std::vector<population::individual_type> best_kill_s_policy::select(population &pop) const
{
	pagmo_assert(get_n_individuals(pop) <= pop.size());
	// Gets the number of individuals to select
	const population::size_type migration_rate = get_n_individuals(pop);
	// Create a temporary array of individuals.
	std::vector<population::individual_type> result;
	// Gets the indexes of the best individuals
	std::vector<population::size_type> best_idx = pop.get_best_idx(migration_rate);
	// Puts the best individuals in results
	for (population::size_type i =0; i< migration_rate; ++i) {
		result.push_back(pop.get_individual(best_idx[i]));
	}
	// Remove them from the original population 
	// (note: the champion will still carry information on the best guy ...)
	for (population::size_type i=0 ; i<migration_rate; ++i) {
		pop.reinit(best_idx[i]);
	}
	return result;
}
Exemple #2
0
void sa_corana::evolve(population &pop) const {

	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_c_dimension = prob.get_c_dimension(), prob_f_dimension = prob.get_f_dimension();
	const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
	const population::size_type NP = pop.size();
	const problem::base::size_type Dc = D - prob_i_dimension;

	//We perform some checks to determine wether the problem/population are suitable for sa_corana
	if ( Dc == 0 ) {
		pagmo_throw(value_error,"There is no continuous part in the problem decision vector for sa_corana to optimise");
	}

	if ( prob_c_dimension != 0 ) {
		pagmo_throw(value_error,"The problem is not box constrained and sa_corana is not suitable to solve it");
	}

	if ( prob_f_dimension != 1 ) {
		pagmo_throw(value_error,"The problem is not single objective and sa_corana is not suitable to solve it");
	}

	//Determines the number of temperature adjustment for the annealing procedure
	const size_t n_T = m_niter / (m_step_adj * m_bin_size * Dc);

	// Get out if there is nothing to do.
	if (NP == 0 || m_niter == 0) {
		return;
	}
	if (n_T == 0) {
		pagmo_throw(value_error,"n_T is zero, increase niter");
	}

	//Starting point is the best individual
	const int bestidx = pop.get_best_idx();
	const decision_vector &x0 = pop.get_individual(bestidx).cur_x;
	const fitness_vector &fit0 = pop.get_individual(bestidx).cur_f;
	//Determines the coefficient to dcrease the temperature
	const double Tcoeff = std::pow(m_Tf/m_Ts,1.0/(double)(n_T));
	//Stores the current and new points
	decision_vector xNEW = x0, xOLD = xNEW;
	fitness_vector fNEW = fit0, fOLD = fNEW;
	//Stores the adaptive steps of each component (integer part included but not used)
	decision_vector step(D,m_range);

	//Stores the number of accepted points per component (integer part included but not used)
	std::vector<int> acp(D,0) ;
	double ratio = 0, currentT = m_Ts, probab = 0;

	//Main SA loops
	for (size_t jter = 0; jter < n_T; ++jter) {
		for (int mter = 0; mter < m_step_adj; ++mter) {
			for (int kter = 0; kter < m_bin_size; ++kter) {
				size_t nter = boost::uniform_int<int>(0,Dc-1)(m_urng);
				for (size_t numb = 0; numb < Dc ; ++numb) {
					nter = (nter + 1) % Dc;
					//We modify the current point actsol by mutating its nter component within
					//a step that we will later adapt
					xNEW[nter] = xOLD[nter] + boost::uniform_real<double>(-1,1)(m_drng) * step[nter] * (ub[nter]-lb[nter]);

					// If new solution produced is infeasible ignore it
					if ((xNEW[nter] > ub[nter]) || (xNEW[nter] < lb[nter])) {
						xNEW[nter]=xOLD[nter];
						continue;
					}
					//And we valuate the objective function for the new point
					prob.objfun(fNEW,xNEW);

