bool render() {
  // Render meshes
  for (auto &e : meshes) {
    auto m = e.second;
    // Bind effect
    renderer::bind(eff);
    // Create MVP matrix
    auto M = m.get_transform().get_transform_matrix();
    auto V = cam.get_view();
    auto P = cam.get_projection();
    auto MVP = P * V * M;
    // Set MVP matrix uniform
    glUniformMatrix4fv(eff.get_uniform_location("MVP"), // Location of uniform
                       1,                               // Number of values - 1 mat4
                       GL_FALSE,                        // Transpose the matrix?
                       value_ptr(MVP));                 // Pointer to matrix data

    // *********************************
    // Set N matrix uniform - remember - 3x3 matrix
	glUniformMatrix3fv(eff.get_uniform_location("N"), 1, GL_FALSE, value_ptr(m.get_transform().get_transform_matrix()));
    // Set material colour - all objects red
	glUniform4fv(eff.get_uniform_location("material_colour"), 1, value_ptr(vec4(1.0f, 0.0f, 0.0f, 1.0f)));
    // Set light colour- (1.0, 1.0, 1.0, 1.0)
	glUniform4fv(eff.get_uniform_location("light_colour"), 1, value_ptr(vec4(1.0f, 1.0f, 1.0f, 1.0f)));
    // Set light direction - (1.0, 1.0, -1.0)
	glUniform3fv(eff.get_uniform_location("light_dir"), 1, value_ptr(vec3(1.0f, 1.0f, -1.0f)));

    // *********************************
    // Render mesh
    renderer::render(m);
  }

  return true;
}
bool load_content() {
  geom.set_type(GL_TRIANGLE_STRIP);
  // Create quad data
  // Positions
  vector<vec3> positions{vec3(-1.0f, -1.0f, 0.0f), vec3(1.0f, -1.0f, 0.0f), vec3(-1.0f, 1.0f, 0.0f),
                         vec3(1.0f, 1.0f, 0.0f)};
  // Colours
  vector<vec4> colours{vec4(1.0f, 0.0f, 0.0f, 1.0f), vec4(1.0f, 0.0f, 0.0f, 1.0f), vec4(1.0f, 0.0f, 0.0f, 1.0f),
                       vec4(1.0f, 0.0f, 0.0f, 1.0f)};
  // Add to the geometry
  geom.add_buffer(positions, BUFFER_INDEXES::POSITION_BUFFER);
  geom.add_buffer(colours, BUFFER_INDEXES::COLOUR_BUFFER);

  // Load in shaders
  eff.add_shader("shaders/basic.vert", GL_VERTEX_SHADER);
  eff.add_shader("shaders/basic.frag", GL_FRAGMENT_SHADER);
  // Build effect
  eff.build();

  // Set camera properties
  cam.set_position(vec3(10.0f, 10.0f, 10.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
  cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);
  return true;
}
bool load_content() {
  // *********************************
  // Create a sphere

  // Create box geometry for skybox

  // Scale box by 100 - allows a distance

  // Load the cubemap  - create array of six filenames +x, -x, +y, -y, +z, -z


  // Create cube_map

  // Load in tarnish texture

  // Load in environment map shader


  // Build effect

  // Load in skybox effect


  // Build effect

  // *********************************
  // Set camera properties
  cam.set_position(vec3(0.0f, 0.0f, 10.0f));
  cam.set_projection(quarter_pi<float>(), renderer::get_screen_aspect(), 0.1f, 1000.0f);
  return true;
}
bool render() {
  // Bind effect
  renderer::bind(eff);
  // Create MVP matrix
  auto M = m.get_transform().get_transform_matrix();
  auto V = cam.get_view();
  auto P = cam.get_projection();
  auto MVP = P * V * M;
  // Set MVP matrix uniform
  glUniformMatrix4fv(eff.get_uniform_location("MVP"), // Location of uniform
                     1,                               // Number of values - 1 mat4
                     GL_FALSE,                        // Transpose the matrix?
                     value_ptr(MVP));                 // Pointer to matrix data

  // *********************************
  // Bind texture to renderer
  renderer::bind(tex, 1);
  // Set the texture value for the shader here
  glUniform1i(eff.get_uniform_location(" tex"), 0);
  // *********************************

