Exemple #1
0
int list_if(tree<int> &T,
	     list<int> &L,
	    bool (*pred)(int)) {
  L.clear();
  if (T.begin()!=T.end()) 
    list_if(T,T.begin(),L,pred);
}
Exemple #2
0
	void print_subtree_bracketed(const tree<T>& t, typename tree<T>::iterator iRoot, std::ostream& str) 
	{
		if(t.begin() == t.end()) return;
		if (t.number_of_children(iRoot) == 0) {
			str << *iRoot; 
		}
		else {
			// parent
			str << *iRoot;
			str << "(";
			// child1, ..., childn
			int siblingCount = t.number_of_siblings(t.begin(iRoot));
			int siblingNum;
			typename tree<T>::sibling_iterator iChildren;
			for (iChildren = t.begin(iRoot), siblingNum = 0; iChildren != t.end(iRoot); ++iChildren, ++siblingNum) {
				// recursively print child
				print_subtree_bracketed(t,iChildren,str);
				// comma after every child except the last one
				if (siblingNum != siblingCount - 1 ) {
					str << ", ";
				}
			}
			str << ")";
		}
	}
Exemple #3
0
void writeSiblingsXML(const tree<AstNode>& t, const tree<AstNode>::iterator iRoot, ostream& stream)
{
	if(t.empty()) 
		return;
	if (iRoot->getType() == "root") {
		tree<AstNode>::sibling_iterator iChildren = t.begin(iRoot);
		stream << "<?xml version=\"1.0\" encoding=\"UTF-8\" ?>" << endl;
		writeSiblingsXML(t,iChildren,stream);
	}
	else if (t.number_of_children(iRoot) == 0) {
		string type = iRoot->getType();
		stream << "<php:" << type << '>';
		if (iRoot->getValue().length() > 0)
			stream << htmlentities(iRoot->getValue());
		stream << "</php:" << type << '>' << endl;
	}
	else {
		string type = iRoot->getType();
		string xmlns="";
		if (type == "start")
			xmlns = " xmlns:php=\"http://php.net/csl\"";
		stream << "<php:" << type << xmlns << '>' << endl;
		int siblingNum;
		tree<AstNode>::sibling_iterator iChildren;
		for (iChildren = t.begin(iRoot), siblingNum = 0; iChildren != t.end(iRoot); ++iChildren) 
		{
			writeSiblingsXML(t,iChildren,stream);
		}
		stream << "</php:" << type << '>' << endl;
	}
}
Exemple #4
0
	void print_tree_bracketed(const tree<T>& t, std::ostream& str) 
	{
		int headCount = t.number_of_siblings(t.begin());
		int headNum = 0;
		for(typename tree<T>::sibling_iterator iRoots = t.begin(); iRoots != t.end(); ++iRoots) {
			print_subtree_bracketed(t,iRoots,str);
			if (headNum <= headCount - 1) {
				str << std::endl;
			}
		}
	}
Exemple #5
0
    void printTree(tree<T> const &intree, std::ostream& str=std::cout)
    {
      int nhead(0);
      auto now(intree.begin());
      while(intree.is_valid(now)){
	str << " " << *now << boost::format(" <-- [Head](%3d)") % nhead++ << std::endl;
	for(typename tree<T>::iterator sib = intree.begin(now);sib != intree.end(now);++sib){
	  for(int i = 0;i < intree.depth(sib);++i) str << "---";
	  str << "> ";
	  str << *sib << std::endl;
	} // End sib
	now = intree.next_at_same_depth(now);
      } // End while
    }
Exemple #6
0
tree_node_<FILE_ITEM>* CFileTree::findNodeWithPathFromNode(std::string path, tree_node_<FILE_ITEM>* node)
{
	tree<FILE_ITEM>::sibling_iterator sib = filesTree.begin(node);
	tree<FILE_ITEM>::sibling_iterator end = filesTree.end(node);
	bool currentLevel = true;

	std::string currentPath = _first_dirname(path);

	size_t position = currentPath.size();
	std::string followingPath = _following_path(path);
	currentLevel = followingPath.empty();