					// We decide wether to accept or discard the point
					if (prob.compare_fitness(fNEW,fOLD) ) {
						//accept
						xOLD[nter] = xNEW[nter];
						fOLD = fNEW;
						acp[nter]++;	//Increase the number of accepted values
					} else {
						//test it with Boltzmann to decide the acceptance
						probab = exp ( - fabs(fOLD[0] - fNEW[0] ) / currentT );

						// we compare prob with a random probability.
						if (probab > m_drng()) {
							xOLD[nter] = xNEW[nter];
							fOLD = fNEW;
							acp[nter]++;	//Increase the number of accepted values
						} else {
							xNEW[nter] = xOLD[nter];
						}
					} // end if
				} // end for(nter = 0; ...
			} // end for(kter = 0; ...
			// adjust the step (adaptively)
			for (size_t iter = 0; iter < Dc; ++iter) {
				ratio = (double)acp[iter]/(double)m_bin_size;
				acp[iter] = 0;  //reset the counter
				if (ratio > .6) {
					//too many acceptances, increase the step by a factor 3 maximum
					step[iter] = step [iter] * (1 + 2 *(ratio - .6)/.4);
				} else {
					if (ratio < .4) {
						//too few acceptance, decrease the step by a factor 3 maximum
						step [iter]= step [iter] / (1 + 2 * ((.4 - ratio)/.4));
					};
				};
				//And if it becomes too large, reset it to its initial value
				if ( step[iter] > m_range ) {
					step [iter] = m_range;
				};
			}
		}
		// Cooling schedule
		currentT *= Tcoeff;
	}
	if ( prob.compare_fitness(fOLD,fit0) ){
		pop.set_x(bestidx,xOLD); //new evaluation is possible here......
		std::transform(xOLD.begin(), xOLD.end(), pop.get_individual(bestidx).cur_x.begin(), xOLD.begin(),std::minus<double>());
		pop.set_v(bestidx,xOLD);
	}
}
Exemple #3
0
/**
 * Runs the NN_TSP algorithm.
 *
 * @param[in,out] pop input/output pagmo::population to be evolved.
 */
void nn_tsp::evolve(population &pop) const
{
	const problem::base_tsp* prob;
	//check if problem is of type pagmo::problem::base_tsp
	try
	{
	    prob = &dynamic_cast<const problem::base_tsp &>(pop.problem());
	}
	catch (const std::bad_cast& e)
	{
		pagmo_throw(value_error,"Problem not of type pagmo::problem::tsp, nn_tsp can only be called on problem::tsp problems");
	}

	// Let's store some useful variables.
	const problem::base::size_type Nv = prob->get_n_cities();

	//create individuals
	decision_vector best_tour(Nv);
	decision_vector new_tour(Nv);

	//check input parameter
	if (m_start_city < -1 || m_start_city > static_cast<int>(Nv-1)) {
		pagmo_throw(value_error,"invalid value for the first vertex");
	}


	size_t first_city, Nt;
	if(m_start_city == -1){
		first_city = 0;  
	  		Nt = Nv;
	}
	else{
		first_city = m_start_city; 
		Nt = m_start_city+1;
	}

	int length_best_tour, length_new_tour;
	size_t nxt_city, min_idx;
	std::vector<int> not_visited(Nv);
	length_best_tour = 0;

	//main loop
	for (size_t i = first_city; i < Nt; i++) {
		length_new_tour = 0;
		for (size_t j = 0; j < Nv; j++) {
			not_visited[j] = j;
		}
		new_tour[0] = i;
		std::swap(not_visited[new_tour[0]],not_visited[Nv-1]);
		for (size_t j = 1; j < Nv-1; j++) {
			min_idx = 0;
			nxt_city = not_visited[0];
			for (size_t l = 1; l < Nv-j; l++) {
				if(prob->distance(new_tour[j-1], not_visited[l]) < prob->distance(new_tour[j-1], nxt_city) )
			{
					min_idx = l;		
					nxt_city = not_visited[l];}
			}
			new_tour[j] = nxt_city;
			length_new_tour += prob->distance(new_tour[j-1], nxt_city);
			std::swap(not_visited[min_idx],not_visited[Nv-j-1]);
		}
		new_tour[Nv-1] = not_visited[0];
		length_new_tour += prob->distance(new_tour[Nv-2], new_tour[Nv-1]);
		length_new_tour += prob->distance(new_tour[Nv-1], new_tour[0]);
		if(i == first_city || length_new_tour < length_best_tour){
			best_tour = new_tour;
			length_best_tour = length_new_tour;
		}
	}
		