  // Render the mesh
  renderer::render(m);

  return true;
}
bool render()
{
	// Bind effect
	renderer::bind(eff);
	// Create MVP matrix
	auto M = m.get_transform().get_transform_matrix();
	auto V = cam.get_view();
	auto P = cam.get_projection();
	auto MVP = P * V * M;
	// Set MVP matrix uniform
	glUniformMatrix4fv(
		eff.get_uniform_location("MVP"),
		1,
		GL_FALSE,
		value_ptr(MVP));

	// Bind and set texture
	renderer::bind(tex, 0);
	glUniform1i(eff.get_uniform_location("tex"), 0);

	// Render mesh
	renderer::render(m);

	return true;
}
Exemple #6
0
bool load_content() {
  // Create mesh object, cheating and using the mesh builder for now
  m = mesh(geometry_builder::create_box());
  // Scale geometry
  m.get_transform().scale = vec3(10.0f);

  // Load in dissolve shader
  eff.add_shader("33_Dissolve/dissolve.vert", GL_VERTEX_SHADER);
  eff.add_shader("33_Dissolve/dissolve.frag", GL_FRAGMENT_SHADER);

  // Build effect
  eff.build();

  // Load in textures
  tex = texture("textures/checker.png");
  dissolve = texture("textures/blend_map2.jpg");

  // Set camera properties
  cam.set_position(vec3(30.0f, 30.0f, 30.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
  cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);

  return true;
}
Exemple #7
0
bool render() {
  // Bind effect
  renderer::bind(eff);

  // Create MVP matrix
  auto M = m.get_transform().get_transform_matrix();
  auto V = cam.get_view();
  auto P = cam.get_projection();
  auto MVP = P * V * M;

  // Set MVP matrix uniform
  glUniformMatrix4fv(eff.get_uniform_location("MVP"), // Location of uniform
                     1,                               // Number of values - 1 mat4
                     GL_FALSE,                        // Transpose the matrix?
                     value_ptr(MVP));                 // Pointer to matrix data

  // *********************************
  // Set the dissolve_factor uniform value

  // Bind the two textures - use different index for each


  // Set the uniform values for textures - use correct index


  // *********************************

  // Set UV_scroll uniform, adds cool movent (Protip: This is a super easy way to do fire effects;))
  glUniform2fv(eff.get_uniform_location("UV_SCROLL"), 1, value_ptr(uv_scroll));
  // Render the mesh
  renderer::render(m);

  return true;
}
bool load_content()
{
	// *************
	// Load in model
	// *************
	m = mesh(geometry("..\\resources\\models\\teapot.obj"));
	

	// ***************
	// Load in texture
	// ***************
	tex = texture("..\\resources\\textures\\checked.gif", false, false);
	

	// Load in shaders
	eff.add_shader("..\\resources\\shaders\\simple_texture.vert", GL_VERTEX_SHADER);
	eff.add_shader("..\\resources\\shaders\\simple_texture.frag", GL_FRAGMENT_SHADER);
	// Build effect
	eff.build();

	// Set camera properties
	cam.set_position(vec3(200.0f, 200.0f, 200.0f));
	cam.set_target(vec3(0.0f, 0.0f, 0.0f));
	auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
	cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);
	return true;
}
bool render() {
  // Render meshes
  for (auto &e : meshes) {
    auto m = e.second;
    // Bind effect
    renderer::bind(eff);
    // Create MVP matrix
    auto M = m.get_transform().get_transform_matrix();
    auto V = cam.get_view();
    auto P = cam.get_projection();
    auto MVP = P * V * M;
    // Set MVP matrix uniform
    glUniformMatrix4fv(eff.get_uniform_location("MVP"), 1, GL_FALSE, value_ptr(MVP));

    // *********************************
    // Set material colour - all objects red
	glUniform4fv(eff.get_uniform_location("material_colour"), 1, value_ptr(vec4(1.0f, 0.0f, 0.0f, 1.0f)));
    // Set ambient intensity - (0.3, 0.3, 0.3, 1.0)
	glUniform4fv(eff.get_uniform_location("ambient_intensity"), 1, value_ptr(vec4(0.3f, 0.3f, 0.3f, 1.0)));
    // *********************************
    // Render mesh
    renderer::render(m);
  }

  return true;
}
Exemple #10
0
bool render() {
	// *********************************
	// Set render target to frame buffer
	renderer::set_render_target(frame);
	// Clear frame
	renderer::clear();
	// *********************************

