Exemple #1
0
void RE_SaveJPG(char * filename, int quality, int image_width, int image_height, byte *image_buffer, int padding)
{
  byte *out;
  size_t bufSize;

  bufSize = image_width * image_height * 3;
  out = ri.Hunk_AllocateTempMemory(bufSize);

  bufSize = RE_SaveJPGToBuffer(out, bufSize, quality, image_width, image_height, image_buffer, padding);
  ri.FS_WriteFile(filename, out, bufSize);

  ri.Hunk_FreeTempMemory(out);
}
Exemple #2
0
static void R_JPGOutputMessage(j_common_ptr cinfo)
{
  char buffer[JMSG_LENGTH_MAX];
  
  /* Create the message */
  (*cinfo->err->format_message) (cinfo, buffer);
  
  /* Send it to stderr, adding a newline */
  ri.Printf(PRINT_ALL, "%s\n", buffer);
}
Exemple #3
0
static void R_JPGErrorExit(j_common_ptr cinfo)
{
  char buffer[JMSG_LENGTH_MAX];
  
  (*cinfo->err->format_message) (cinfo, buffer);
  
  /* Let the memory manager delete any temp files before we die */
  jpeg_destroy(cinfo);
  
  ri.Error(ERR_FATAL, "%s", buffer);
}
Exemple #4
0
static boolean
empty_output_buffer (j_compress_ptr cinfo)
{
  my_dest_ptr dest = (my_dest_ptr) cinfo->dest;
  
  jpeg_destroy_compress(cinfo);
  
  // Make crash fatal or we would probably leak memory.
  ri.Error(ERR_FATAL, "Output buffer for encoded JPEG image has insufficient size of %d bytes",
           dest->size);

  return FALSE;
}
Exemple #5
0
qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) {
	vec4_t			clipDest[128];
	viewParms_t		newParms;
	viewParms_t		oldParms;
	orientation_t	surface, camera;

	// don't recursively mirror
	if (tr.viewParms.isPortal) 
	{
		ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" );
		return qfalse;
	}

	if ( r_noportals->integer || r_fastsky->integer ) {
		return qfalse;
	}

	// trivially reject portal/mirror
	if ( SurfIsOffscreen( drawSurf, clipDest ) ) {
		return qfalse;
	}

	// save old viewParms so we can return to it after the mirror view
	oldParms = tr.viewParms;

	newParms = tr.viewParms;
	newParms.isPortal = qtrue;
	if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera, 
		newParms.pvsOrigin, &newParms.isMirror ) ) {
		return qfalse;		// bad portal, no portalentity
	}

	R_MirrorPoint (oldParms.or.origin, &surface, &camera, newParms.or.origin );

	VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal );
	newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal );
	
	R_MirrorVector (oldParms.or.axis[0], &surface, &camera, newParms.or.axis[0]);
	R_MirrorVector (oldParms.or.axis[1], &surface, &camera, newParms.or.axis[1]);
	R_MirrorVector (oldParms.or.axis[2], &surface, &camera, newParms.or.axis[2]);

	// OPTIMIZE: restrict the viewport on the mirrored view

	// render the mirror view
	R_RenderView (&newParms);

	tr.viewParms = oldParms;
	
	return qtrue;
}
Exemple #6
0
void R_LoadJPG(const char *filename, unsigned char **pic, int *width, int *height)
{
  /* This struct contains the JPEG decompression parameters and pointers to
   * working space (which is allocated as needed by the JPEG library).
   */
  struct jpeg_decompress_struct cinfo = {NULL};
  /* We use our private extension JPEG error handler.
   * Note that this struct must live as long as the main JPEG parameter
   * struct, to avoid dangling-pointer problems.
   */
  /* This struct represents a JPEG error handler.  It is declared separately
   * because applications often want to supply a specialized error handler
   * (see the second half of this file for an example).  But here we just
   * take the easy way out and use the standard error handler, which will
   * print a message on stderr and call exit() if compression fails.
   * Note that this struct must live as long as the main JPEG parameter
   * struct, to avoid dangling-pointer problems.
   */
  struct jpeg_error_mgr jerr;
  /* More stuff */
  JSAMPARRAY buffer;		/* Output row buffer */
  unsigned int row_stride;	/* physical row width in output buffer */
  unsigned int pixelcount, memcount;
  unsigned int sindex, dindex;
  byte *out;
  int len;
	union {
		byte *b;
		void *v;
	} fbuffer;
  byte  *buf;

  /* In this example we want to open the input file before doing anything else,
   * so that the setjmp() error recovery below can assume the file is open.
   * VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
   * requires it in order to read binary files.
   */

  len = ri.FS_ReadFile ( ( char * ) filename, &fbuffer.v);
  if (!fbuffer.b || len < 0) {
	return;
  }

  /* Step 1: allocate and initialize JPEG decompression object */

  /* We have to set up the error handler first, in case the initialization
   * step fails.  (Unlikely, but it could happen if you are out of memory.)
   * This routine fills in the contents of struct jerr, and returns jerr's
   * address which we place into the link field in cinfo.
   */
  cinfo.err = jpeg_std_error(&jerr);
  cinfo.err->error_exit = R_JPGErrorExit;
  cinfo.err->output_message = R_JPGOutputMessage;

  /* Now we can initialize the JPEG decompression object. */
  jpeg_create_decompress(&cinfo);

  /* Step 2: specify data source (eg, a file) */

  jpeg_mem_src(&cinfo, fbuffer.b, len);