	while (sib != end) {
		// printf("sib->path '%s' lv %d curpath '%s' follow '%s'\n", sib->path, currentLevel, currentPath.c_str(), followingPath.c_str());
		if (strcmp(sib->path, currentPath.c_str()) == 0) {
			if (currentLevel) {
				return sib.node;
			}
			else {
				return findNodeWithPathFromNode(followingPath, sib.node);
			}
		}
		++sib;
	}
	return NULL;
}
Exemple #7
0
	/*!
	* \fn static bool GenerateSubTree(const tree<HTML::Node> &tDom, const string &tagname, tree<HTML::Node> &tSubDom);
	* \brief  生成子树
	* \param  [in]DOM原树
	* \param  [in]子树根节点的标签名
	* \param  [out]DOM子树
	* \return bool
	* \date   2011-06-01 
	* \author nanjunxiao
	*/
	bool Pretreat::GenerateSubTree(const tree<HTML::Node> &tDom, const std::string &tagname, tree<HTML::Node> &tSubDom)//目前只是为body使用
	{
		tree<HTML::Node>::iterator tIter = tDom.begin();
		tree<HTML::Node>::sibling_iterator tFromIter,tToIter;
		string sTagName;
		for (; tIter != tDom.end(); ++tIter)
		{
			/*if (tIter->tagName() == tagname)
				break;*/
			if (tIter->isTag() )
			{
				sTagName = tIter->tagName();
				transform(sTagName.begin(), sTagName.end(), sTagName.begin(), ::tolower);
				if (sTagName == tagname)
					break;
			}
		}
		if (tIter == tDom.end() ) 
		{
			return false;
		}
		
		tFromIter = tIter;
		tToIter = tDom.next_sibling(tFromIter);
		tDom.subtree(tSubDom, tFromIter, tToIter);
		return true;
	}
Exemple #8
0
//---:---<*>---:---<*>---:---<*>---:---<*>---:---<*>
void graph2tree(map<int, list<int> > &G, 
                tree<int> &T) {
  // Buscar la raiz. Para eso recorremos los padres (claves
  // de G) y buscamos cual no esta en la lista de hijos
  set<int> fathers, sons, tmp;
  map<int, list<int> >::iterator q = G.begin();
  while (q!=G.end()) {
    fathers.insert(q->first);
    tmp.clear();
    set_union(q->second.begin(),q->second.end(),
              sons.begin(),sons.end(),
              inserter(tmp,tmp.end()));
    swap(tmp,sons);
    q++;
  }

  // Saca de `fathers' los hijos, el unico que deberia
  // quedar es la raiz
  tmp.clear();
  set_difference(fathers.begin(),fathers.end(),
                 sons.begin(),sons.end(),
                 inserter(tmp,tmp.end()));
  assert(tmp.size()==1);
  int root = *tmp.begin();
  // printf("root of tree is %d\n",root);

  graph2tree(G,root,T,T.begin());
}
Exemple #9
0
tree_node_<FILE_ITEM>* CFileTree::findNodeWithPathFromNode(std::string path, tree_node_<FILE_ITEM>* node)
{
	tree<FILE_ITEM>::sibling_iterator sib = filesTree.begin(node);
	tree<FILE_ITEM>::sibling_iterator end = filesTree.end(node);
	bool currentLevel = true;

	std::string currentPath = path.substr(0, path.find('\\'));
	size_t position = path.find('\\');
	std::string followingPath("");
	if (position != std::string::npos) {
		followingPath = path.substr(path.find('\\') + 1);
		currentLevel = false;
	}

	while (sib != end) {
		if (strcmp(sib->path, currentPath.c_str()) == 0) {
			if (currentLevel) {
				return sib.node;
			}
			else {
				return findNodeWithPathFromNode(followingPath, sib.node);
			}
		}
		++sib;
	}
	return NULL;
}
Exemple #10
0
void RenameClass::operator()(tree<AstNode>& tr, MapClasses* classes, MapVariables* vars, MapFunctions *func) {
	// for every names in the class, generate a new *unique* name
	map<string, string> classNames;
	for (MapClasses::iterator iter = classes->begin(); iter != classes->end(); ++iter)
	{
		string newName = generateName();
		classNames.insert(make_pair(iter->first, newName));		
	}
	map<string, string>::iterator cter;
	tree<AstNode>::iterator parent;
	for (tree<AstNode>::iterator iter=tr.begin(); iter!=tr.end(); ++iter)
	{
		parent = tr.parent(iter);
		if (iter->getType() == "text" 
			&& parent->getType() == "T_STRING"
			&& (tr.parent(parent)->getType() == "unticked_class_declaration_statement"
		       || tr.parent(parent)->getType() == "function_call" // constructor
			   || tr.parent(parent)->getType() == "class_name_reference"
			   || tr.parent(parent)->getType() == "fully_qualified_class_name"
			   )
			&& ((cter=classNames.find(iter->getValue())) != classNames.end())) {
			// rename the currenet node
			iter->setValue(cter->second);
		}			
	}		
}
Exemple #11
0
FILE_ITEM CFileTree::AddItem(char *absolutePath, unsigned char* handle)
{
	FILE_ITEM item;
	item.handle = handle;
	item.bCached = false;