	// Render meshes
	for (auto &e : meshes) {
		auto m = e.second;
		// Bind effect
		renderer::bind(eff);
		// Create MVP matrix
		auto M = m.get_transform().get_transform_matrix();
		auto V = cam.get_view();
		auto P = cam.get_projection();
		auto MVP = P * V * M;
		// Set MVP matrix uniform
		glUniformMatrix4fv(eff.get_uniform_location("MVP"), 1, GL_FALSE, value_ptr(MVP));
		// Create MV matrix
		auto MV = V * M;
		// Set MV matrix uniform
		glUniformMatrix4fv(eff.get_uniform_location("MV"), 1, GL_FALSE, value_ptr(MV));
		// Set M matrix uniform
		glUniformMatrix4fv(eff.get_uniform_location("M"), 1, GL_FALSE, value_ptr(M));
		// Set N matrix uniform
		glUniformMatrix3fv(eff.get_uniform_location("N"), 1, GL_FALSE, value_ptr(m.get_transform().get_normal_matrix()));
		// Bind material
		renderer::bind(m.get_material(), "mat");
		// Bind light
		renderer::bind(light, "light");
		// Bind texture
		renderer::bind(tex, 0);
		// Set tex uniform
		glUniform1i(eff.get_uniform_location("tex"), 0);
		// Set eye position
		glUniform3fv(eff.get_uniform_location("eye_pos"), 1, value_ptr(cam.get_position()));
		// Render mesh
		renderer::render(m);
	}

	// *********************************
	// Set render target back to the screen
	renderer::set_render_target();
	// Bind Tex effect
	renderer::bind(tex_eff);
	// MVP is now the identity matrix
	auto MVP = glm::mat4();
	// Set MVP matrix uniform
	glUniformMatrix4fv(tex_eff.get_uniform_location("MVP"), 1, GL_FALSE, value_ptr(MVP));
	// Bind texture from frame buffer
	renderer::bind(frame.get_frame(), 0);
	// Set the tex uniform
	glUniform1i(tex_eff.get_uniform_location("tex"), 0);
	// Render the screen quad
	renderer::render(screen_quad);
	// *********************************
	return true;
}
bool render() {
  // Render meshes
  for (auto &e : meshes) {
    auto m = e.second;
    // Bind effect
    renderer::bind(eff);
    // Create MVP matrix
    auto M = m.get_transform().get_transform_matrix();
    auto V = cam.get_view();
    auto P = cam.get_projection();
    auto MVP = P * V * M;
    // Set MVP matrix uniform
    glUniformMatrix4fv(eff.get_uniform_location("MVP"), 1, GL_FALSE, value_ptr(MVP));
    // *********************************
    // Set M matrix uniform
	glUniformMatrix4fv(eff.get_uniform_location("M"), 1, GL_FALSE, value_ptr(m.get_transform().get_transform_matrix()));
    // Set N matrix uniform - remember - 3x3 matrix
	glUniformMatrix3fv(eff.get_uniform_location("N"), 1, GL_FALSE, value_ptr(m.get_transform().get_normal_matrix()));
    // Set material colour - specular material is white
	glUniform4fv(eff.get_uniform_location("material_colour"), 1, value_ptr(vec4(1.0f, 1.0f, 1.0f, 1.0f)));
    // Set shininess - Use 50.0f
	glUniform1f(eff.get_uniform_location("shininess"), 50.0f);
    // Set light colour - (1.0, 1.0, 1.0, 1.0)
	glUniform4fv(eff.get_uniform_location("light_colour"), 1, value_ptr(vec4(1.0f, 1.0f, 1.0f, 1.0f)));
    // Set light direction- (1.0, 1.0, -1.0)
	glUniform3fv(eff.get_uniform_location("light_dir"), 1, value_ptr(vec3(1.0f, 1.0f, -1.0f)));
    // Set eye position - Get this from active camera
	glUniform3fv(eff.get_uniform_location("eye_pos"), 1, value_ptr(vec3(cam.get_position())));
    // *********************************
    // Render mesh
    renderer::render(m);
  }