  /* Step 3: read file parameters with jpeg_read_header() */

  (void) jpeg_read_header(&cinfo, TRUE);
  /* We can ignore the return value from jpeg_read_header since
   *   (a) suspension is not possible with the stdio data source, and
   *   (b) we passed TRUE to reject a tables-only JPEG file as an error.
   * See libjpeg.doc for more info.
   */

  /* Step 4: set parameters for decompression */

  /*
   * Make sure it always converts images to RGB color space. This will
   * automatically convert 8-bit greyscale images to RGB as well.
   */
  cinfo.out_color_space = JCS_RGB;

  /* Step 5: Start decompressor */

  (void) jpeg_start_decompress(&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* We may need to do some setup of our own at this point before reading
   * the data.  After jpeg_start_decompress() we have the correct scaled
   * output image dimensions available, as well as the output colormap
   * if we asked for color quantization.
   * In this example, we need to make an output work buffer of the right size.
   */ 
  /* JSAMPLEs per row in output buffer */

  pixelcount = cinfo.output_width * cinfo.output_height;

  if(!cinfo.output_width || !cinfo.output_height
      || ((pixelcount * 4) / cinfo.output_width) / 4 != cinfo.output_height
      || pixelcount > 0x1FFFFFFF || cinfo.output_components != 3
    )
  {
    // Free the memory to make sure we don't leak memory
    ri.FS_FreeFile (fbuffer.v);
    jpeg_destroy_decompress(&cinfo);
  
    ri.Error(ERR_DROP, "LoadJPG: %s has an invalid image format: %dx%d*4=%d, components: %d", filename,
		    cinfo.output_width, cinfo.output_height, pixelcount * 4, cinfo.output_components);
  }

  memcount = pixelcount * 4;
  row_stride = cinfo.output_width * cinfo.output_components;

  out = ri.Malloc(memcount);

  *width = cinfo.output_width;
  *height = cinfo.output_height;

  /* Step 6: while (scan lines remain to be read) */
  /*           jpeg_read_scanlines(...); */

  /* Here we use the library's state variable cinfo.output_scanline as the
   * loop counter, so that we don't have to keep track ourselves.
   */
  while (cinfo.output_scanline < cinfo.output_height) {
    /* jpeg_read_scanlines expects an array of pointers to scanlines.
     * Here the array is only one element long, but you could ask for
     * more than one scanline at a time if that's more convenient.
     */
	buf = ((out+(row_stride*cinfo.output_scanline)));
	buffer = &buf;
    (void) jpeg_read_scanlines(&cinfo, buffer, 1);
  }
  
  buf = out;

  // Expand from RGB to RGBA
  sindex = pixelcount * cinfo.output_components;
  dindex = memcount;

  do
  {	
    buf[--dindex] = 255;
    buf[--dindex] = buf[--sindex];
    buf[--dindex] = buf[--sindex];
    buf[--dindex] = buf[--sindex];
  } while(sindex);

  *pic = out;

  /* Step 7: Finish decompression */

  jpeg_finish_decompress(&cinfo);
  /* We can ignore the return value since suspension is not possible
   * with the stdio data source.
   */

  /* Step 8: Release JPEG decompression object */

  /* This is an important step since it will release a good deal of memory. */
  jpeg_destroy_decompress(&cinfo);

  /* After finish_decompress, we can close the input file.
   * Here we postpone it until after no more JPEG errors are possible,
   * so as to simplify the setjmp error logic above.  (Actually, I don't
   * think that jpeg_destroy can do an error exit, but why assume anything...)
   */
  ri.FS_FreeFile (fbuffer.v);

  /* At this point you may want to check to see whether any corrupt-data
   * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
   */

  /* And we're done! */
}
Exemple #7
0
void R_LoadTGA ( const char *name, byte **pic, int *width, int *height)
{
	unsigned	columns, rows, numPixels;
	byte	*pixbuf;
	int		row, column;
	byte	*buf_p;
	byte	*end;
	union {
		byte *b;
		void *v;
	} buffer;
	TargaHeader	targa_header;
	byte		*targa_rgba;
	int length;

	*pic = NULL;

	if(width)
		*width = 0;
	if(height)
		*height = 0;

	//
	// load the file
	//
	length = ri.FS_ReadFile ( ( char * ) name, &buffer.v);
	if (!buffer.b || length < 0) {
		return;
	}

	if(length < 18)
	{
		ri.Error( ERR_DROP, "LoadTGA: header too short (%s)", name );
	}

	buf_p = buffer.b;
	end = buffer.b + length;

	targa_header.id_length = buf_p[0];
	targa_header.colormap_type = buf_p[1];
	targa_header.image_type = buf_p[2];
	
	memcpy(&targa_header.colormap_index, &buf_p[3], 2);
	memcpy(&targa_header.colormap_length, &buf_p[5], 2);
	targa_header.colormap_size = buf_p[7];
	memcpy(&targa_header.x_origin, &buf_p[8], 2);
	memcpy(&targa_header.y_origin, &buf_p[10], 2);
	memcpy(&targa_header.width, &buf_p[12], 2);
	memcpy(&targa_header.height, &buf_p[14], 2);
	targa_header.pixel_size = buf_p[16];
	targa_header.attributes = buf_p[17];

	targa_header.colormap_index = LittleShort(targa_header.colormap_index);
	targa_header.colormap_length = LittleShort(targa_header.colormap_length);
	targa_header.x_origin = LittleShort(targa_header.x_origin);
	targa_header.y_origin = LittleShort(targa_header.y_origin);
	targa_header.width = LittleShort(targa_header.width);
	targa_header.height = LittleShort(targa_header.height);