	//change representation of tour
	population::size_type best_idx = pop.get_best_idx();
	switch( prob->get_encoding() ) {
	    case problem::base_tsp::FULL:
	        pop.set_x(best_idx,prob->cities2full(best_tour));
	        break;
	    case problem::base_tsp::RANDOMKEYS:
	        pop.set_x(best_idx,prob->cities2randomkeys(best_tour,pop.get_individual(best_idx).cur_x));
	        break;
	    case problem::base_tsp::CITIES:
	        pop.set_x(best_idx,best_tour);
	        break;
	}

} // end of evolve
Exemple #4
0
/**
 * The best member of the population will be used as starting point for the minimisation process. The algorithm will stop
 * if the gradient falls below the grad_tol parameter, if the maximum number of iterations max_iter is exceeded or if
 * the inner GSL routine call reports an error (which will be logged on std::cout). After the end of the minimisation process,
 * the minimised decision vector will replace the best individual in the population, after being modified to fall within
 * the problem bounds if necessary.
 *
 * @param[in,out] pop population to evolve.
 */
void gsl_gradient::evolve(population &pop) const
{
	// Do nothing if the population is empty.
	if (!pop.size()) {
		return;
	}
	// Useful variables.
	const problem::base &problem = pop.problem();
	if (problem.get_f_dimension() != 1) {
		pagmo_throw(value_error,"this algorithm does not support multi-objective optimisation");
	}
	if (problem.get_c_dimension()) {
		pagmo_throw(value_error,"this algorithm does not support constrained optimisation");
	}
	const problem::base::size_type cont_size = problem.get_dimension() - problem.get_i_dimension();
	if (!cont_size) {
		pagmo_throw(value_error,"the problem has no continuous part");
	}
	// Extract the best individual.
	const population::size_type best_ind_idx = pop.get_best_idx();
	const population::individual_type &best_ind = pop.get_individual(best_ind_idx);
	// GSL wrapper parameters structure.
	objfun_wrapper_params params;
	params.p = &problem;
	// Integer part of the temporay decision vector must be filled with the integer part of the best individual,
	// which will not be optimised.
	params.x.resize(problem.get_dimension());
	std::copy(best_ind.cur_x.begin() + cont_size, best_ind.cur_x.end(), params.x.begin() + cont_size);
	params.f.resize(1);
	params.step_size = m_numdiff_step_size;
	// GSL function structure.
	gsl_multimin_function_fdf gsl_func;
	gsl_func.n = boost::numeric_cast<std::size_t>(cont_size);
	gsl_func.f = &objfun_wrapper;
	gsl_func.df = &d_objfun_wrapper;
	gsl_func.fdf = &fd_objfun_wrapper;
	gsl_func.params = (void *)&params;
	// Minimiser.
	gsl_multimin_fdfminimizer *s = 0;
	// This will be the starting point.
	gsl_vector *x = 0;
	// Here we start the allocations.