  return true;
}
bool update(float delta_time) {
  // Update camera
  static float x = 0.0f;
  x += delta_time;
  cam.set_position(vec3(10.0f * sinf(x), 10.0f, 10.0f * cosf(x)));
  cam.update(delta_time);
  return true;
}
bool load_content() {
  // *********************************
  // Create shadow map- use screen size
	shadow = shadow_map(renderer::get_screen_width(), renderer::get_screen_height());
  // Create plane mesh
	meshes["plane"] = mesh(geometry_builder::create_plane());
  // Create "teapot" mesh by loading in models/teapot.obj
	meshes["teapot"] = mesh(geometry("models/teapot.obj"));
  // Need to rotate the teapot on x by negative pi/2
	meshes["teapot"].get_transform().rotate(vec3(-90.0, 0.0, 0.0));
  // Scale the teapot - (0.1, 0.1, 0.1)
	meshes["teapot"].get_transform().scale = vec3(0.1,0.1,0.1);
  // ***********************
  // Set materials
  // - all emissive is black
  // - all specular is white
  // - all shininess is 25
  // ***********************
  // White plane
	meshes["plane"].get_material().set_emissive(vec4(0.0f, 0.0f, 0.0f, 1.0f));
	meshes["plane"].get_material().set_diffuse(vec4(1.0f, 1.0f, 1.0f, 1.0f));
	meshes["plane"].get_material().set_specular(vec4(1.0f, 1.0f, 1.0f, 1.0f));
	meshes["plane"].get_material().set_shininess(25.0f);
  // Red teapot
	meshes["teapot"].get_material().set_emissive(vec4(0.0f, 0.0f, 0.0f, 1.0f));
	meshes["teapot"].get_material().set_diffuse(vec4(1.0f, 0.0f, 0.0f, 1.0f));
	meshes["teapot"].get_material().set_specular(vec4(1.0f, 1.0f, 1.0f, 1.0f));
	meshes["teapot"].get_material().set_shininess(25.0f);



  // *********************************

  // Set spot properties
  // Pos (20, 30, 0), White
  // Direction (-1, -1, 0) normalized
  // 50 range, 10 power
  spot.set_position(vec3(20.0f, 30.0f, 0.0f));
  spot.set_light_colour(vec4(1.0f, 1.0f, 1.0f, 1.0f));
  spot.set_direction(normalize(vec3(-1.0f, -1.0f, 0.0f)));
  spot.set_range(50.0f);
  spot.set_power(10.0f);

  // Load in shaders
  shadow_eff.add_shader("50_Spot_Light/spot.vert", GL_VERTEX_SHADER);
  shadow_eff.add_shader("50_Spot_Light/spot.frag", GL_FRAGMENT_SHADER);
  // Build effect
  shadow_eff.build();

  // Set camera properties
  cam.set_position(vec3(0.0f, 20.0f, -30.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  cam.set_projection(quarter_pi<float>(), renderer::get_screen_aspect(), 0.1f, 1000.0f);
  return true;
}
Exemple #14
0
bool load_content() {
  // Create cube data - eight corners
  // Positions
  vector<vec3> positions{
      // *********************************
      // Add the position data for cube corners here (8 total)



      // *********************************
  };
  // Colours
  vector<vec4> colours;
  for (auto i = 0; i < positions.size(); ++i) {
    colours.push_back(vec4((i + 1) % 2, 0.0f, i % 2, 1.0f));
  }
  // Create the index buffer
  vector<GLuint> indices{
      // *********************************
      // Add index information here - 3 per triangle, 6 per face, 12 triangles
      // Front

      // Back

      // Right

      // Left

      // Top

      // Bottom

      // *********************************
  };
  // Add to the geometry
  geom.add_buffer(positions, BUFFER_INDEXES::POSITION_BUFFER);
  geom.add_buffer(colours, BUFFER_INDEXES::COLOUR_BUFFER);
  // ****************************
  // Add index buffer to geometry
  // ****************************
  geom.add_index_buffer(indices);

  // Load in shaders
  eff.add_shader("shaders/basic.vert", GL_VERTEX_SHADER);
  eff.add_shader("shaders/basic.frag", GL_FRAGMENT_SHADER);
  // Build effect
  eff.build();