	buf_p += 18;

	if (targa_header.image_type!=2 
		&& targa_header.image_type!=10
		&& targa_header.image_type != 3 ) 
	{
		ri.Error (ERR_DROP, "LoadTGA: Only type 2 (RGB), 3 (gray), and 10 (RGB) TGA images supported");
	}

	if ( targa_header.colormap_type != 0 )
	{
		ri.Error( ERR_DROP, "LoadTGA: colormaps not supported" );
	}

	if ( ( targa_header.pixel_size != 32 && targa_header.pixel_size != 24 ) && targa_header.image_type != 3 )
	{
		ri.Error (ERR_DROP, "LoadTGA: Only 32 or 24 bit images supported (no colormaps)");
	}

	columns = targa_header.width;
	rows = targa_header.height;
	numPixels = columns * rows * 4;

	if(!columns || !rows || numPixels > 0x7FFFFFFF || numPixels / columns / 4 != rows)
	{
		ri.Error (ERR_DROP, "LoadTGA: %s has an invalid image size", name);
	}


	targa_rgba = ri.Malloc (numPixels);

	if (targa_header.id_length != 0)
	{
		if (buf_p + targa_header.id_length > end)
			ri.Error( ERR_DROP, "LoadTGA: header too short (%s)", name );

		buf_p += targa_header.id_length;  // skip TARGA image comment
	}
	
	if ( targa_header.image_type==2 || targa_header.image_type == 3 )
	{ 
		if(buf_p + columns*rows*targa_header.pixel_size/8 > end)
		{
			ri.Error (ERR_DROP, "LoadTGA: file truncated (%s)", name);
		}

		// Uncompressed RGB or gray scale image
		for(row=rows-1; row>=0; row--) 
		{
			pixbuf = targa_rgba + row*columns*4;
			for(column=0; column<columns; column++) 
			{
				unsigned char red,green,blue,alphabyte;
				switch (targa_header.pixel_size) 
				{
					
				case 8:
					blue = *buf_p++;
					green = blue;
					red = blue;
					*pixbuf++ = red;
					*pixbuf++ = green;
					*pixbuf++ = blue;
					*pixbuf++ = 255;
					break;

				case 24:
					blue = *buf_p++;
					green = *buf_p++;
					red = *buf_p++;
					*pixbuf++ = red;
					*pixbuf++ = green;
					*pixbuf++ = blue;
					*pixbuf++ = 255;
					break;
				case 32:
					blue = *buf_p++;
					green = *buf_p++;
					red = *buf_p++;
					alphabyte = *buf_p++;
					*pixbuf++ = red;
					*pixbuf++ = green;
					*pixbuf++ = blue;
					*pixbuf++ = alphabyte;
					break;
				default:
					ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'", targa_header.pixel_size, name );
					break;
				}
			}
		}
	}
	else if (targa_header.image_type==10) {   // Runlength encoded RGB images
		unsigned char red,green,blue,alphabyte,packetHeader,packetSize,j;

		red = 0;
		green = 0;
		blue = 0;
		alphabyte = 0xff;

		for(row=rows-1; row>=0; row--) {
			pixbuf = targa_rgba + row*columns*4;
			for(column=0; column<columns; ) {
				if(buf_p + 1 > end)
					ri.Error (ERR_DROP, "LoadTGA: file truncated (%s)", name);
				packetHeader= *buf_p++;
				packetSize = 1 + (packetHeader & 0x7f);
				if (packetHeader & 0x80) {        // run-length packet
					if(buf_p + targa_header.pixel_size/8 > end)
						ri.Error (ERR_DROP, "LoadTGA: file truncated (%s)", name);
					switch (targa_header.pixel_size) {
						case 24:
								blue = *buf_p++;
								green = *buf_p++;
								red = *buf_p++;
								alphabyte = 255;
								break;
						case 32:
								blue = *buf_p++;
								green = *buf_p++;
								red = *buf_p++;
								alphabyte = *buf_p++;
								break;
						default:
							ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'", targa_header.pixel_size, name );
							break;
					}
	
					for(j=0;j<packetSize;j++) {
						*pixbuf++=red;
						*pixbuf++=green;
						*pixbuf++=blue;
						*pixbuf++=alphabyte;
						column++;
						if (column==columns) { // run spans across rows
							column=0;
							if (row>0)
								row--;
							else
								goto breakOut;
							pixbuf = targa_rgba + row*columns*4;
						}
					}
				}
				else {                            // non run-length packet

					if(buf_p + targa_header.pixel_size/8*packetSize > end)
						ri.Error (ERR_DROP, "LoadTGA: file truncated (%s)", name);
					for(j=0;j<packetSize;j++) {
						switch (targa_header.pixel_size) {
							case 24:
									blue = *buf_p++;
									green = *buf_p++;
									red = *buf_p++;
									*pixbuf++ = red;
									*pixbuf++ = green;
									*pixbuf++ = blue;
									*pixbuf++ = 255;
									break;
							case 32:
									blue = *buf_p++;
									green = *buf_p++;
									red = *buf_p++;
									alphabyte = *buf_p++;
									*pixbuf++ = red;
									*pixbuf++ = green;
									*pixbuf++ = blue;
									*pixbuf++ = alphabyte;
									break;
							default:
								ri.Error( ERR_DROP, "LoadTGA: illegal pixel_size '%d' in file '%s'", targa_header.pixel_size, name );
								break;
						}
						column++;
						if (column==columns) { // pixel packet run spans across rows
							column=0;
							if (row>0)
								row--;
							else
								goto breakOut;
							pixbuf = targa_rgba + row*columns*4;
						}						
					}
				}
			}
			breakOut:;
		}
	}