	// Recast as size_t here, in order to avoid potential overflows later.
	const std::size_t s_cont_size = boost::numeric_cast<std::size_t>(cont_size);
	// Allocate and check the allocation results.
	x = gsl_vector_alloc(s_cont_size);
	const gsl_multimin_fdfminimizer_type *minimiser = get_gsl_minimiser_ptr();
	pagmo_assert(minimiser);
	s = gsl_multimin_fdfminimizer_alloc(minimiser,s_cont_size);
	// Check the allocations.
	check_allocs(x,s);
	// Fill in the starting point (from the best individual).
	for (std::size_t i = 0; i < s_cont_size; ++i) {
		gsl_vector_set(x,i,best_ind.cur_x[i]);
	}
	// Init the solver.
	gsl_multimin_fdfminimizer_set(s,&gsl_func,x,m_step_size,m_tol);
	// Iterate.
	std::size_t iter = 0;
	int status;
	try {
		do
		{
			++iter;
			status = gsl_multimin_fdfminimizer_iterate(s);
			if (status) {
				break;
			}
			status = gsl_multimin_test_gradient(s->gradient,m_grad_tol);
		} while (status == GSL_CONTINUE && iter < m_max_iter);
	} catch (const std::exception &e) {
		// Cleanup and re-throw.
		cleanup(x,s);
		throw e;
	} catch (...) {
		// Cleanup and throw.
		cleanup(x,s);
		pagmo_throw(std::runtime_error,"unknown exception caught in gsl_gradient::evolve");
	}
	// Free up resources.
	cleanup(x,s);
	// Check the generated individual and change it to respect the bounds as necessary.
	for (problem::base::size_type i = 0; i < cont_size; ++i) {
		if (params.x[i] < problem.get_lb()[i]) {
			params.x[i] = problem.get_lb()[i];
		}
		if (params.x[i] > problem.get_ub()[i]) {
			params.x[i] = problem.get_ub()[i];
		}
	}
	// Replace the best individual.
	pop.set_x(best_ind_idx,params.x);
}
Exemple #5
0
// Evolve method.
void base_nlopt::evolve(population &pop) const
{
	// Useful variables.
	const problem::base &problem = pop.problem();
	if (problem.get_f_dimension() != 1) {
		pagmo_throw(value_error,"this algorithm does not support multi-objective optimisation");
	}
	const problem::base::c_size_type c_size = problem.get_c_dimension();
	const problem::base::c_size_type ec_size = problem.get_c_dimension() - problem.get_ic_dimension();
	if (c_size && !m_constrained) {
		pagmo_throw(value_error,"this algorithm does not support constraints");
	}
	if (ec_size && m_only_ineq) {
		pagmo_throw(value_error,"this algorithm does not support equality constraints");
	}
	const problem::base::size_type cont_size = problem.get_dimension() - problem.get_i_dimension();
	if (!cont_size) {
		pagmo_throw(value_error,"the problem has no continuous part");
	}
	// Do nothing if the population is empty.
	if (!pop.size()) {
		return;
	}
	// Extract the best individual and set the inital point
	const population::size_type best_ind_idx = pop.get_best_idx();
	const population::individual_type &best_ind = pop.get_individual(best_ind_idx);