  // Set camera properties
  cam.set_position(vec3(10.0f, 10.0f, 10.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
  cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);
  return true;
}
Exemple #15
0
bool render() {
  // Bind effect
  renderer::bind(eff);
  // Create MVP matrix
  mat4 M = eulerAngleXZ(theta, rho);
  auto V = cam.get_view();
  auto P = cam.get_projection();
  auto MVP = P * V * M;
  // Set MVP matrix uniform
  glUniformMatrix4fv(eff.get_uniform_location("MVP"), 1, GL_FALSE, value_ptr(MVP));
  // Render geometry
  renderer::render(geom);
  return true;
}
bool load_content()
{
	// **************************
	// Set geometry type to quads
	// **************************
	geom.set_type(GL_QUADS);

	// Create quad data
	// Positions
	vector<vec3> positions
	{
		// ***********************************************
		// Add the four positions of the quad corners here
		// ***********************************************
		vec3(-1.0f, 1.0f, 0.0f),
		vec3(-1.0f, -1.0f, 0.0f),
		vec3(1.0f, -1.0f, 0.0f),
		vec3(1.0f, 1.0f, 0.0f)

	};
	// Colours
	vector<vec4> colours
	{
		vec4(1.0f, 0.0f, 0.0f, 1.0f),
		vec4(1.0f, 0.0f, 0.0f, 1.0f),
		vec4(1.0f, 0.0f, 0.0f, 1.0f),
		vec4(1.0f, 0.0f, 0.0f, 1.0f)
	};
	// Add to the geometry
	geom.add_buffer(positions, BUFFER_INDEXES::POSITION_BUFFER);
	geom.add_buffer(colours, BUFFER_INDEXES::COLOUR_BUFFER);

	// Load in shaders
	eff.add_shader(
		"..\\resources\\shaders\\basic.vert", // filename
		GL_VERTEX_SHADER); // type
	eff.add_shader(
		"..\\resources\\shaders\\basic.frag", // filename
		GL_FRAGMENT_SHADER); // type
	// Build effect
	eff.build();

	// Set camera properties
	cam.set_position(vec3(10.0f, 10.0f, 10.0f));
	cam.set_target(vec3(0.0f, 0.0f, 0.0f));
	auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
	cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);
	return true;
}
bool update(float delta_time) {
  // *********************************
  // Use keyboard to change camera location
  // 1 - (50, 10, 50)
	if (glfwGetKey(renderer::get_window(), GLFW_KEY_UP)) {
		cam.set_position(vec3(50.0f, 10.0f, 50.0f));
	}


  // 2 - (-50, 10, 50)



  // 3 - (-50, 10, -50)



  // 4 - (50, 10, -50)



  // Update the camera

  // *********************************

  return true;
}
Exemple #18
0
bool render() {
  // Bind effect
  renderer::bind(eff);
  // Create MVP matrix
  mat4 M(1.0f);
  auto V = cam.get_view();
  auto P = cam.get_projection();
  auto MVP = P * V * M;
  // Set MVP matrix uniform
  glUniformMatrix4fv(eff.get_uniform_location("MVP"), 1, GL_FALSE, value_ptr(MVP));
  // *********************************
  // Render the mesh here
  renderer::render(m);
  // *********************************
  return true;
}
bool update(float delta_time) {
  // Accumulate time
  total_time += delta_time;
  // Update the scale - base on sin wave
  s = 1.0f + sinf(total_time);
  // Multiply by 5
  s *= 5.0f;
  // Increment theta - half a rotation per second
  theta += pi<float>() * delta_time;
  // Check if key is pressed
  if (glfwGetKey(renderer::get_window(), GLFW_KEY_UP)) {
    pos += vec3(0.0f, 0.0f, -5.0f) * delta_time;
  }
  if (glfwGetKey(renderer::get_window(), GLFW_KEY_DOWN)) {
    pos += vec3(0.0f, 0.0f, 5.0f) * delta_time;
  }
  if (glfwGetKey(renderer::get_window(), GLFW_KEY_LEFT)) {
    pos += vec3(-5.0f, 0.0f, 0.0f) * delta_time;
  }
  if (glfwGetKey(renderer::get_window(), GLFW_KEY_RIGHT)) {
    pos += vec3(5.0f, 0.0f, 0.0f) * delta_time;
  }
  // Update the camera
  cam.update(delta_time);
  return true;
}
bool render() {
  // Bind effect
  renderer::bind(eff);
  // Create MVP matrix
  mat4 M(1.0f);
  auto V = cam.get_view();
  auto P = cam.get_projection();
  auto MVP = P * V * M;
  // Set MVP matrix uniform
  glUniformMatrix4fv(eff.get_uniform_location("MVP"), // Location of uniform
                     1,                               // Number of values - 1 mat4
                     GL_FALSE,                        // Transpose the matrix?
                     value_ptr(MVP));                 // Pointer to matrix data
  // Render geometry
  renderer::render(geom);
  return true;
}
bool load_content() {
  // Create plane mesh
  meshes["plane"] = mesh(geometry_builder::create_plane());