	if (filesTree.empty()) {
		item.path = new char[strlen(absolutePath) + 1];
		strcpy_s(item.path, (strlen(absolutePath) + 1), absolutePath);
		item.nPathLen = strlen(item.path);

		filesTree.set_head(item);
		topNode = filesTree.begin();
	}
	else {
		std::string sPath(absolutePath);
		tree_node_<FILE_ITEM>* parentNode = findParentNodeFromRootForPath(absolutePath);
		std::string splittedPath = sPath.substr(sPath.find_last_of('\\') + 1);
		item.path = new char[splittedPath.length() + 1];
		strcpy_s(item.path, (splittedPath.length() + 1), splittedPath.c_str());
		if (parentNode) {
			filesTree.append_child(tree<FILE_ITEM>::iterator_base(parentNode), item);
		} else {
			//printf("Parent node found for %s", absolutePath);
		}
	}

	DisplayTree(topNode.node, 0);

	return item;
}
Exemple #12
0
    void WeaveNet(SQcont<T> const &incont, tree<T> &outnet)
    {
      outnet.clear();
      auto top(outnet.begin());
      auto now(outnet.insert(top, *incont.cbegin()));
      for(auto c = incont.cbegin()+1;c != incont.cend();++c)
	now = outnet.append_child(now, *c);
    }
Exemple #13
0
/**
	Clean the possible patterns annotations:
		$enter_new_statement ...
*/
void clean_pattern(tree<AstNode>& tr) {
	for (tree<AstNode>::iterator iter=tr.begin(); iter!=tr.end(); ++iter) {
		if (iter->getType() == "text" && iter->getValue() == "$enter_the_new_statement") {
			iter = rewind(iter, "statement", tr);
			tr.erase(iter);
			break;
		}
	}
}
Exemple #14
0
bool detectAfterStmt(const tree<AstNode>& tr) {
	unsigned short ret = 0;
	for (tree<AstNode>::iterator iter=tr.begin(); iter!=tr.end(); ++iter) {
		if (iter->getType() == "text" && iter->getValue() == "$__END_OBF_HERE") {
			return true;
		}
	}
	return false;
}
Exemple #15
0
FILE_ITEM CFileTree::AddItem(char *absolutePath, unsigned char* handle)
{
	FILE_ITEM item;
	item.handle = handle;
	item.bCached = false;

	// If the tree is empty just add the new path as node on the top level.
	if (filesTree.empty()) {
		item.path = new char[strlen(absolutePath) + 1];
		strcpy_s(item.path, (strlen(absolutePath) + 1), absolutePath);
		item.nPathLen = strlen(item.path);

		filesTree.set_head(item);
		topNode = filesTree.begin();
	}
	else {
		// Check if the requested path belongs to an already registered parent node.
		std::string sPath(absolutePath);
		tree_node_<FILE_ITEM>* parentNode = findParentNodeFromRootForPath(absolutePath);
		std::string splittedPath = _basename_932(sPath);
		//printf("spl %s %s\n", splittedPath.c_str(), absolutePath);
		item.path = new char[splittedPath.length() + 1];
		strcpy_s(item.path, (splittedPath.length() + 1), splittedPath.c_str());
		// If a parent was found use th parent.
		if (parentNode) {
			//printf("parent %s\n", parentNode->data.path);
			filesTree.append_child(tree<FILE_ITEM>::iterator_base(parentNode), item);
		} else {
			// Node wasn't found - most likely a new root - add it to the top level.
			//printf("No parent node found for %s. Adding new sibbling.", absolutePath);
			item.path = new char[strlen(absolutePath) + 1];
			strcpy_s(item.path, (strlen(absolutePath) + 1), absolutePath);
			item.nPathLen = strlen(item.path);
			
			filesTree.insert(tree<FILE_ITEM>::iterator_base(topNode), item);
			topNode = filesTree.begin();
		}
	}