	
	// Structure to pass data to the objective function wrapper.
	nlopt_wrapper_data data_objfun;

	data_objfun.prob = &problem;
	data_objfun.x.resize(problem.get_dimension());
	data_objfun.dx.resize(problem.get_dimension());
	data_objfun.f.resize(1);
	
	// Structure to pass data to the constraint function wrapper.
	std::vector<nlopt_wrapper_data> data_constrfun(boost::numeric_cast<std::vector<nlopt_wrapper_data>::size_type>(c_size));
	for (problem::base::c_size_type i = 0; i < c_size; ++i) {
		data_constrfun[i].prob = &problem;
		data_constrfun[i].x.resize(problem.get_dimension());
		data_constrfun[i].dx.resize(problem.get_dimension());
		data_constrfun[i].c.resize(problem.get_c_dimension());
		data_constrfun[i].c_comp = i;
	}

	// Main NLopt call.
	nlopt::opt opt(m_algo, problem.get_dimension());
	m_opt = opt;
	// Sets local optimizer for aug_lag methods, do nothing otherwise
	set_local(problem.get_dimension());
	m_opt.set_lower_bounds(problem.get_lb());
	m_opt.set_upper_bounds(problem.get_ub());
	m_opt.set_min_objective(objfun_wrapper, &data_objfun);
	for (problem::base::c_size_type i =0; i<ec_size; ++i) {
		m_opt.add_equality_constraint(constraints_wrapper, &data_constrfun[i], problem.get_c_tol().at(i));
	}
	for (problem::base::c_size_type i =ec_size; i<c_size; ++i) {
		m_opt.add_inequality_constraint(constraints_wrapper, &data_constrfun[i], problem.get_c_tol().at(i));
	}

	m_opt.set_ftol_abs(m_ftol);
	m_opt.set_xtol_abs(m_xtol);
	m_opt.set_maxeval(m_max_iter);

	//nlopt::result result;
	double dummy;
	decision_vector x0(best_ind.cur_x);
	m_opt.optimize(x0, dummy);
	pop.set_x(best_ind_idx,x0);
}
Exemple #6
0
void snopt::evolve(population &pop) const
{
    // Let's store some useful variables.
    const problem::base &prob = pop.problem();
    const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_c_dimension = prob.get_c_dimension(), prob_f_dimension = prob.get_f_dimension();
    const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
    const population::size_type NP = pop.size();
    const problem::base::size_type Dc = D - prob_i_dimension;
    const std::vector<double>::size_type D_ineqc = prob.get_ic_dimension();
    const std::vector<double>::size_type D_eqc = prob_c_dimension - D_ineqc;
    const std::string name = prob.get_name();

    //We perform some checks to determine wether the problem/population are suitable for SNOPT
    if ( prob_i_dimension != 0  ) {
        pagmo_throw(value_error,"No integer part allowed yet....");
    }

    if ( Dc == 0  ) {
        pagmo_throw(value_error,"No continuous part....");
    }

    if ( prob_f_dimension != 1 ) {
        pagmo_throw(value_error,"The problem is not single objective and SNOPT is not suitable to solve it");
    }

    // Get out if there is nothing to do.
    if (NP == 0 || m_major == 0) {
        return;
    }

    // We allocate memory for the decision vector that will be used in the snopt_function_
    di_comodo.x.resize(Dc);
    di_comodo.c.resize(prob_c_dimension);
    di_comodo.f.resize(prob_f_dimension);


    // We construct a SnoptProblem_PAGMO passing the pointers to the problem and the allocated
    //memory area for the di_comodo vector
    snoptProblem_PAGMO SnoptProblem(prob, &di_comodo);

    // Allocate and initialize;
    integer n     =  Dc;

    // Box-constrained non-linear optimization
    integer neF   =  1 + prob_c_dimension;

    //Memory sizing of A
    integer lenA  = Dc * (1 + prob_c_dimension); //overestimate
    integer *iAfun = new integer[lenA];
    integer *jAvar = new integer[lenA];
    doublereal *A  = new doublereal[lenA];


    //Memory sizing of G
    int lenG =Dc * (1 + prob_c_dimension); //overestimate
    integer *iGfun = new integer[lenG];
    integer *jGvar = new integer[lenG];



    //Decision vector memory allocation
    doublereal *x      = new doublereal[n];
    doublereal *xlow   = new doublereal[n];
    doublereal *xupp   = new doublereal[n];
    doublereal *xmul   = new doublereal[n];
    integer    *xstate = new    integer[n];

    //Objective function memory allocation
    doublereal *F      = new doublereal[neF];
    doublereal *Flow   = new doublereal[neF];
    doublereal *Fupp   = new doublereal[neF];
    doublereal *Fmul   = new doublereal[neF];
    integer    *Fstate = new integer[neF];

    integer nxnames = 1;
    integer nFnames = 1;
    char *xnames = new char[nxnames*8];
    char *Fnames = new char[nFnames*8];

    integer    ObjRow = 0;
    doublereal ObjAdd = 0;