  // Create scene
  meshes["box"] = mesh(geometry_builder::create_box());
  meshes["tetra"] = mesh(geometry_builder::create_tetrahedron());
  meshes["pyramid"] = mesh(geometry_builder::create_pyramid());
  meshes["disk"] = mesh(geometry_builder::create_disk(20));
  meshes["cylinder"] = mesh(geometry_builder::create_cylinder(20, 20));
  meshes["sphere"] = mesh(geometry_builder::create_sphere(20, 20));
  meshes["torus"] = mesh(geometry_builder::create_torus(20, 20, 1.0f, 5.0f));

  // Transform objects
  meshes["box"].get_transform().scale = vec3(5.0f, 5.0f, 5.0f);
  meshes["box"].get_transform().translate(vec3(-10.0f, 2.5f, -30.0f));
  meshes["tetra"].get_transform().scale = vec3(4.0f, 4.0f, 4.0f);
  meshes["tetra"].get_transform().translate(vec3(-30.0f, 10.0f, -10.0f));
  meshes["pyramid"].get_transform().scale = vec3(5.0f, 5.0f, 5.0f);
  meshes["pyramid"].get_transform().translate(vec3(-10.0f, 7.5f, -30.0f));
  meshes["disk"].get_transform().scale = vec3(3.0f, 1.0f, 3.0f);
  meshes["disk"].get_transform().translate(vec3(-10.0f, 11.5f, -30.0f));
  meshes["disk"].get_transform().rotate(vec3(half_pi<float>(), 0.0f, 0.0f));
  meshes["cylinder"].get_transform().scale = vec3(5.0f, 5.0f, 5.0f);
  meshes["cylinder"].get_transform().translate(vec3(-25.0f, 2.5f, -25.0f));
  meshes["sphere"].get_transform().scale = vec3(2.5f, 2.5f, 2.5f);
  meshes["sphere"].get_transform().translate(vec3(-25.0f, 10.0f, -25.0f));
  meshes["torus"].get_transform().translate(vec3(-25.0f, 10.0f, -25.0f));
  meshes["torus"].get_transform().rotate(vec3(half_pi<float>(), 0.0f, 0.0f));

  // Load texture
  tex = texture("textures/checker.png");

  // Load in shaders
  eff.add_shader("27_Texturing_Shader/simple_texture.vert", GL_VERTEX_SHADER);
  eff.add_shader("27_Texturing_Shader/simple_texture.frag", GL_FRAGMENT_SHADER);

  // Build effect
  eff.build();

  // Set camera properties
  cam.set_position(vec3(50.0f, 10.0f, 50.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  cam.set_projection(quarter_pi<float>(), renderer::get_screen_aspect(), 0.1f, 1000.0f);
  return true;
}
bool update(float delta_time) {
  if (glfwGetKey(renderer::get_window(), '1'))
    cam.set_position(vec3(50, 10, 50));
  if (glfwGetKey(renderer::get_window(), '2'))
    cam.set_position(vec3(-50, 10, 50));
  if (glfwGetKey(renderer::get_window(), '3'))
    cam.set_position(vec3(-50, 10, -50));
  if (glfwGetKey(renderer::get_window(), '4'))
    cam.set_position(vec3(50, 10, -50));

  // Rotate the sphere
  meshes["sphere"].get_transform().rotate(vec3(0.0f, half_pi<float>(), 0.0f) * delta_time);

  cam.update(delta_time);

  return true;
}
bool load_content() {
  // Construct geometry object
  geometry geom;
  // Create triangle data
  // Positions
  vector<vec3> positions{vec3(0.0f, 1.0f, 0.0f), vec3(-1.0f, -1.0f, 0.0f), vec3(1.0f, -1.0f, 0.0f)};
 