	DisplayTree(topNode.node, 0);

	return item;
}
Exemple #16
0
    void mergeNodes(tree<T> &intree)
    {
      // First, determine  which top node has the shallowest depth
      int minimal_d(1000);
      for(typename tree<T>::leaf_iterator c = intree.begin_leaf();c != intree.end_leaf();++c){
	int this_depth(intree.depth(c));
	if(this_depth < minimal_d) minimal_d = this_depth;
      } // End c
      if(minimal_d == -1) return;

      typedef std::map<T, typename tree<T>::iterator> Info;
      auto now(intree.begin());
      //const int max_depth(intree.max_depth()-1);
      const int max_depth(minimal_d);
      for(int depth = 0;depth < max_depth;++depth){
        typename tree<T>::fixed_depth_iterator itr_begin(intree.begin_fixed(intree.begin(), depth));
	Info siblings;
	while(intree.is_valid(itr_begin)){
	  int counts(siblings.count(*itr_begin));
	  typename tree<T>::fixed_depth_iterator itr_next(intree.next_at_same_depth(itr_begin));

	  // If current node and the next node are same, combine them
	  if(!counts){
	    typename tree<T>::iterator current(itr_begin);
	    siblings.insert(typename Info::value_type(*itr_begin, current));
	  } // End if
	  else{
	    typename tree<T>::iterator current(itr_begin);
	    typename tree<T>::iterator next(siblings[*itr_begin]);
	    intree.merge(intree.begin(next), intree.end(next), intree.begin(current), intree.end(current));
#ifdef _DEBUG_TREE
	    std::cout << "C: " << *current << " == N: " << *next << std::endl;
#endif
	    typename tree<T>::iterator c_back(itr_begin);
	    const int mydepth(intree.depth(c_back));
	    c_back -= mydepth;
	    intree.erase(c_back); // Erase the redundunt nodes
	  } // End else
	  itr_begin = itr_next;
	} // End while 

      } // End depth
    }
Exemple #17
0
    void WeaveNets(SQcont<SQcont<T> > &incont, tree<T> &outnet)
    {
      outnet.clear();
      auto top(outnet.begin());
      for(auto c = incont.begin();c != incont.end();++c){
	if(c->size()){
	  auto now(outnet.insert(top, c->at(0)));
	  for(size_t num = 1;num < c->size();++num)
	    now = outnet.append_child(now, c->at(num));
	} // End if
      } // End c
    }
void show_tree ( tree<Symbol> T )
{
	for ( tree<Symbol> :: iterator it_of_tree = T.begin(); it_of_tree != T.end(); it_of_tree ++ )
	{
		drawRed( it_of_tree -> name);
		cout<<endl;
		cout << "	P:(" << it_of_tree -> position[0] << ", "<< it_of_tree -> position[1] << ", " << it_of_tree -> position[2] << ") "<<endl;
		cout << "	S:(" << it_of_tree -> scale[0] << ", " << it_of_tree -> scale[1] << ", " << it_of_tree -> scale[0] << ") "<<endl;
		cout << "	active: " << it_of_tree -> active <<endl<< "	drawable: " << it_of_tree -> drawable<<endl;
		cout << endl;
	}

}
Exemple #19
0
tree_node_<FILE_ITEM>* CFileTree::findNodeFromRootWithPath(char *path)
{
	// No topNode - bail out.
	if (topNode.node == NULL){
		return NULL;
	}
	std::string sPath(path);
	std::string nPath(topNode->path);
	// topNode path and requested path are the same? Use the node.
	if (sPath == nPath) {
		return topNode.node;
	}
	// printf("Did not find node for path : %s\n", path);

	// If the topNode path is part of the requested path this is a subpath.
	// Use the node.
	if (sPath.find(nPath) != std::string::npos) {
		// printf("Found %s is part of %s  \n", sPath.c_str(), topNode->path);
		std::string splittedString = sPath.substr(strlen(topNode->path) + 1);
		return findNodeWithPathFromNode(splittedString, topNode.node);
	}
	else {
		// If the current topNode isn't related to the requested path
		// iterate over all _top_ level elements in the tree to look for
		// a matching item and register it as current top node.

