Exemple #1
0
/*! @brief construct a tree of Parts
 *
 * Given a set of Part components (filters, parents, w, bias), recursively construct
 * a tree of Parts
 * @param filters
 * @param parents
 * @return
 */
Part Part::constructPartHierarchy(vector2DMat& filters, vectori& parents) {

	// error checking
	assert(filters.size() == parents.size());

	// construct the Part tree, from the root node
	return constructPartHierarchyRecursive(filters, parents, 0, 0);

}
/*! @brief Calculate the responses of a set of features to a set of filter experts
 *
 * A response represents the likelihood of the part appearing at each location of
 * the feature map. Parts are support vector machines (SVMs) represented as filters.
 * The convolution of a filter with a feature produces a probability density function
 * (pdf) of part location
 * @param features the input features (at different scales, and by extension, size)
 * @param responses the vector of responses (pdfs) to return
 */
void SpatialConvolutionEngine::pdf(const vectorMat& features, vector2DMat& responses) {

	// preallocate the output
	const size_t M = features.size();
	const size_t N = filters_.size();
	responses.resize(M, vectorMat(N));

	// iterate
#ifdef _OPENMP
	#pragma omp parallel for
#endif
	for (size_t n = 0; n < N; ++n) {
		for (size_t m = 0; m < M; ++m) {
			Mat response;
			convolve(features[m], filters_[n], response, flen_);
			responses[m][n] = response;
		}
	}
}
void HOGFeatures<T>::pdf(const vectorMat& features, vector2DMat& responses) {

    // preallocate the output
    int M = features.size();
    int N = filters_.size();
    responses.resize(M, vectorMat(N));
    // iterate
#ifdef _OPENMP
    omp_set_num_threads(8);
    #pragma omp parallel for
#endif
    for (int n = 0; n < N; ++n) {
        for (int m = 0; m < M; ++m) {
            Mat response;
            convolve(features[m], filters_[n], response, flen_);
            responses[m][n] = response;
        }
    }
}
void SearchSpacePruning<T>::filterResponseByDepth(vector2DMat& pdfs, const vector<Size>& fsizes, const Mat& depth, const vectorf& scales, const float X, const float fx) {

	const unsigned int N  = pdfs.size();
	const unsigned int F  = pdfs[0].size();

#ifdef _OPENMP
	#pragma omp parallel for
#endif
	for (unsigned int nf = 0; nf < N*F; ++nf) {
		const unsigned int n = nf / F;
		const unsigned int f = nf % F;

		// create a mask of plausible depths given the object size
		// and the scale of the image
		Mat sdepth;
		resize(depth, sdepth, pdfs[n][f].size());

		// calculate the depth of the part in real-world coordinates,
		// given the 3d width of the part, the focal length of the camera,
		// and the width of the part in the image
		float Z = fx*X/scales[n];
		Z += fsizes[0].height;
	}
}
void DynamicProgram<T>::min(Parts& parts, vector2DMat& scores, vector4DMat& Ix, vector4DMat& Iy, vector4DMat& Ik, vector2DMat& rootv, vector2DMat& rooti) {

	// initialize the outputs, preallocate vectors to make them thread safe
	// TODO: better initialisation of Ix, Iy, Ik
	const int nscales = scores.size();
	const int ncomponents = parts.ncomponents();
	Ix.resize(nscales, vector3DMat(ncomponents));
	Iy.resize(nscales, vector3DMat(ncomponents));
	Ik.resize(nscales, vector3DMat(ncomponents));
	rootv.resize(nscales, vectorMat(ncomponents));
	rooti.resize(nscales, vectorMat(ncomponents));

	// for each scale, and each component, update the scores through message passing
	#ifdef _OPENMP
	#pragma omp parallel for
	#endif
	for (int nc = 0; nc < nscales*ncomponents; ++nc) {

		// calculate the inner loop variables from the dual variables
		const int n = floor(nc / ncomponents);
		const int c = nc % ncomponents;

		// allocate the inner loop variables
		Ix[n][c].resize(parts.nparts(c));
		Iy[n][c].resize(parts.nparts(c));
		Ik[n][c].resize(parts.nparts(c));
		vectorMat ncscores(scores[n].size());

		for (int p = parts.nparts(c)-1; p > 0; --p) {

			// get the component part (which may have multiple mixtures associated with it)
			ComponentPart cpart = parts.component(c, p);
			int nmixtures       = cpart.nmixtures();
			Ix[n][c][p].resize(nmixtures);
			Iy[n][c][p].resize(nmixtures);
			Ik[n][c][p].resize(nmixtures);