  // *********************************
  // Define texture coordinates for triangle
  vector<vec2> UVs{ vec2(0.0f, 1.0f),
	  vec2(-1.0f, -1.0f),
	  vec2(1.0f, -1.0f) };
  


  // *********************************
  // Add to the geometry
  geom.add_buffer(positions, BUFFER_INDEXES::POSITION_BUFFER);
  // *********************************
  // Add texture coordinate buffer to geometry
  geom.add_buffer(positions, BUFFER_INDEXES::TEXTURE_COORDS_0);
  // *********************************

  // Create mesh object
  m = mesh(geom);
  m2 = mesh(geom);
  m2.get_transform().translate(vec3(5.0f, 1.0f, 1.0f));
  // Load in texture shaders here
  eff.add_shader("27_Texturing_Shader/simple_texture.vert", GL_VERTEX_SHADER);
  eff.add_shader("27_Texturing_Shader/simple_texture.frag", GL_FRAGMENT_SHADER);
  // *********************************
  // Build effect
  eff.build();
  // Load texture "textures/sign.jpg"
  tex = texture("textures/sign.jpg");
  tex2 = texture("textures/stonygrass.jpg");
  // *********************************

  // Set camera properties
  cam.set_position(vec3(10.0f, 10.0f, 10.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
  cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);

  return true;
}
bool update(float delta_time) {
  if (glfwGetKey(renderer::get_window(), '1')) {
    cam.set_position(vec3(50, 10, 50));
  }
  if (glfwGetKey(renderer::get_window(), '2')) {
    cam.set_position(vec3(-50, 10, 50));
  }
  if (glfwGetKey(renderer::get_window(), '3')) {
    cam.set_position(vec3(-50, 10, -50));
  }
  if (glfwGetKey(renderer::get_window(), '4')) {
    cam.set_position(vec3(50, 10, -50));
  }

  cam.update(delta_time);

  return true;
}
bool load_content() {
  // Construct geometry object
  geometry geom;
  // Required buffers
  vector<vec3> positions;
  vector<vec3> normals;
  // Define the initial tetrahedron - 4 points
  vector<vec3> v{vec3(0.0f, 0.0f, 1.0f), vec3(0.0f, 0.942809f, -0.333333f), vec3(-0.816497f, -0.471405f, -0.333333f),
                 vec3(0.816497f, -0.471405f, 0.333333f)};
  // Divide the triangles
  divide_triangle({v[0], v[1], v[2]}, subdivisions, positions);
  divide_triangle({v[3], v[2], v[1]}, subdivisions, positions);
  divide_triangle({v[0], v[3], v[1]}, subdivisions, positions);
  divide_triangle({v[0], v[2], v[3]}, subdivisions, positions);
  // Copy positions (already normalized) into normals buffer
  normals.insert(normals.end(), positions.begin(), positions.end());
  // Add buffers to geometry
  geom.add_buffer(positions, BUFFER_INDEXES::POSITION_BUFFER);
  geom.add_buffer(normals, BUFFER_INDEXES::NORMAL_BUFFER);

  // Create mesh object
  m = mesh(geom);

  // Load in simple cell shader
  eff.add_shader("34_Simple_Cell_Shading/simple_cell.vert", GL_VERTEX_SHADER);
  eff.add_shader("34_Simple_Cell_Shading/simple_cell.frag", GL_FRAGMENT_SHADER);

  // Build effect
  eff.build();

  // Colour scale from red to black
  vector<vec4> colour_data{vec4(0.12f, 0.0f, 0.0f, 1.0f), vec4(0.25f, 0.0f, 0.0f, 1.0f), vec4(0.5f, 0.0f, 0.0f, 1.0f),
                           vec4(1.0f, 0.0f, 0.0f, 1.0f)};
  // Create 1D 4x1 texture from colour_data
  tex = texture(colour_data, 4, 1, false, false);