		// printf("NOT found %s is NOT part of %s  \n", sPath.c_str(), topNode->path);
		tree<FILE_ITEM>::sibling_iterator it;
		for (it = filesTree.begin(); it != filesTree.end(); it++)
		{
			std::string itPath(it.node->data.path);
			// Current item path matches the requested path - use the item as topNode.
			if (sPath == itPath) {
				// printf("Found parent node %s \n", it.node->data.path);
				topNode = it;
				return it.node;
			}
			else if (sPath.find(itPath) != std::string::npos) {
				// If the item path is part of the requested path this is a subpath.
				// Use the the item as topNode and continue analyzing.
				// printf("Found root node %s \n", it.node->data.path);
				topNode = it;
				std::string splittedString = sPath.substr(itPath.length() + 1);
				return findNodeWithPathFromNode(splittedString, it.node);
			}
		}
	}
	// Nothing found return NULL.
	return NULL;
}
Exemple #20
0
/**
	Copy for duplicating a branch
*/
void copy_branch(tree<AstNode>::iterator where, tree<AstNode>::iterator from,  tree<AstNode>& tr_where)
{
	if (tr_where.number_of_children(from) == 0) {
		// simply add the node to it
		tr_where.append_child(where, *from);
	}
	else {
		where = tr_where.append_child(where, *from);
		tree<AstNode>::sibling_iterator cter;
		for (cter = tr_where.begin(from); cter != tr_where.end(from); ++cter) {
			copy_branch(where, cter, tr_where);
		}
	}
}
Exemple #21
0
void DisplayTree(tree_node_<FILE_ITEM>* node, int level)
{
	if (CFileTree::debug) {
		printf("\n\n\n<<<<<<<<<<<<<<<<<<<<<DISPLAY tree \n\n\n");
		tree<FILE_ITEM>::sibling_iterator  sib2 = filesTree.begin(node);
		tree<FILE_ITEM>::sibling_iterator  end2 = filesTree.end(node);
		while (sib2 != end2) {
			for (int i = 0; i < level; i++) {
				printf("  ");
			}
			if (tree<FILE_ITEM>::number_of_children(sib2) > 1) {
				DisplayTree(sib2.node, (level + 1));
			}
			++sib2;
		}
		printf("\n\n\n<<<<<<<<<<<<<<<<<<<<<End tree \n\n\n");
	}
}
Exemple #22
0
void RenameVariable::operator()(tree<AstNode>& tr, MapClasses* classes, MapVariables* vars, MapFunctions *func) {

	// for every names in the class, generate a new *unique* name
	map<string, string> varNames;
	for (MapVariables::iterator iter = vars->begin(); iter != vars->end(); ++iter)
	{
		string newName = "$" + generateName();
		varNames.insert(make_pair(iter->first, newName));		
	}
	map<string, string>::iterator cter;
	for (tree<AstNode>::iterator iter=tr.begin(); iter!=tr.end(); ++iter)
	{
		if (iter->getType() == "text" && ((cter=varNames.find(iter->getValue())) != varNames.end())) {
			// rename the currenet node
			iter->setValue(cter->second);
		}			
	}		
}
Exemple #23
0
	/*!
	* \fn static void CleanUpFormTag(tree<HTML::Node> &m_TagTree);
	* \brief  剪枝,去除scrip等无用节点
	* \param  [in]DOM树
	* \return void
	* \date   2011-06-01 
	* \author nanjunxiao
	*/
	void Pretreat::CleanUpFormTag(tree<HTML::Node> &m_TagTree)
	{
		set<string> m_sCleanFormSet;
		m_sCleanFormSet.insert("input");
		m_sCleanFormSet.insert("noembed");
		m_sCleanFormSet.insert("noscript");
		m_sCleanFormSet.insert("textarea");
		m_sCleanFormSet.insert("marquee");
		m_sCleanFormSet.insert("object");
		m_sCleanFormSet.insert("select");
		m_sCleanFormSet.insert("iframe");
		m_sCleanFormSet.insert("style");
		m_sCleanFormSet.insert("script");

		tree<HTML::Node>::iterator itTagTreeBegin = m_TagTree.begin();
		tree<HTML::Node>::iterator itTagTreeEnd = m_TagTree.end();
		while ( itTagTreeBegin != itTagTreeEnd )
		{
		//遍历标签树,标签节点且节点名称在m_sCleanFormSet中则把标签节点在标签树上删除
			if ( itTagTreeBegin->isTag() )
			{
				string sTagName = itTagTreeBegin->tagName();
				if ( m_sCleanFormSet.find(sTagName) != m_sCleanFormSet.end() )
				{
					tree<HTML::Node>::sibling_iterator sibTmp = itTagTreeBegin;
					sibTmp++;
					m_TagTree.erase( itTagTreeBegin );
					itTagTreeBegin = sibTmp;
				}
				else
				{
					itTagTreeBegin++ ;
				}
			}//end if
			else
			{
				itTagTreeBegin++;
			}
		}//end while
	}
Exemple #24
0
void CFileTree::RenameItem(char *absolutePathFrom, char *absolutePathTo)
{
	tree_node_<FILE_ITEM>* node = findNodeFromRootWithPath(absolutePathFrom);
	tree_node_<FILE_ITEM>* parentNode = findParentNodeFromRootForPath(absolutePathTo);