    // Set the upper and lower bounds. And The initial Guess
    int bestidx = pop.get_best_idx();
    for (pagmo::problem::base::size_type i = 0; i < Dc; i++) {
        xlow[i]   = lb[i];
        xupp[i]   = ub[i];
        xstate[i] =    0;
        x[i] = pop.get_individual(bestidx).cur_x[i];
    }

    // Set the bounds for objective, equality and inequality constraints
    // 1 - Objective function
    Flow[0] = -std::numeric_limits<double>::max();
    Fupp[0] = std::numeric_limits<double>::max();
    F[0] = pop.get_individual(bestidx).cur_f[0];
    // 2 - Equality constraints
    for (pagmo::problem::base::size_type i=0; i<D_eqc; ++i) {
        Flow[i+1] = 0;
        Fupp[i+1] = 0;
    }
    // 3 - Inequality constraints
    for (pagmo::problem::base::size_type i=0; i<D_ineqc; ++i) {
        Flow[i+1+D_eqc] = -std::numeric_limits<double>::max();
        Fupp[i+1+D_eqc] = 0;
    }

    // Load the data for SnoptProblem ...
    SnoptProblem.setProblemSize( n, neF );
    SnoptProblem.setNeG( lenG );
    SnoptProblem.setNeA( lenA );
    SnoptProblem.setA          ( lenA, iAfun, jAvar, A );
    SnoptProblem.setG          ( lenG, iGfun, jGvar );
    SnoptProblem.setObjective  ( ObjRow, ObjAdd );
    SnoptProblem.setX          ( x, xlow, xupp, xmul, xstate );
    SnoptProblem.setF          ( F, Flow, Fupp, Fmul, Fstate );
    SnoptProblem.setXNames     ( xnames, nxnames );
    SnoptProblem.setFNames     ( Fnames, nFnames );
    SnoptProblem.setProbName   ( name.c_str() ); //This is limited to be 8 characters!!!
    SnoptProblem.setUserFun    ( snopt_function_ );

    //We set some parameters
    if (m_screen_output) SnoptProblem.setIntParameter("Summary file",6);
    if (m_file_out)   SnoptProblem.setPrintFile   ( name.c_str() );
    SnoptProblem.setIntParameter ( "Derivative option", 0 );
    SnoptProblem.setIntParameter ( "Major iterations limit", m_major);
    SnoptProblem.setIntParameter ( "Iterations limit",100000);
    SnoptProblem.setRealParameter( "Major feasibility tolerance", m_feas);
    SnoptProblem.setRealParameter( "Major optimality tolerance", m_opt);


    //We set the sparsity structure
    int neG;
    try
    {
        std::vector<int> iGfun_vect, jGvar_vect;
        prob.set_sparsity(neG,iGfun_vect,jGvar_vect);
        for (int i=0; i < neG; i++)
        {
            iGfun[i] = iGfun_vect[i];
            jGvar[i] = jGvar_vect[i];
        }
        SnoptProblem.setNeG( neG );
        SnoptProblem.setNeA( 0 );
        SnoptProblem.setG( lenG, iGfun, jGvar );

    } //the user did implement the sparsity in the problem
    catch (not_implemented_error)
    {
        SnoptProblem.computeJac();
        neG = SnoptProblem.getNeG();
    } //the user did not implement the sparsity in the problem


    if (m_screen_output)
    {
        std::cout << "PaGMO 4 SNOPT:" << std::endl << std::endl;
        std::cout << "Sparsity pattern set, NeG = " << neG << std::endl;
        std::cout << "iGfun: [";
        for (int i=0; i<neG-1; ++i) std::cout << iGfun[i] << ",";
        std::cout << iGfun[neG-1] << "]" << std::endl;
        std::cout << "jGvar: [";
        for (int i=0; i<neG-1; ++i) std::cout << jGvar[i] << ",";
        std::cout << jGvar[neG-1] << "]" << std::endl;
    }

    integer Cold = 0;

    //HERE WE CALL snoptA routine!!!!!
    SnoptProblem.solve( Cold );