  // Set camera properties
  cam.set_position(vec3(10.0f, 10.0f, 10.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
  cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);

  return true;
}
bool load_content()
{
	// Create quad data - two triangles
	// Positions

	geom.set_type(GL_TRIANGLES); // set type only need 4 corners for quad

	vector<vec3> positions
	{
		vec3(1.0, 1.0, 0.0),
		vec3(0.0, 0.0, -1.0),
		vec3(2.0, 0, -1.0),
	};
	// Colours
	vector<vec4> colours
	{
		vec4(1.0f, 0.0f, 0.0f, 1.0f),
		vec4(1.0f, 0.0f, 0.0f, 1.0f),
		vec4(1.0f, 0.0f, 0.0f, 1.0f),
		//vec4(1.0f, 0.0f, 0.0f, 1.0f)
		//vec4(1.0f, 1.0f, 0.0f, 1.0f),
		//vec4(1.0f, 1.0f, 0.0f, 1.0f)
	};
	// Add to the geometry
	geom.add_buffer(positions, BUFFER_INDEXES::POSITION_BUFFER);
	geom.add_buffer(colours, BUFFER_INDEXES::COLOUR_BUFFER);

	// Load in shaders
	eff.add_shader(
		"..\\resources\\shaders\\basic.vert", // filename
		GL_VERTEX_SHADER); // type
	eff.add_shader(
		"..\\resources\\shaders\\basic.frag", // filename
		GL_FRAGMENT_SHADER); // type
	// Build effect
	eff.build();

	// Set camera properties
	cam.set_position(vec3(10.0f, 10.0f, 10.0f));
	cam.set_target(vec3(0.0f, 0.0f, 1.0f));
	auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
	cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);
	return true;
}
bool load_content() {
  // Set to points type
  geom.set_type(GL_POINTS);
  // Create sierpinski gasket
  create_sierpinski(geom);

  // Load in shaders
  eff.add_shader("shaders/basic.vert", GL_VERTEX_SHADER);
  eff.add_shader("shaders/basic.frag", GL_FRAGMENT_SHADER);
  // Build effect
  eff.build();

  // Set camera properties
  cam.set_position(vec3(2.0f, 2.0f, 2.0f));
  cam.set_target(vec3(0.0f, 0.0f, 0.0f));
  auto aspect = static_cast<float>(renderer::get_screen_width()) / static_cast<float>(renderer::get_screen_height());
  cam.set_projection(quarter_pi<float>(), aspect, 2.414f, 1000.0f);
  return true;
}
bool update(float delta_time) {
  cam.update(delta_time);
  // *********************************
  // Set skybox position to camera position (camera in centre of skybox)

  // rotate the sphere

  // *********************************
  return true;
}
bool render() {
  // Render meshes
  for (auto &e : meshes) {
    auto m = e.second;
    // Bind effect
    renderer::bind(eff);
    // Create MVP matrix
    auto M = m.get_transform().get_transform_matrix();
    auto V = cam.get_view();
    auto P = cam.get_projection();
    auto MVP = P * V * M;
    // Set MVP matrix uniform
    glUniformMatrix4fv(eff.get_uniform_location("MVP"), // Location of uniform
                       1,                               // Number of values - 1 mat4
                       GL_FALSE,                        // Transpose the matrix?
                       value_ptr(MVP));                 // Pointer to matrix data

    // *********************************
    // Set M matrix uniform
	glUniformMatrix4fv(eff.get_uniform_location("M"), 1, GL_FALSE, value_ptr(M));
    // Set N matrix uniform - remember - 3x3 matrix
	glUniformMatrix3fv(eff.get_uniform_location("N"),
		1,
		GL_FALSE,
		value_ptr(m.get_transform().get_normal_matrix()));
    // Bind material
	renderer::bind(m.get_material(), "mat");
    // Bind light
	renderer::bind(light, "point");
    // Bind texture
	renderer::bind(tex, 0);
    // Set tex uniform
	glUniform1i(eff.get_uniform_location("tex"), 0);
    // Set eye position- Get this from active camera
	glUniform3fv(eff.get_uniform_location("eye_pos"), 1, value_ptr(cam.get_position()));
    // Render mesh
	renderer::render(m);

    // *********************************
  }

  return true;
}
Exemple #30
0
bool update(float delta_time) {
  // Use up an down to modify the dissolve factor
  if (glfwGetKey(renderer::get_window(), GLFW_KEY_UP))
    dissolve_factor = clamp(dissolve_factor + 0.1f * delta_time, 0.0f, 1.0f);
  if (glfwGetKey(renderer::get_window(), GLFW_KEY_DOWN))
    dissolve_factor = clamp(dissolve_factor - 0.1f * delta_time, 0.0f, 1.0f);
  // Update camera
  cam.update(delta_time);
  uv_scroll += vec2(0, delta_time * 0.05);
  return true;
}