#if 0 
  // TTimo: this is the chunk of code to ensure a behavior that meets TGA specs 
  // bit 5 set => top-down
  if (targa_header.attributes & 0x20) {
    unsigned char *flip = (unsigned char*)malloc (columns*4);
    unsigned char *src, *dst;

    for (row = 0; row < rows/2; row++) {
      src = targa_rgba + row * 4 * columns;
      dst = targa_rgba + (rows - row - 1) * 4 * columns;

      memcpy (flip, src, columns*4);
      memcpy (src, dst, columns*4);
      memcpy (dst, flip, columns*4);
    }
    free (flip);
  }
#endif
  // instead we just print a warning
  if (targa_header.attributes & 0x20) {
    ri.Printf( PRINT_WARNING, "WARNING: '%s' TGA file header declares top-down image, ignoring\n", name);
  }

  if (width)
	  *width = columns;
  if (height)
	  *height = rows;

  *pic = targa_rgba;

  ri.FS_FreeFile (buffer.v);
}
Exemple #8
0
void qsortFast (
    void *base,
    unsigned num,
    unsigned width
    )
{
    char *lo, *hi;              /* ends of sub-array currently sorting */
    char *mid;                  /* points to middle of subarray */
    char *loguy, *higuy;        /* traveling pointers for partition step */
    unsigned size;              /* size of the sub-array */
    char *lostk[30], *histk[30];
    int stkptr;                 /* stack for saving sub-array to be processed */
	int	temp;

	if ( sizeof(drawSurf_t) != 8 ) {
		ri.Error( ERR_DROP, "change SWAP_DRAW_SURF macro" );
	}

    /* Note: the number of stack entries required is no more than
       1 + log2(size), so 30 is sufficient for any array */

    if (num < 2 || width == 0)
        return;                 /* nothing to do */

    stkptr = 0;                 /* initialize stack */

    lo = (char *) base;
    hi = (char *) base + width * (num-1);        /* initialize limits */

    /* this entry point is for pseudo-recursion calling: setting
       lo and hi and jumping to here is like recursion, but stkptr is
       prserved, locals aren't, so we preserve stuff on the stack */
recurse:

    size = (hi - lo) / width + 1;        /* number of el's to sort */

    /* below a certain size, it is faster to use a O(n^2) sorting method */
    if (size <= CUTOFF) {
         shortsort((drawSurf_t *)lo, (drawSurf_t *)hi);
    }
    else {
        /* First we pick a partititioning element.  The efficiency of the
           algorithm demands that we find one that is approximately the
           median of the values, but also that we select one fast.  Using
           the first one produces bad performace if the array is already
           sorted, so we use the middle one, which would require a very
           wierdly arranged array for worst case performance.  Testing shows
           that a median-of-three algorithm does not, in general, increase
           performance. */

        mid = lo + (size / 2) * width;      /* find middle element */
        SWAP_DRAW_SURF(mid, lo);               /* swap it to beginning of array */

        /* We now wish to partition the array into three pieces, one
           consisiting of elements <= partition element, one of elements
           equal to the parition element, and one of element >= to it.  This
           is done below; comments indicate conditions established at every
           step. */

        loguy = lo;
        higuy = hi + width;

        /* Note that higuy decreases and loguy increases on every iteration,
           so loop must terminate. */
        for (;;) {
            /* lo <= loguy < hi, lo < higuy <= hi + 1,
               A[i] <= A[lo] for lo <= i <= loguy,
               A[i] >= A[lo] for higuy <= i <= hi */

            do  {
                loguy += width;
            } while (loguy <= hi &&  
				( ((drawSurf_t *)loguy)->sort <= ((drawSurf_t *)lo)->sort ) );

            /* lo < loguy <= hi+1, A[i] <= A[lo] for lo <= i < loguy,
               either loguy > hi or A[loguy] > A[lo] */

            do  {
                higuy -= width;
            } while (higuy > lo && 
				( ((drawSurf_t *)higuy)->sort >= ((drawSurf_t *)lo)->sort ) );

            /* lo-1 <= higuy <= hi, A[i] >= A[lo] for higuy < i <= hi,
               either higuy <= lo or A[higuy] < A[lo] */

            if (higuy < loguy)
                break;

            /* if loguy > hi or higuy <= lo, then we would have exited, so
               A[loguy] > A[lo], A[higuy] < A[lo],
               loguy < hi, highy > lo */

            SWAP_DRAW_SURF(loguy, higuy);

            /* A[loguy] < A[lo], A[higuy] > A[lo]; so condition at top
               of loop is re-established */
        }

        /*     A[i] >= A[lo] for higuy < i <= hi,
               A[i] <= A[lo] for lo <= i < loguy,
               higuy < loguy, lo <= higuy <= hi
           implying:
               A[i] >= A[lo] for loguy <= i <= hi,
               A[i] <= A[lo] for lo <= i <= higuy,
               A[i] = A[lo] for higuy < i < loguy */

        SWAP_DRAW_SURF(lo, higuy);     /* put partition element in place */

        /* OK, now we have the following:
              A[i] >= A[higuy] for loguy <= i <= hi,
              A[i] <= A[higuy] for lo <= i < higuy
              A[i] = A[lo] for higuy <= i < loguy    */

