; i++ ) {
		int value = cvRound( (a*i)+b );
		data[i]	= (unsigned char) min( max(0,value), 255 );
	}
	
    cvLUT( img.getCvImage(), img.getCvImage(), matrix );
	cvReleaseMat( &matrix );
	
}
//--------------------------------------------------------------------------------
void ofxCvColorImage::scaleIntoMe( ofxCvImage& mom, int interpolationMethod ){
	if( !bAllocated ){
		ofLogError("ofxCvColorImage") << "resize(): image not allocated";	
		return;	
	}
	if( !mom.bAllocated ){
		ofLogError("ofxCvColorImage") << "resize(): source image not allocated";	
		return;	
	}
		
    //for interpolation you can pass in:
    //CV_INTER_NN - nearest-neigbor interpolation,
    //CV_INTER_LINEAR - bilinear interpolation (used by default)
    //CV_INTER_AREA - resampling using pixel area relation. It is preferred method
    //                for image decimation that gives moire-free results. In case of
    //                zooming it is similar to CV_INTER_NN method.
    //CV_INTER_CUBIC - bicubic interpolation.

    if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth ) {

        if ((interpolationMethod != CV_INTER_NN) &&
            (interpolationMethod != CV_INTER_LINEAR) &&
            (interpolationMethod != CV_INTER_AREA) &&
            (interpolationMethod != CV_INTER_CUBIC) ){
            ofLogWarning("ofxCvColorImage") << "scaleIntoMe(): setting interpolationMethod to CV_INTER_NN";
    		interpolationMethod = CV_INTER_NN;
    	}
        cvResize( mom.getCvImage(), cvImage, interpolationMethod );
        flagImageChanged();

    } else {
        ofLogError("ofxCvColorImage") << "scaleIntoMe(): type mismatch with source image";
    }
}
//--------------------------------------------------------------------------------
void ofxCvImage::warpIntoMe( ofxCvImage& mom, const ofPoint src[4], const ofPoint dst[4] ){
    
	if( !bAllocated ){
		ofLog(OF_LOG_ERROR, "in warpIntoMe, image not allocated");
		return;		
	}
	if( !mom.bAllocated ){
		ofLog(OF_LOG_ERROR, "in warpIntoMe, mom not allocated");
		return;		
	}
		
	if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth ) {

    	// compute matrix for perspectival warping (homography)
    	CvPoint2D32f cvsrc[4];
    	CvPoint2D32f cvdst[4];
    	CvMat* translate = cvCreateMat( 3, 3, CV_32FC1 );
    	cvSetZero( translate );
    	for (int i = 0; i < 4; i++ ) {
    		cvsrc[i].x = src[i].x;
    		cvsrc[i].y = src[i].y;
    		cvdst[i].x = dst[i].x;
    		cvdst[i].y = dst[i].y;
    	}
    	cvWarpPerspectiveQMatrix( cvsrc, cvdst, translate );  // calculate homography
    	cvWarpPerspective( mom.getCvImage(), cvImage, translate);
        flagImageChanged();
    	cvReleaseMat( &translate );

    } else {
        ofLog(OF_LOG_ERROR, "in warpIntoMe: mom image type has to match");
    }
}
//--------------------------------------------------------------------------------
void ofxCvImage::operator *= ( ofxCvImage& mom ) {
	if( !mom.bAllocated ){
		ofLog(OF_LOG_ERROR, "in *=, mom needs to be allocated");	
		return;	
	}
	if( !bAllocated ){
		ofLog(OF_LOG_NOTICE, "in *=, allocating to match dimensions");			
		allocate(mom.getWidth(), mom.getHeight());
	}