	if (parentNode != NULL && node != NULL) {
		if (filesTree.number_of_children(parentNode) < 1) {
			FILE_ITEM emptyItem;
			emptyItem.nPathLen = 0;
			emptyItem.path = const_cast<char*>("");
			filesTree.append_child(tree<FILE_ITEM>::iterator_base(parentNode), emptyItem);
		}
		tree<FILE_ITEM>::iterator firstChild = filesTree.begin(parentNode);
		filesTree.move_after(firstChild, tree<FILE_ITEM>::iterator(node));

		std::string sPath(absolutePathTo);
		std::string splittedPath = sPath.substr(sPath.find_last_of('\\') + 1);
		node->data.path = new char[splittedPath.length() + 1];
		strcpy_s(node->data.path, (splittedPath.length() + 1), splittedPath.c_str());

	}
	DisplayTree(topNode.node, 0);
}
Exemple #25
0
/**
 * This is the method for retrieving data from a file. The whole
 * tree will be written to the new file immediately after being
 * called. Interpreting the string is left up to the implementing
 * code.
 */
void TextPlainRetriever::getData(const string &location, tree<Node> &tr){
  //cout << "TextPlainRetriever::getData(" << location << ",tree)" << endl; // REMOVE
  // check that the argument is not an empty string
  if(location.size()<=0)
    throw invalid_argument("cannot parse empty string");

  // check that the argument is an integer
  int line_num=string_util::str_to_int(location);

  // set stream to the line before
  skip_to_line(infile,current_line,line_num);
  // read the line and print it to the console
  string text=read_line(infile);

  // create an empty node
  Node node("empty","empty");

  // put the data in the node
  vector<int> dims;
  dims.push_back(text.size());
  update_node_from_string(node,text,dims,Node::CHAR);
  tr.insert(tr.begin(),node);
}
Exemple #26
0
/**
	Apply some modification to the current tree.
	This is used to load the external definition and change some names
*/
void applyModification(tree<AstNode>& tr) {
	map<string, string> randNames;
	string randName = "";
	string randFunc = "";
	for (tree<AstNode>::iterator iter=tr.begin(); iter!=tr.end(); ++iter)	{
		string valueType = iter->getValue();
		if (utils::start_with(valueType,"$rand_name")
		||  utils::start_with(valueType,"rand_func_name")
		||  utils::start_with(valueType,"rand_class_name")) {
			string genValue = generateName();
			if (valueType[0] == '$')
				genValue = "$" + genValue;
			if (randNames.find(valueType) == randNames.end())
				randNames.insert(make_pair(valueType, genValue));
			iter->setValue(randNames[valueType]);
		}
		else if (utils::start_with(valueType,"$param_")) {
			string name = valueType;
			utils::replace(name, "param_","");
			iter->setValue(name);
		}
	}
}
Exemple #27
0
//---:---<*>---:---<*>---:---<*>---:---<*>---:---<*>
bool es_parcialmente_ordenado2(tree<int> &T,
			      bool (*comp)(int,int)) {
  if (T.begin()==T.end()) return true;
  return es_parcialmente_ordenado2(T,T.begin(),comp);
}
Exemple #28
0
 //---:---<*>---:---<*>---:---<*>---:---<*>---:---<*>---:---<*>---: 
 void tree2list(tree &A,list<elem_t> &L,elem_t BP,elem_t EP) {
   tree2list(A,A.begin(),L,BP,EP);
 }
Exemple #29
0
 //---:---<*>---:---<*>---:---<*>---:---<*>---:---<*>---:---<*>---: 
 iterator_t list2tree(tree &A,const list<elem_t> &L,elem_t BP,elem_t EP) {
   list<elem_t>::const_iterator p = L.begin();
   return list2tree(A,A.begin(),L,p,BP,EP);
 }
Exemple #30
0
 void make_random_tree(tree<int> &T,int M,int siblings) {
   make_random_tree(T,T.begin(),M,1,siblings);
 }