        /* We've finished the partition, now we want to sort the subarrays
           [lo, higuy-1] and [loguy, hi].
           We do the smaller one first to minimize stack usage.
           We only sort arrays of length 2 or more.*/

        if ( higuy - 1 - lo >= hi - loguy ) {
            if (lo + width < higuy) {
                lostk[stkptr] = lo;
                histk[stkptr] = higuy - width;
                ++stkptr;
            }                           /* save big recursion for later */

            if (loguy < hi) {
                lo = loguy;
                goto recurse;           /* do small recursion */
            }
        }
        else {
            if (loguy < hi) {
                lostk[stkptr] = loguy;
                histk[stkptr] = hi;
                ++stkptr;               /* save big recursion for later */
            }

            if (lo + width < higuy) {
                hi = higuy - width;
                goto recurse;           /* do small recursion */
            }
        }
    }

    /* We have sorted the array, except for any pending sorts on the stack.
       Check if there are any, and do them. */

    --stkptr;
    if (stkptr >= 0) {
        lo = lostk[stkptr];
        hi = histk[stkptr];
        goto recurse;           /* pop subarray from stack */
    }
    else
        return;                 /* all subarrays done */
}
Exemple #9
0
void R_LoadPCX ( const char *filename, byte **pic, int *width, int *height)
{
	union {
		byte *b;
		void *v;
	} raw;
	byte	*end;
	pcx_t	*pcx;
	int		len;
	unsigned char	dataByte = 0, runLength = 0;
	byte	*out, *pix;
	unsigned short w, h;
	byte	*pic8;
	byte	*palette;
	int	i;
	unsigned size = 0;

	if (width)
		*width = 0;
	if (height)
		*height = 0;
	*pic = NULL;

	//
	// load the file
	//
	len = ri.FS_ReadFile( ( char * ) filename, &raw.v);
	if (!raw.b || len < 0) {
		return;
	}

	if((unsigned)len < sizeof(pcx_t))
	{
		ri.Printf (PRINT_ALL, "PCX truncated: %s\n", filename);
		ri.FS_FreeFile (raw.v);
		return;
	}

	//
	// parse the PCX file
	//
	pcx = (pcx_t *)raw.b;
	end = raw.b+len;

	w = LittleShort(pcx->xmax)+1;
	h = LittleShort(pcx->ymax)+1;
	size = w*h;

	if (pcx->manufacturer != 0x0a
		|| pcx->version != 5
		|| pcx->encoding != 1
		|| pcx->color_planes != 1
		|| pcx->bits_per_pixel != 8
		|| w >= 1024
		|| h >= 1024)
	{
		ri.Printf (PRINT_ALL, "Bad or unsupported pcx file %s (%dx%d@%d)\n", filename, w, h, pcx->bits_per_pixel);
		return;
	}

	pix = pic8 = ri.Malloc ( size );

	raw.b = pcx->data;
	// FIXME: should use bytes_per_line but original q3 didn't do that either
	while(pix < pic8+size)
	{
		if(runLength > 0) {
			*pix++ = dataByte;
			--runLength;
			continue;
		}

		if(raw.b+1 > end)
			break;
		dataByte = *raw.b++;

		if((dataByte & 0xC0) == 0xC0)
		{
			if(raw.b+1 > end)
				break;
			runLength = dataByte & 0x3F;
			dataByte = *raw.b++;
		}
		else
			runLength = 1;
	}

	if(pix < pic8+size)
	{
		ri.Printf (PRINT_ALL, "PCX file truncated: %s\n", filename);
		ri.FS_FreeFile (pcx);
		ri.Free (pic8);
	}

	if (raw.b-(byte*)pcx >= end - (byte*)769 || end[-769] != 0x0c)
	{
		ri.Printf (PRINT_ALL, "PCX missing palette: %s\n", filename);
		ri.FS_FreeFile (pcx);
		ri.Free (pic8);
		return;
	}

	palette = end-768;

	pix = out = ri.Malloc(4 * size );
	for (i = 0 ; i < size ; i++)
	{
		unsigned char p = pic8[i];
		pix[0] = palette[p*3];
		pix[1] = palette[p*3 + 1];
		pix[2] = palette[p*3 + 2];
		pix[3] = 255;
		pix += 4;
	}

	if (width)
		*width = w;
	if (height)
		*height = h;

	*pic = out;

	ri.FS_FreeFile (pcx);
	ri.Free (pic8);
}
Exemple #10
0
void R_LoadBMP( const char *name, byte **pic, int *width, int *height )
{
    int		columns, rows;
    unsigned	numPixels;
    byte	*pixbuf;
    int		row, column;
    byte	*buf_p;
    byte	*end;
    union {
        byte *b;
        void *v;
    } buffer;
    int		length;
    BMPHeader_t bmpHeader;
    byte		*bmpRGBA;

    *pic = NULL;

    if(width)
        *width = 0;

    if(height)
        *height = 0;

    //
    // load the file
    //
    length = ri.FS_ReadFile( ( char * ) name, &buffer.v);
    if (!buffer.b || length < 0) {
        return;
    }

    if (length < 54)
    {
        ri.Error( ERR_DROP, "LoadBMP: header too short (%s)", name );
    }

    buf_p = buffer.b;
    end = buffer.b + length;

    bmpHeader.id[0] = *buf_p++;
    bmpHeader.id[1] = *buf_p++;
    bmpHeader.fileSize = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.reserved0 = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.bitmapDataOffset = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.bitmapHeaderSize = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.width = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.height = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.planes = LittleShort( * ( short * ) buf_p );
    buf_p += 2;
    bmpHeader.bitsPerPixel = LittleShort( * ( short * ) buf_p );
    buf_p += 2;
    bmpHeader.compression = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.bitmapDataSize = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.hRes = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.vRes = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.colors = LittleLong( * ( int * ) buf_p );
    buf_p += 4;
    bmpHeader.importantColors = LittleLong( * ( int * ) buf_p );
    buf_p += 4;

    if ( bmpHeader.bitsPerPixel == 8 )
    {
        if (buf_p + sizeof(bmpHeader.palette) > end)
            ri.Error( ERR_DROP, "LoadBMP: header too short (%s)", name );