    //Save the final point making sure it is within the linear bounds
    std::copy(x,x+n,di_comodo.x.begin());
    decision_vector newx = di_comodo.x;
    std::transform(di_comodo.x.begin(), di_comodo.x.end(), pop.get_individual(bestidx).cur_x.begin(), di_comodo.x.begin(),std::minus<double>());
    for (integer i=0; i<n; i++)
    {
        newx[i] = std::min(std::max(lb[i],newx[i]),ub[i]);
    }

    pop.set_x(bestidx,newx);
    pop.set_v(bestidx,di_comodo.x);

    //Clean up memory allocated to call the snoptA routine
    delete []iAfun;
    delete []jAvar;
    delete []A;
    delete []iGfun;
    delete []jGvar;

    delete []x;
    delete []xlow;
    delete []xupp;
    delete []xmul;
    delete []xstate;

    delete []F;
    delete []Flow;
    delete []Fupp;
    delete []Fmul;
    delete []Fstate;

    delete []xnames;
    delete []Fnames;

}
Exemple #7
0
/**
 * Run the CORE algorithm
 *
 * @param[in,out] pop input/output pagmo::population to be evolved.
 */
void cstrs_core::evolve(population &pop) const
{	
	// store useful variables
	const problem::base &prob = pop.problem();
	const population::size_type pop_size = pop.size();
	const problem::base::size_type prob_dimension = prob.get_dimension();

	// get the constraints dimension
	problem::base::c_size_type prob_c_dimension = prob.get_c_dimension();

	//We perform some checks to determine wether the problem/population are suitable for CORE
	if(prob_c_dimension < 1) {
		pagmo_throw(value_error,"The problem is not constrained and CORE is not suitable to solve it");
	}
	if(prob.get_f_dimension() != 1) {
		pagmo_throw(value_error,"The problem is multiobjective and CORE is not suitable to solve it");
	}

	// Get out if there is nothing to do.
	if(pop_size == 0) {
		return;
	}

	// generates the unconstrained problem
	problem::con2uncon prob_unconstrained(prob);

	// associates the population to this problem
	population pop_uncon(prob_unconstrained);

	// fill this unconstrained population
	pop_uncon.clear();
	for(population::size_type i=0; i<pop_size; i++) {
		pop_uncon.push_back(pop.get_individual(i).cur_x);
	}

	// vector containing the infeasibles positions
	std::vector<population::size_type> pop_infeasibles;

	// Main CORE loop
	for(int k=0; k<m_gen; k++) {

		if(k%m_repair_frequency == 0) {
			pop_infeasibles.clear();

			// get the infeasible individuals
			for(population::size_type i=0; i<pop_size; i++) {
				if(!prob.feasibility_c(pop.get_individual(i).cur_c)) {
					pop_infeasibles.push_back(i);
				}
			}

			// random shuffle of infeasibles?
			population::size_type number_of_repair = (population::size_type)(m_repair_ratio * pop_infeasibles.size());

			// repair the infeasible individuals
			for(population::size_type i=0; i<number_of_repair; i++) {
				const population::size_type &current_individual_idx = pop_infeasibles.at(i);

                pop.repair(current_individual_idx, m_repair_algo);
			}

			// the population is repaired, it can be now used in the new unconstrained population
			// only the repaired individuals are put back in the population
			for(population::size_type i=0; i<number_of_repair; i++) {
				population::size_type current_individual_idx = pop_infeasibles.at(i);
				pop_uncon.set_x(current_individual_idx, pop.get_individual(current_individual_idx).cur_x);
			}
		}

		m_original_algo->evolve(pop_uncon);

		// push back the population in the main problem
		pop.clear();
		for(population::size_type i=0; i<pop_size; i++) {
			pop.push_back(pop_uncon.get_individual(i).cur_x);
		}