			// intermediate results for mixtures of this part
			vectorMat scoresp;
			vectorMat Ixp;
			vectorMat Iyp;

			for (int m = 0; m < nmixtures; ++m) {

				// raw score outputs
				Mat score_in, score_dt, Ix_dt, Iy_dt;
				if (cpart.score(ncscores, m).empty()) {
					score_in = cpart.score(scores[n], m);
				} else {
					score_in = cpart.score(ncscores, m);
				}

				// get the anchor position
				Point anchor = cpart.anchor(m);

				// compute the distance transform
				distanceTransform(score_in, cpart.defw(m), anchor, score_dt, Ix_dt, Iy_dt);
				scoresp.push_back(score_dt);
				Ixp.push_back(Ix_dt);
				Iyp.push_back(Iy_dt);
				//cout << score_dt(Range(0,10), Range(0,10)) << endl;

				// calculate a valid region of interest for the scores
				/*
				int X = score_in.cols;
				int Y = score_in.rows;
				int xmin = std::max(std::min(anchor.x, X), 0);
				int ymin = std::max(std::min(anchor.y, Y), 0);
				int xmax = std::min(std::max(anchor.x+X, 0), X);
				int ymax = std::min(std::max(anchor.y+Y, 0), Y);
				int xoff = std::max(-anchor.x,    0);
				int yoff = std::max(-anchor.y,    0);

				// shift the score by the Part's offset from its parent
				Mat scorem = -numeric_limits<T>::infinity() * Mat::ones(score_dt.size(), score_dt.type());
				Mat Ixm    = Mat::zeros(Ix_dt.size(), Ix_dt.type());
				Mat Iym    = Mat::zeros(Iy_dt.size(), Iy_dt.type());
				if (xoff < X && yoff < Y && (ymax - ymin) > 0 && (xmax - xmin) > 0) {
					Mat score_dt_range 	= score_dt(Range(ymin, ymax),         Range(xmin, xmax));
					Mat score_range    	= scorem(Range(yoff, yoff+ymax-ymin), Range(xoff, xoff+xmax-xmin));
					Mat Ix_dt_range 	= Ix_dt(Range(ymin, ymax),            Range(xmin, xmax));
					Mat Ixm_range 		= Ixm(Range(yoff, yoff+ymax-ymin),    Range(xoff, xoff+xmax-xmin));
					Mat Iy_dt_range 	= Iy_dt(Range(ymin, ymax),            Range(xmin, xmax));
					Mat Iym_range 		= Iym(Range(yoff, yoff+ymax-ymin),    Range(xoff, xoff+xmax-xmin));
					score_dt_range.copyTo(score_range);
					Ix_dt_range.copyTo(Ixm_range);
					Iy_dt_range.copyTo(Iym_range);
				}

				// push the scores onto the intermediate vectors
				scoresp.push_back(scorem);
				Ixp.push_back(Ixm);
				Iyp.push_back(Iym);
				*/
			}

			nmixtures = cpart.parent().nmixtures();
			for (int m = 0; m < nmixtures; ++m) {
				vectorMat weighted;
				// weight each of the child scores
				// TODO: More elegant way of handling bias
				for (int mm = 0; mm < cpart.nmixtures(); ++mm) {
					weighted.push_back(scoresp[mm] + cpart.bias(mm)[m]);
				}
				// compute the max over the mixtures
				Mat maxv, maxi;
				reduceMax(weighted, maxv, maxi);

				// choose the best indices
				Mat Ixm, Iym;
				reducePickIndex<int>(Ixp, maxi, Ixm);
				reducePickIndex<int>(Iyp, maxi, Iym);
				Ix[n][c][p][m] = Ixm;
				Iy[n][c][p][m] = Iym;
				Ik[n][c][p][m] = maxi;

				// update the parent's score
				ComponentPart parent = cpart.parent();
				if (parent.score(ncscores,m).empty()) parent.score(scores[n],m).copyTo(parent.score(ncscores,m));
				parent.score(ncscores,m) += maxv;
				//cout << parent.score(ncscores,m)(Range(0,10),Range(0,10)) << endl << endl;
				if (parent.self() == 0) {
					ComponentPart root = parts.component(c);
					//cout << root.score(ncscores,m)(Range(0,10),Range(0,10)) << endl << endl;
				}
				//cout <<parent.self() << endl;
			}
		}
		// add bias to the root score and find the best mixture
		ComponentPart root = parts.component(c);
		//cout << root.self() << endl;
		Mat rncscore = root.score(ncscores,0);
		//cout << rncscore(Range(1,10),Range(1,10)) << endl;
		T bias = root.bias(0)[0];
		vectorMat weighted;
		// weight each of the child scores
		for (int m = 0; m < root.nmixtures(); ++m) {
			weighted.push_back(root.score(ncscores,m) + bias);
		}
		reduceMax(weighted, rootv[n][c], rooti[n][c]);
	}
}
void DynamicProgram<T>::min(Parts& parts, vector2DMat& scores, vector4DMat& Ix, vector4DMat& Iy, vector4DMat& Ik, vector2DMat& rootv, vector2DMat& rooti) {