        Com_Memcpy( bmpHeader.palette, buf_p, sizeof( bmpHeader.palette ) );
        buf_p += sizeof(bmpHeader.palette);
    }

    if (buffer.b + bmpHeader.bitmapDataOffset > end)
    {
        ri.Error( ERR_DROP, "LoadBMP: invalid offset value in header (%s)", name );
    }

    buf_p = buffer.b + bmpHeader.bitmapDataOffset;

    if ( bmpHeader.id[0] != 'B' && bmpHeader.id[1] != 'M' )
    {
        ri.Error( ERR_DROP, "LoadBMP: only Windows-style BMP files supported (%s)", name );
    }
    if ( bmpHeader.fileSize != length )
    {
        ri.Error( ERR_DROP, "LoadBMP: header size does not match file size (%u vs. %u) (%s)", bmpHeader.fileSize, length, name );
    }
    if ( bmpHeader.compression != 0 )
    {
        ri.Error( ERR_DROP, "LoadBMP: only uncompressed BMP files supported (%s)", name );
    }
    if ( bmpHeader.bitsPerPixel < 8 )
    {
        ri.Error( ERR_DROP, "LoadBMP: monochrome and 4-bit BMP files not supported (%s)", name );
    }

    switch ( bmpHeader.bitsPerPixel )
    {
    case 8:
    case 16:
    case 24:
    case 32:
        break;
    default:
        ri.Error( ERR_DROP, "LoadBMP: illegal pixel_size '%hu' in file '%s'", bmpHeader.bitsPerPixel, name );
        break;
    }

    columns = bmpHeader.width;
    rows = bmpHeader.height;
    if ( rows < 0 )
        rows = -rows;
    numPixels = columns * rows;

    if(columns <= 0 || !rows || numPixels > 0x1FFFFFFF // 4*1FFFFFFF == 0x7FFFFFFC < 0x7FFFFFFF
            || ((numPixels * 4) / columns) / 4 != rows)
    {
        ri.Error (ERR_DROP, "LoadBMP: %s has an invalid image size", name);
    }
    if(buf_p + numPixels*bmpHeader.bitsPerPixel/8 > end)
    {
        ri.Error (ERR_DROP, "LoadBMP: file truncated (%s)", name);
    }

    if ( width )
        *width = columns;
    if ( height )
        *height = rows;

    bmpRGBA = ri.Malloc( numPixels * 4 );
    *pic = bmpRGBA;


    for ( row = rows-1; row >= 0; row-- )
    {
        pixbuf = bmpRGBA + row*columns*4;

        for ( column = 0; column < columns; column++ )
        {
            unsigned char red, green, blue, alpha;
            int palIndex;
            unsigned short shortPixel;

            switch ( bmpHeader.bitsPerPixel )
            {
            case 8:
                palIndex = *buf_p++;
                *pixbuf++ = bmpHeader.palette[palIndex][2];
                *pixbuf++ = bmpHeader.palette[palIndex][1];
                *pixbuf++ = bmpHeader.palette[palIndex][0];
                *pixbuf++ = 0xff;
                break;
            case 16:
                shortPixel = * ( unsigned short * ) pixbuf;
                pixbuf += 2;
                *pixbuf++ = ( shortPixel & ( 31 << 10 ) ) >> 7;
                *pixbuf++ = ( shortPixel & ( 31 << 5 ) ) >> 2;
                *pixbuf++ = ( shortPixel & ( 31 ) ) << 3;
                *pixbuf++ = 0xff;
                break;

            case 24:
                blue = *buf_p++;
                green = *buf_p++;
                red = *buf_p++;
                *pixbuf++ = red;
                *pixbuf++ = green;
                *pixbuf++ = blue;
                *pixbuf++ = 255;
                break;
            case 32:
                blue = *buf_p++;
                green = *buf_p++;
                red = *buf_p++;
                alpha = *buf_p++;
                *pixbuf++ = red;
                *pixbuf++ = green;
                *pixbuf++ = blue;
                *pixbuf++ = alpha;
                break;
            }
        }
    }

    ri.FS_FreeFile( buffer.v );

}
Exemple #11
0
/*
==============
SetFarClip
==============
*/
static void R_SetFarClip( void ) {
	float farthestCornerDistance = 0;
	int i;

	// if not rendering the world (icons, menus, etc)
	// set a 2k far clip plane
	if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) {
		tr.viewParms.zFar = 2048;
		return;
	}

	//----(SA)	this lets you use r_zfar from the command line to experiment with different
	//			distances, but setting it back to 0 uses the map (or procedurally generated) default
	if ( r_zfar->value ) {

		tr.viewParms.zFar = r_zfar->integer;
		R_SetFrameFog();

		if ( r_speeds->integer == 5 ) {
			ri.Printf( PRINT_ALL, "r_zfar value forcing farclip at: %f\n", tr.viewParms.zFar );
		}

		return;
	}

	//
	// set far clipping planes dynamically
	//
	farthestCornerDistance = 0;
	for ( i = 0; i < 8; i++ )
	{
		vec3_t v;
		vec3_t vecTo;
		float distance;

		if ( i & 1 ) {
			v[0] = tr.viewParms.visBounds[0][0];
		} else
		{
			v[0] = tr.viewParms.visBounds[1][0];
		}

		if ( i & 2 ) {
			v[1] = tr.viewParms.visBounds[0][1];
		} else
		{
			v[1] = tr.viewParms.visBounds[1][1];
		}

		if ( i & 4 ) {
			v[2] = tr.viewParms.visBounds[0][2];
		} else
		{
			v[2] = tr.viewParms.visBounds[1][2];
		}