	if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( matchingROI(getROI(), mom.getROI()) ) {
            float scalef = 1.0f / 255.0f;
            cvMul( cvImage, mom.getCvImage(), cvImageTemp, scalef );
            swapTemp();
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in *=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in *=, images need to have matching type");
	}
}
//--------------------------------------------------------------------------------
void ofxCvImage::operator &= ( ofxCvImage& mom ) {
	if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( matchingROI(getROI(), mom.getROI()) ) {
            cvAnd( cvImage, mom.getCvImage(), cvImageTemp );
            swapTemp();
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in &=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in &=, images need to have matching type");
	}
}
//--------------------------------------------------------------------------------
void ofxCvImage::operator *= ( ofxCvImage& mom ) {
	if( mom.getCvImage()->nChannels == cvImage->nChannels &&
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( matchingROI(getROI(), mom.getROI()) ) {
            float scalef = 1.0f / 255.0f;
            cvMul( cvImage, mom.getCvImage(), cvImageTemp, scalef );
            swapTemp();
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in *=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in *=, images need to have matching type");
	}
}
//--------------------------------------------------------------------------------
void ofxCvFloatImage::operator &= ( ofxCvImage& mom ) {
	if( mom.getCvImage()->nChannels == cvImage->nChannels && 
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( matchingROI(getROI(), mom.getROI()) ) {
            //this is doing it bit-wise; probably not what we want
            cvAnd( cvImage, mom.getCvImage(), cvImageTemp );
            swapTemp();
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in &=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in &=, images need to have matching type");
	}
}
Exemple #12
0
//--------------------------------------------------------------------------------
void ofxCvFloatImage::operator *= ( ofxCvImage& mom ) {
	if( mom.getCvImage()->nChannels == cvImage->nChannels && 
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( pushSetBothToTheirIntersectionROI(*this,mom) ) {
            cvMul( cvImage, mom.getCvImage(), cvImageTemp );
            swapTemp();
            popROI();       //restore prevoius ROI
            mom.popROI();   //restore prevoius ROI              
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in *=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in *=, images need to have matching type");
	}
}
Exemple #13
0
//--------------------------------------------------------------------------------
void ofxCvFloatImage::operator &= ( ofxCvImage& mom ) {
	if( mom.getCvImage()->nChannels == cvImage->nChannels && 
        mom.getCvImage()->depth == cvImage->depth )
    {
        if( pushSetBothToTheirIntersectionROI(*this,mom) ) {
            //this is doing it bit-wise; probably not what we want
            cvAnd( cvImage, mom.getCvImage(), cvImageTemp );
            swapTemp();
            popROI();       //restore prevoius ROI
            mom.popROI();   //restore prevoius ROI              
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in &=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in &=, images need to have matching type");
	}
}
//--------------------------------------------------------------------------------
void ofxCvFloatImage::operator *= ( ofxCvImage& mom ) {
	if( mom.getWidth() == 0 || mom.getHeight() == 0 ){
		ofLog(OF_LOG_ERROR, "in *=, mom width or height is 0");	
		return;	
	}
	if( !bAllocated ){
		ofLog(OF_LOG_ERROR, "in *=, image is not allocated");		
		return;	
	}
		
	if( mom.getCvImage()->nChannels == cvImage->nChannels && mom.getCvImage()->depth == cvImage->depth ){
        if( matchingROI(getROI(), mom.getROI()) ) {
            cvMul( cvImage, mom.getCvImage(), cvImageTemp );
            swapTemp();
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in *=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in *=, images need to have matching type");
	}
}
//--------------------------------------------------------------------------------
void ofxCvFloatImage::operator &= ( ofxCvImage& mom ) {
	if( mom.getWidth() == 0 || mom.getHeight() == 0 ){
		ofLog(OF_LOG_ERROR, "in &=, mom width or height is 0");	
		return;	
	}
	if( !bAllocated ){
		ofLog(OF_LOG_ERROR, "in &=, image is not allocated");		
		return;	
	}

	if( mom.getCvImage()->nChannels == cvImage->nChannels && mom.getCvImage()->depth == cvImage->depth ){
        if( matchingROI(getROI(), mom.getROI()) ) {
            //this is doing it bit-wise; probably not what we want
            cvAnd( cvImage, mom.getCvImage(), cvImageTemp );
            swapTemp();
            flagImageChanged();
        } else {
            ofLog(OF_LOG_ERROR, "in &=, ROI mismatch");
        }
	} else {
        ofLog(OF_LOG_ERROR, "in &=, images need to have matching type");
	}
}