		// Check the exit conditions (every 40 generations, just as DE)
		if(k % 40 == 0) {
			decision_vector tmp(prob_dimension);

			double dx = 0;
			for(decision_vector::size_type i=0; i<prob_dimension; i++) {
				tmp[i] = pop.get_individual(pop.get_worst_idx()).best_x[i] - pop.get_individual(pop.get_best_idx()).best_x[i];
				dx += std::fabs(tmp[i]);
			}

			if(dx < m_xtol ) {
				if (m_screen_output) {
					std::cout << "Exit condition -- xtol < " << m_xtol << std::endl;
				}
				break;
			}

			double mah = std::fabs(pop.get_individual(pop.get_worst_idx()).best_f[0] - pop.get_individual(pop.get_best_idx()).best_f[0]);

			if(mah < m_ftol) {
				if(m_screen_output) {
					std::cout << "Exit condition -- ftol < " << m_ftol << std::endl;
				}
				break;
			}

			// outputs current values
			if(m_screen_output) {
				std::cout << "Generation " << k << " ***" << std::endl;
				std::cout << "    Best global fitness: " << pop.champion().f << std::endl;
				std::cout << "    xtol: " << dx << ", ftol: " << mah << std::endl;
				std::cout << "    xtol: " << dx << ", ftol: " << mah << std::endl;
			}
		}
	}
}
Exemple #8
0
void cs::evolve(population &pop) const
{
	// Let's store some useful variables.
	const problem::base &prob = pop.problem();
	const problem::base::size_type D = prob.get_dimension(), prob_i_dimension = prob.get_i_dimension(), prob_c_dimension = prob.get_c_dimension(), prob_f_dimension = prob.get_f_dimension();
	const decision_vector &lb = prob.get_lb(), &ub = prob.get_ub();
	const population::size_type NP = pop.size();
	const problem::base::size_type Dc = D - prob_i_dimension;


	//We perform some checks to determine whether the problem/population are suitable for compass search
	if ( Dc == 0 ) {
		pagmo_throw(value_error,"There is no continuous part in the problem decision vector for compass search to optimise");
	}

	if ( prob_c_dimension != 0 ) {
		pagmo_throw(value_error,"The problem is not box constrained and compass search is not suitable to solve it");
	}

	if ( prob_f_dimension != 1 ) {
		pagmo_throw(value_error,"The problem is not single objective and compass search is not suitable to solve it");
	}

	// Get out if there is nothing to do.
	if (NP == 0 || m_max_eval == 0) {
		return;
	}

	//Starting point is the best individual
	const int bestidx = pop.get_best_idx();
	const decision_vector &x0 = pop.get_individual(bestidx).cur_x;
	const fitness_vector &fit0 = pop.get_individual(bestidx).cur_f;

	decision_vector x=x0,newx;
	fitness_vector f=fit0,newf=fit0;
	bool flag = false;
	int eval=0;

	double newrange=m_start_range;

	while (newrange > m_stop_range && eval <= m_max_eval) {
		flag = false;
		for (unsigned int i=0; i<Dc; i++) {
			newx=x;

			//move up
			newx[i] = x[i] + newrange * (ub[i]-lb[i]);
			//feasibility correction
			if (newx[i] > ub [i]) newx[i]=ub[i];

			prob.objfun(newf,newx); eval++;
			if (prob.compare_fitness(newf,f)) {
				f = newf;
				x = newx;
				flag=true;
				break; //accept
			}

			//move down
			newx[i] = x[i] - newrange * (ub[i]-lb[i]);
			//feasibility correction
			if (newx[i] < lb [i]) newx[i]=lb[i];

			prob.objfun(newf,newx); eval++;
			if (prob.compare_fitness(newf,f)) {  //accept
				f = newf;
				x = newx;
				flag=true;
				break;
			}
		}
		if (!flag) {
			newrange *= m_reduction_coeff;
		}
	} //end while
	std::transform(x.begin(), x.end(), pop.get_individual(bestidx).cur_x.begin(), newx.begin(),std::minus<double>()); // newx is now velocity
	pop.set_x(bestidx,x); //new evaluation is possible here......
	pop.set_v(bestidx,newx);
}