	// initialize the outputs, preallocate vectors to make them thread safe
	// TODO: better initialisation of Ix, Iy, Ik
	const unsigned int nscales = scores.size();
	const unsigned int ncomponents = parts.ncomponents();
	Ix.resize(nscales, vector3DMat(ncomponents));
	Iy.resize(nscales, vector3DMat(ncomponents));
	Ik.resize(nscales, vector3DMat(ncomponents));
	rootv.resize(nscales, vectorMat(ncomponents));
	rooti.resize(nscales, vectorMat(ncomponents));

	// for each scale, and each component, update the scores through message passing
	#ifdef _OPENMP
	#pragma omp parallel for
	#endif
	for (unsigned int nc = 0; nc < nscales*ncomponents; ++nc) {

		// calculate the inner loop variables from the dual variables
		const unsigned int n = floor(nc / ncomponents);
		const unsigned int c = nc % ncomponents;

		// allocate the inner loop variables
		Ix[n][c].resize(parts.nparts(c));
		Iy[n][c].resize(parts.nparts(c));
		Ik[n][c].resize(parts.nparts(c));
		vectorMat ncscores(scores[n].size());

		for (int p = parts.nparts(c)-1; p > 0; --p) {

			// get the component part (which may have multiple mixtures associated with it)
			ComponentPart cpart = parts.component(c, p);
			const unsigned int nmixtures  = cpart.nmixtures();
			const unsigned int pnmixtures = cpart.parent().nmixtures();
			Ix[n][c][p].resize(pnmixtures);
			Iy[n][c][p].resize(pnmixtures);
			Ik[n][c][p].resize(pnmixtures);

			// intermediate results for mixtures of this part
			vectorMat scoresp;
			vectorMat Ixp;
			vectorMat Iyp;

			for (unsigned int m = 0; m < nmixtures; ++m) {

				// raw score outputs
				Mat_<T> score_in, score_dt;
				Mat_<int> Ix_dt, Iy_dt;
				if (cpart.score(ncscores, m).empty()) {
					score_in = cpart.score(scores[n], m);
				} else {
					score_in = cpart.score(ncscores, m);
				}

				// get the anchor position
				Point anchor = cpart.anchor(m);

				// compute the distance transform
				vectorf w = cpart.defw(m);
				Quadratic fx(-w[0], -w[1]);
				Quadratic fy(-w[2], -w[3]);
				dt_.compute(score_in, fx, fy, anchor, score_dt, Ix_dt, Iy_dt);
				scoresp.push_back(score_dt);
				Ixp.push_back(Ix_dt);
				Iyp.push_back(Iy_dt);
			}

			for (unsigned int m = 0; m < pnmixtures; ++m) {
				vectorMat weighted;
				// weight each of the child scores
				// TODO: More elegant way of handling bias
				for (unsigned int mm = 0; mm < nmixtures; ++mm) {
					weighted.push_back(scoresp[mm] + cpart.bias(mm)[m]);
				}
				// compute the max over the mixtures
				Mat maxv, maxi;
				Math::reduceMax<T>(weighted, maxv, maxi);

				// choose the best indices
				Mat Ixm, Iym;
				Math::reducePickIndex<int>(Ixp, maxi, Ixm);
				Math::reducePickIndex<int>(Iyp, maxi, Iym);
				Ix[n][c][p][m] = Ixm;
				Iy[n][c][p][m] = Iym;
				Ik[n][c][p][m] = maxi;

				// update the parent's score
				ComponentPart parent = cpart.parent();
				if (parent.score(ncscores,m).empty()) parent.score(scores[n],m).copyTo(parent.score(ncscores,m));
				parent.score(ncscores,m) += maxv;
				if (parent.self() == 0) {
					ComponentPart root = parts.component(c);
				}
			}
		}
		// add bias to the root score and find the best mixture
		ComponentPart root = parts.component(c);
		Mat rncscore = root.score(ncscores,0);
		T bias = root.bias(0)[0];
		vectorMat weighted;
		// weight each of the child scores
		for (unsigned int m = 0; m < root.nmixtures(); ++m) {
			weighted.push_back(root.score(ncscores,m) + bias);
		}
		Math::reduceMax<T>(weighted, rootv[n][c], rooti[n][c]);
	}
}