		VectorSubtract( v, tr.viewParms.or.origin, vecTo );

		distance = vecTo[0] * vecTo[0] + vecTo[1] * vecTo[1] + vecTo[2] * vecTo[2];

		if ( distance > farthestCornerDistance ) {
			farthestCornerDistance = distance;
		}
	}

	tr.viewParms.zFar = sqrt( farthestCornerDistance );
	R_SetFrameFog();
}
Exemple #12
0
/*
==============
R_SetFrameFog
==============
*/
void R_SetFrameFog( void ) {

	if ( r_speeds->integer == 5 ) {
		if ( !glfogsettings[FOG_TARGET].registered ) {
			ri.Printf( PRINT_ALL, "no fog - calc zFar: %0.1f\n", tr.viewParms.zFar );
			return;
		}
	}

	// DHM - Nerve :: If fog is not valid, don't use it
	if ( !glfogsettings[FOG_TARGET].registered ) {
		return;
	}

	// still fading
	if ( glfogsettings[FOG_TARGET].finishTime && glfogsettings[FOG_TARGET].finishTime >= tr.refdef.time ) {
		float lerpPos;
		int fadeTime;

		// transitioning from density to distance
		if ( glfogsettings[FOG_LAST].mode == GL_EXP && glfogsettings[FOG_TARGET].mode == GL_LINEAR ) {
			// for now just fast transition to the target when dissimilar fogs are
			memcpy( &glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof( glfog_t ) );
			glfogsettings[FOG_TARGET].finishTime = 0;
		}
		// transitioning from distance to density
		else if ( glfogsettings[FOG_LAST].mode == GL_LINEAR && glfogsettings[FOG_TARGET].mode == GL_EXP ) {
			memcpy( &glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof( glfog_t ) );
			glfogsettings[FOG_TARGET].finishTime = 0;
		}
		// transitioning like fog modes
		else {

			fadeTime = glfogsettings[FOG_TARGET].finishTime - glfogsettings[FOG_TARGET].startTime;
			if ( fadeTime <= 0 ) {
				fadeTime = 1;   // avoid divide by zero


			}
			lerpPos = (float)( tr.refdef.time - glfogsettings[FOG_TARGET].startTime ) / (float)fadeTime;
			if ( lerpPos > 1 ) {
				lerpPos = 1;
			}

			// lerp near/far
			glfogsettings[FOG_CURRENT].start        = glfogsettings[FOG_LAST].start + ( ( glfogsettings[FOG_TARGET].start - glfogsettings[FOG_LAST].start ) * lerpPos );
			glfogsettings[FOG_CURRENT].end          = glfogsettings[FOG_LAST].end + ( ( glfogsettings[FOG_TARGET].end - glfogsettings[FOG_LAST].end ) * lerpPos );

			// lerp color
			glfogsettings[FOG_CURRENT].color[0]     = glfogsettings[FOG_LAST].color[0] + ( ( glfogsettings[FOG_TARGET].color[0] - glfogsettings[FOG_LAST].color[0] ) * lerpPos );
			glfogsettings[FOG_CURRENT].color[1]     = glfogsettings[FOG_LAST].color[1] + ( ( glfogsettings[FOG_TARGET].color[1] - glfogsettings[FOG_LAST].color[1] ) * lerpPos );
			glfogsettings[FOG_CURRENT].color[2]     = glfogsettings[FOG_LAST].color[2] + ( ( glfogsettings[FOG_TARGET].color[2] - glfogsettings[FOG_LAST].color[2] ) * lerpPos );

			glfogsettings[FOG_CURRENT].density      = glfogsettings[FOG_TARGET].density;
			glfogsettings[FOG_CURRENT].mode         = glfogsettings[FOG_TARGET].mode;
			glfogsettings[FOG_CURRENT].registered   = qtrue;

			// if either fog in the transition clears the screen, clear the background this frame to avoid hall of mirrors
			glfogsettings[FOG_CURRENT].clearscreen  = ( glfogsettings[FOG_TARGET].clearscreen || glfogsettings[FOG_LAST].clearscreen );
		}
	} else {
		// probably usually not necessary to copy the whole thing.
		// potential FIXME: since this is the most common occurance, diff first and only set changes
		memcpy( &glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof( glfog_t ) );
	}


	// shorten the far clip if the fog opaque distance is closer than the procedural farcip dist

	if ( glfogsettings[FOG_CURRENT].mode == GL_LINEAR ) {
		if ( glfogsettings[FOG_CURRENT].end < tr.viewParms.zFar ) {
			tr.viewParms.zFar = glfogsettings[FOG_CURRENT].end;
		}
	}
//	else
//		glfogsettings[FOG_CURRENT].end = 5;


	if ( r_speeds->integer == 5 ) {
		if ( glfogsettings[FOG_CURRENT].mode == GL_LINEAR ) {
			ri.Printf( PRINT_ALL, "farclip fog - den: %0.1f  calc zFar: %0.1f  fog zfar: %0.1f\n", glfogsettings[FOG_CURRENT].density, tr.viewParms.zFar, glfogsettings[FOG_CURRENT].end );
		} else {
			ri.Printf( PRINT_ALL, "density fog - den: %0.4f  calc zFar: %0.1f  fog zFar: %0.1f\n", glfogsettings[FOG_CURRENT].density, tr.viewParms.zFar, glfogsettings[FOG_CURRENT].end );
		}
	}
}
Exemple #13
0
/*
=======================================================================================================================================
R_SetFrameFog
=======================================================================================================================================
*/
void R_SetFrameFog(void) {

	if (r_speeds->integer == 5) {
		if (!glfogsettings[FOG_TARGET].registered) {
			ri.Printf(PRINT_ALL, "no fog - calc zFar: %0.1f\n", tr.viewParms.zFar);
			return;
		}
	}

	// still fading
	if (glfogsettings[FOG_TARGET].finishTime && glfogsettings[FOG_TARGET].finishTime >= tr.refdef.time) {
		float lerpPos;
		int fadeTime;

		// transitioning from density to distance
		if (glfogsettings[FOG_LAST].mode == GL_EXP && glfogsettings[FOG_TARGET].mode == GL_LINEAR) {
			// for now just fast transition to the target when dissimilar fogs are
			memcpy(&glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof(glfog_t));
			glfogsettings[FOG_TARGET].finishTime = 0;
		}
		// transitioning from distance to density
		else if (glfogsettings[FOG_LAST].mode == GL_LINEAR && glfogsettings[FOG_TARGET].mode == GL_EXP) {
			memcpy(&glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof(glfog_t));
			glfogsettings[FOG_TARGET].finishTime = 0;
		}
		// transitioning like fog modes
		else {

			fadeTime = glfogsettings[FOG_TARGET].finishTime - glfogsettings[FOG_TARGET].startTime;
			if (fadeTime <= 0) {
				fadeTime = 1;   // avoid divide by zero


			}
			lerpPos = (float)(tr.refdef.time - glfogsettings[FOG_TARGET].startTime) / (float)fadeTime;
			if (lerpPos > 1) {
				lerpPos = 1;
			}
			// lerp near/far
			glfogsettings[FOG_CURRENT].start        = glfogsettings[FOG_LAST].start + ((glfogsettings[FOG_TARGET].start - glfogsettings[FOG_LAST].start) * lerpPos);
			glfogsettings[FOG_CURRENT].end          = glfogsettings[FOG_LAST].end + ((glfogsettings[FOG_TARGET].end - glfogsettings[FOG_LAST].end) * lerpPos);

			// lerp color
			glfogsettings[FOG_CURRENT].color[0]     = glfogsettings[FOG_LAST].color[0] + ((glfogsettings[FOG_TARGET].color[0] - glfogsettings[FOG_LAST].color[0]) * lerpPos);
			glfogsettings[FOG_CURRENT].color[1]     = glfogsettings[FOG_LAST].color[1] + ((glfogsettings[FOG_TARGET].color[1] - glfogsettings[FOG_LAST].color[1]) * lerpPos);
			glfogsettings[FOG_CURRENT].color[2]     = glfogsettings[FOG_LAST].color[2] + ((glfogsettings[FOG_TARGET].color[2] - glfogsettings[FOG_LAST].color[2]) * lerpPos);

			glfogsettings[FOG_CURRENT].density      = glfogsettings[FOG_TARGET].density;
			glfogsettings[FOG_CURRENT].mode         = glfogsettings[FOG_TARGET].mode;
			glfogsettings[FOG_CURRENT].registered   = qtrue;

			// if either fog in the transition clears the screen, clear the background this frame to avoid hall of mirrors
			glfogsettings[FOG_CURRENT].clearscreen  = (glfogsettings[FOG_TARGET].clearscreen || glfogsettings[FOG_LAST].clearscreen);
		}

		glfogsettings[FOG_CURRENT].dirty = 1;
	} else {
		// potential FIXME: since this is the most common occurance, diff first and only set changes
//		if(glfogsettings[FOG_CURRENT].dirty) {
		memcpy(&glfogsettings[FOG_CURRENT], &glfogsettings[FOG_TARGET], sizeof(glfog_t));
		glfogsettings[FOG_CURRENT].dirty = 0;
//		}
	}


	// shorten the far clip if the fog opaque distance is closer than the procedural farcip dist

	if (glfogsettings[FOG_CURRENT].mode == GL_LINEAR) {
		if (glfogsettings[FOG_CURRENT].end < tr.viewParms.zFar) {
			tr.viewParms.zFar = glfogsettings[FOG_CURRENT].end;
		}
		if (backEnd.refdef.rdflags & RDF_SNOOPERVIEW) {
			tr.viewParms.zFar += 1000;  // zfar out slightly further for snooper.  this works fine with our maps, but could be 'funky' with later maps

		}
	}
//	else
//		glfogsettings[FOG_CURRENT].end = 5;

	if (r_speeds->integer == 5) {
		if (glfogsettings[FOG_CURRENT].mode == GL_LINEAR) {
			ri.Printf(PRINT_ALL, "farclip fog - den: %0.1f  calc zFar: %0.1f  fog zfar: %0.1f\n", glfogsettings[FOG_CURRENT].density, tr.viewParms.zFar, glfogsettings[FOG_CURRENT].end);
		} else {
			ri.Printf(PRINT_ALL, "density fog - den: %0.6f  calc zFar: %0.1f  fog zFar: %0.1f\n", glfogsettings[FOG_CURRENT].density, tr.viewParms.zFar, glfogsettings[FOG_CURRENT].end);
		}
	}
}